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ABSTRACT 

One of the most important but neglected aspects of a simulation study is the proper design and analysis of 
simulation experiments.  In this tutorial we give a state-of-the-art presentation of what the practitioner re-
ally needs to know to be successful.  We will discuss how to choose the simulation run length, the 
warmup-period duration (if any), and the required number of model replications (each using different 
random numbers).  The talk concludes with a discussion of three critical pitfalls in simulation output-data 
analysis. 

1 INTRODUCTION 

In many “simulation studies” a great amount of time and money is spent on model development and 
“programming,” but little effort is made to analyze the simulation output data appropriately.  As a matter 
of fact, a common mode of operation is to make a single simulation run of somewhat arbitrary length and 
then to treat the resulting simulation estimates as the “true” model characteristics.  Since random samples 
from probability distributions are typically used to drive a simulation model through time, these estimates 
are just particular realizations of random variables that may have large variances.  As a result, these esti-
mates could, in a particular simulation run, differ greatly from the corresponding true characteristics for 
the model.  The net effect is, of course, that there could be a significant probability of making erroneous 
inferences about the system under study. 
 We now describe more precisely the random nature of simulation output.   Let 1 2, ,Y Y  be an output 
stochastic process [see, for example, section 4.3 in Law (2015)] from a single simulation run.  For exam-
ple, iY  might be the delay in queue for the ith job to arrive at a single-server queueing system. Alterna-

tively, iY  might  be the total cost of operating an inventory system in the ith month.  The 'iY s  are random 
variables that will not, in general, be independent or identically distributed (IID).  Thus, many of the for-
mulas from classical statistics (see Section 2) will not be directly applicable to the analysis of simulation 
output data. 

Example 1. For the queueing system mentioned above, the delays in queue will not be independent, 
since a large delay for one customer waiting in queue will tend to be followed by a large delay for the 
next customer waiting in queue.  Suppose that the simulation is started at time zero with no customers 
in the system, as is usually the case.  Then the delays in queue at the beginning of the simulation will 
tend to be smaller than later delays and, thus, the delays are not identically distributed. 

 Let 11 12 1, ,..., my y y  be a realization of the random variables 1 2, , , mY Y Y  resulting from running the 

simulation with a particular set of random numbers 11 12, ,...u u .  If we run the simulation with a different 
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set of random numbers 21 22, ,...u u  , then we will obtain a different realization 21 22 2, ,..., my y y  of the ran-

dom variables 1 2, , , mY Y Y .  (The two realizations are not the same since the different random numbers 
used in the two runs produce different samples from the input probability distributions.)  In general,  sup-
pose that we make n independent replications (runs) of the simulation (i.e., different random numbers are 
used for each replication, each replication uses the same initial conditions, and the statistical counters for 
the simulation are reset at the beginning of each replication) each of length m, resulting in the observa-
tions: 

 

11 1 1,..., ,...,i my y y  

21 2 2,..., ,...,i my y y  

                   
1,..., ,...,n ni nmy y y  

 
The observations from a particular replication (row) are clearly not IID.  However, note that 1 2, ,...,i i niy y y  

(from the ith column) are IID observations of the random variable iY , for 1,2,..., .i m   More generally, 
each entire replication is independent of any other replication, and each replication’s observations have 
the same (joint) distribution.  This independence across runs is the key to relatively simple output-data 
analysis that is discussed in later sections of this paper.  Then, roughly speaking, the goal of output-data 
analysis is to use the observations jiy  (i = 1, 2, …, m; j = 1, 2, …, n) to draw inferences about character-

istics of the random variables 1 2, , , mY Y Y . 
  

Example 2.  Consider a bank with five tellers and one queue, which opens its doors at 9 A.M., closes 
its doors at 5 P.M., but stays open until all customers in the bank at 5 P.M. have been served.  As-
sume that customers arrive with IID exponential inter-arrival times with mean 1 minute, that service 
times are IID exponential random variables with mean 4 minutes, and that customers are served in a 
first-in, first-out (FIFO) manner.  Table 1 shows two typical output statistics from 5 independent  rep-
lications  of  the  bank, assuming that no customers are present initially.  Note that results from differ-
ent replications can be quite different.  Thus, one run clearly does not produce the “answers.” 

Table 1: Results for 5 independent replications of the Bank Model. 

Replication Average delay 
in queue 

Average number 
in queue 

1 1.53 1.52 
2 1.66 1.62 
3 1.24 1.23 
4 2.34 2.34 
5 2.86 2.83 

 
 Our goal in this paper is to discuss methods for statistical analysis of simulation output data and to 
present the material with a practical focus.  Section 2 of this paper reviews formulas from classical statis-
tics based on IID data, which we will find useful later in this paper.  In Section 3, we discuss the two main 
types of simulations with regard to output-data analysis, namely, terminating and non-terminating.  Statis-
tical methods for analyzing each type are given in Sections 4 and 5, respectively.  Finally, we give a 
summary of this tutorial and three fundamental pitfalls in output-data analysis in Section 6. 
 Portions of this paper are based on chapters 4 and 9 of Law (2015).  Other references on output-data 
analysis are Alexopoulos (2007), Banks et al. (2010), Currie and Cheng (2013), and Nakayama (2008). 
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2 REVIEW OF CLASSICAL STATISTICS 

Suppose that 1 2, , , nX X X  are IID random variables with population mean and variance 2 and   , re-

spectively.  Then unbiased point estimators for 2and    are given by 
  

1( )

n

i
i

X
X n

n
   
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2

2 1

[ ( )]
( )
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(An estimator is unbiased if its mean is equal to the target population characteristic.)  Furthermore, an ap-
proximate 100(1 ) percent (0 1)   confidence interval for   is given by 
  

2
1,1 /2( ) ( ) /nX n t S n n      

                              
where 1,1 /2nt    is the upper 1 / 2  critical point for a t distribution with 1n   degrees of freedom.  If 

the sample size n is “sufficiently large,” then the confidence interval given by Expression (3) will have a 
coverage probability arbitrarily close to 1  .  Alternatively, if the 'iX s  are normally distributed, then 

the coverage probability will be exactly 1  .  In practice, if the distribution of the 'iX s  is reasonably 
symmetric, then the coverage probability will be close to 1   [see Law (2015, pp. 233-237)].  If we in-

crease the sample size from n to 4n, then the half-length of the confidence interval, 2
1,1 /2 ( ) /nt S n n  , 

will decrease by a factor of approximately 2, since there is an n in the denominator under the square-root 
sign. 
 As stated above, the 'iY s from one simulation run are not IID and, thus, Expressions (1), (2), and (3) 
are not directly applicable to their analysis.  However, if we take comparable output statistics from differ-
ent independent replications of a simulation model, then these observations are IID and the three expres-
sions are applicable. 
 

Example 3. For the bank simulation of Example 2, the five average delays in queue from column 2 of 
Table 1 are IID and, thus, Expressions (1), (2), and (3) could legitimately be used for their analysis. 

 

3 TYPES OF SIMULATIONS WITH REGARD TO OUTPUT ANALYSIS 

The options available for designing and analyzing simulation experiments depend on whether the simula-
tion of interest is terminating or non-terminating, which depends on whether there is an obvious way for 
determining the simulation run length. 
 A terminating simulation is one for which there is a “natural” event E that specifies the length of each 
run (replication).  Since different runs use independent random numbers and the same initialization rule, 
this implies that comparable random variables are IID.  The event E often occurs at a time point that has 
one of the following properties: 

(3) 

(2) 

(1) 
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  The system is “cleaned out”  Beyond which no useful information is obtained  Specified by management. 
 
The event E is specified before any runs are made, and the time of occurrence of E for a particular run 
may be a random variable.  Since the initial conditions for a terminating simulation generally affect the 
desired measures of performance, these conditions should be representative of those for the actual system. 
 

Example 4. A retail/commercial establishment (e.g., a bank) closes each evening.  If the establish-
ment is open from 9 to 5, the objective of a simulation might be to estimate some measure of the qual-
ity of customer service over the period beginning at 9 A.M. and ending when the last customer who 
entered before the doors  closed  at 5 P.M. has been served.  In this case, E = {8 hours of simulated 
time have elapsed and the system is empty}, and the initial conditions for the simulation should be 
representative of those for the bank at 9 A.M. 

 
Example 5. Consider a military ground confrontation between a blue force and a red force.  Relative 
to some initial force strengths, the goal of a simulation might be to determine the (final) force 
strengths when the battle ends.  In this case, E = {either the blue force or the red force has “won” the 
battle}.  An example of a condition that would end the battle is one side losing 30 percent of its force, 
since this side would no longer be considered viable.  The choice of initial conditions for the simula-
tion, e.g., the number of troops and tanks for each force, is generally not a problem here, since they 
are specified by the military scenario under consideration. 

 
  A non-terminating simulation is one for which there is no natural event E to specify the length of a 
run.  This often occurs when we are designing a new system or modifying an existing system, and we are 
interested in the behavior of the system in the long run when it is operating ”normally.”  Unfortunately, 
“in the long run” doesn’t  naturally translate into a terminating event E.   
 Consider the output stochastic process 1 2, ,...Y Y  for a simulation model. Let ( ) ( )i iF y I P Y y I     for 

1,2,...i  , where y is a real number and I represents the initial conditions used to start the simulation at 

time 0.  [The conditional probability ( )iP Y y I  is the probability that the event { }iY y occurs given the 
initial conditions I.]  For a manufacturing system, I might specify the number of jobs present, and whether 
each machine is busy or idle, at time 0.  We call ( )iF y I  the transient distribution of the output process 

at (discrete) time i for initial conditions I.  Note that ( )iF y I  will, in general, be different for each value 

of i and each set of initial conditions I.  For fixed y and I, the probabilities 1( )F y I , 2( )F y I , … are just 

a sequence of numbers.  If ( ) ( )iF y I F y   as i   for all y and any initial conditions I, then ( )F y is 

called the steady-state distribution of the output process 1 2, ,...Y Y .  Note that the steady-state distribution 
( )F y  does not depend on the initial conditions I. 

 A measure of performance for a non-terminating simulation is said to be a steady-state parameter if it 
is a characteristic of the steady-state distribution of some output stochastic process 1 2, ,... .Y Y   If the ran-
dom variable Y has the steady-state distribution, then we are typically interested in estimating the steady-
state mean ( )E Y  . 
  

Example 6. Consider a company that is going to modify its manufacturing system and would like to 
determine the long-run (steady-state) mean hourly throughput of their system after it has been running 
long enough for workers to know their jobs and for mechanical difficulties to have been worked out.  
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The system operates continuously 24 hours a day for 7 days a week.  Let iN be the number of parts 

manufactured in the ith hour.  If the stochastic process 1 2, ,...N N  has a steady-state distribution with 
corresponding random variable N, then they are interested in estimating the steady-state mean 

( ).  E N  
 

 Example 7. Suppose that a military organization is going to employ a new inventory system during (a  
       long) peacetime and would like to determine the long-run mean monthly cost of operating their sys-
tem.   
       Let C

i
 be the cost of operating the inventory system in the ith month.  If the output process C

1
, C

2
, ...   

has a steady-state distribution with corresponding random variable C, then they are interested in esti-
mating the mean ( ).  E C  

4 STATISTICAL ANALYSIS FOR TERMINATING SIMULATIONS 

Suppose that we make n independent replications of a terminating simulation each terminated by the 
event E.  Let jX  be an output random variable defined over the jth replication, for 1,2,...,j n ; it is as-

sumed that the 'jX s  are comparable for different replications.  Then the 'jX s  are IID random variables.  

For the bank of Example 4, jX  might be the average delay 
1

/
N

i
i

D N
 over a day from the jth replication, 

where N (a random variable) is the number of customers served in a day and iD  is the delay in queue of 

the ith arriving customer.  For the combat model of Example 5, jX  might be the number of red tanks de-

stroyed on the jth replication. 
 Suppose that we would like to obtain a point estimate and confidence interval for the mean 

( ),  E X where X is a random variable defined on a replication as described above.  Make n independ-

ent replications of the simulation and let1 2, , , nX X X  be the resulting IID random variables.  Then, by 

substituting the 'jX s  into Expressions (1), (2), and (3), we get that ( )X n  is an unbiased point estimator 

for  , and an approximate 100(1 ) percent  confidence interval for   is given by  
 

2
1,1 /2( ) ( ) /nX n t S n n   

 
Example 8. A small factory consists of a machine and an inspector, as shown in Figure 1.  Unfin-
ished parts arrive to the factory with exponential inter-arrival times having a mean of 1 minute.  Pro-
cessing times at the machine are uniformly distributed on the interval [0.65, 0.70] minute, and subse-
quent inspection times at the inspector are uniformly distributed on the interval [0.75, 0.80] minute.  
(The assumption of uniformity is for ease of exposition, and is not likely to be valid in a real-world 
application.)  Ninety percent of inspected parts are “good” and leave the system immediately; 10 per-
cent of the parts are “bad” and are sent back to the machine for rework.  (Both queues are assumed to 
be of infinite capacity.)  The machine is subject to randomly occurring breakdowns.  In particular, a 
new (or freshly repaired) machine will break down after an exponential amount of calendar time with 
a mean of 6 hours. Repair times are uniform on the interval [8, 12] minutes.  If a part is being pro-
cessed when the machine breaks down, then the machine continues where it left off upon the comple-
tion of repair.  Assume that the factory is initially empty and idle. 
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Figure 1: Small factory. 

 The factory gets an order to produce 2000 parts and, thus, a simulation of this system can be con-
sidered to be terminating with E = {2000 parts have been completed}.  Let T be the time required to 
complete the required 2000 parts.  Then the company would like a point estimate and a 95 percent 
confidence interval for the mean ( ).E T   
 We made 10 independent replications of the simulation and obtained the following observed val-
ues for T (in hours): 

 

1 32.62T  , 2 32.57T  , 3 33.51T  , 4 33.29T  , 

5 32.10T  , 6 34.24T  , 7 32.70T  , 8 33.49T  , 

9 33.36T  , 10 34.61T   
  
 Substituting the 'jT s  into Expressions (1), (2), and (3), gives the following results: 

 
2(10) 33.25,  (10) 0.606T S   

  
 and an (approximate) 95 percent confidence interval  for ( )E T   is given by 
 

33.25 0.56   or   [32.69,33.81]  
   

        Thus, we are approximately 95 percent confident that   is between 32.69 and 33.81 hours.  (If 
100 people performed this experiment independently, then we would expect that about 95 out of the 
100 confidence intervals to contain the true  .)  Note also that the interval is quite precise, with the 
half-length of the confidence interval being less than 2 percent of the point estimate.   
 We discussed above how to estimate the mean of the random variable T.  However, in some cases 
we might also be interested in getting a measure of how large a value T can take on.  For example, we 
may want to estimate the 95th percentile, 0.95x , of the distribution of the random variable T, i.e., T is 

larger than 0.95x only 5 percent of the time. 

5 STATISTICAL ANALYSIS FOR  NONTERMINATING SIMULATIONS 

Let 1 2, ,...Y Y  be an output stochastic process from a single run of a non-terminating simulation.  Suppose 
that we want to estimate the steady-state mean ( )E Y  , which is also  defined by  
 

lim ( )i
i

E Y


  

 
where ( )iE Y  is the transient mean at time i.  Thus, the transient means converge to the steady-state mean.  

However, ( )iE Y   for “small” i because we generally don’t know how to choose the initial conditions I 

Machine Inspector 

0.9 Good 

0.1 Bad 
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to be representative of “steady-state behavior.”  This causes the sample mean ( )Y m  to be a biased estima-
tor of   for all finite values of m.  The problem that we have just described is called the problem of the 
initial transient in the simulation literature. 
 The technique most often suggested for dealing with this problem is called warming up the model.  
The idea is to delete some number of observations from the beginning of a run and to use only the remain-
ing observations to estimate  .  In particular, given the observations 1 2, , , mY Y Y , we would use  
 

1( , )

m

i
i l

Y
Y m l

m l
  


 

 
(1 1)l m    rather than ( )Y m  as an estimator of  .  In general, one would expect ( , )Y m l  to be less bi-

ased than ( )Y m , since the observations near the “beginning” of the simulation may not be very repre-
sentative of steady-state behavior due to the choice of initial conditions. 
 The question naturally arises as to how to choose the warmup period (or deletion amount) l.  We 
would like to pick l (and m) such that [ ( , )]E Y m l  .  If l and m are chosen too small, then [ ( , )]E Y m l  
may be significantly different than  .  On the other hand, if l is chosen larger than necessary, then 

( , )Y m l  will probably have an unnecessarily large variance. 
 The simplest and most general technique for determining l is a graphical technique due to Welch 
(1983) [see also Law (2015, pp. 513-520)].  Its specific goal is to determine l such that ( )iE Y   for 

,i l  where l is the warmup period.  This is equivalent to determining when the transient-mean curve 
( )iE Y “flattens out” at level  .  In general, it is difficult to determine l from a single replication due to the 

inherent variability of the process 1 2, ,...Y Y .  As a result, Welch’s procedure is based on making multiple 
replications of the simulation in a pilot study. 

5.1 The Replication/Deletion Approach 

In this section, we discuss how to construct a point estimate and confidence interval for  .  Suppose that 
the warmup period has been determined by Welch’s procedure or by using “engineering judgment.”  
Make n independent replications of the output process 1 2, ,...Y Y  each of length m, where m should be 
much larger than l.  (There is no definitive way of picking the run length m here, as there was for termi-
nating simulations.)  Let jiY  be the ith observation from the jth replication, for 1,2,...,j n  and 

1,2,...,i m .  Let 
 

1

/( - )   for 1,2,...,
m

j ji
i l

X Y m l j n
 

 
 

 
Note that 1i l   is where we think that “steady state” begins.  Then the 'jX s  are IID random variables.  

Furthermore, ( )jE X   since , 1 , 2 ,, ,...,j l j l j mY Y Y   each have approximate mean  .  Then, by substituting 

the 'jX s  into Expressions (1), (2), and (3), we get that ( )X n  is an (approximately) unbiased point esti-

mator for  , and an approximate 100(1 ) percent  confidence interval for   is given by  
 

2
1,1 /2( ) ( ) /nX n t S n n   

1816



Law 
 
 
We call the above method for constructing a point estimate and confidence interval for   the replica-
tion/deletion method.  One criticism that was levied against this method historically is that l observations 
must be discarded from each of the n replications.  However, given the availability of PCs with fast multi-
core processors, this is no longer an issue for many, if not most, steady-state analyses. 
 

Example 9. Consider a manufacturing system with a receiving/shipping station and five workstations 
(see Figure 2), as described in Law (2015, chapter 14).  Assume that there are 4, 2, 5, 3, and 2 ma-
chines in stations 1through 5, respectively.  The machines in a particular station are identical, but ma-
chines in different stations are dissimilar.  Jobs arrive to the system with exponential inter-arrival 
times having a mean of 1/15th an hour.  Thus, 15 jobs arrive in a typical hour.  There are three types 
of jobs, and jobs are of types 1, 2, and 3, with respective probabilities 0.3, 0.5, and 0.2.  Job types 1, 
2, and 3 require 4, 3, and 5 operations to be done, respectively, and each operation must be done at a 
specified workstation in a prescribed order.  Each job begins at the receiving/shipping station, travels 
to the work stations on its routing, and then leaves the system at the receiving/shipping station.  For 
example, the routing for a type 1 job is 3, 1, 2, 5. 
 A job must be moved from one station to another by a forklift truck, which moves at a speed of 5 
feet per second, and two forklifts are available.  When a forklift becomes available, it processes re-
quests by jobs using a shortest-distance-first dispatching rule.  If more than one forklift is idle when a 
job requests transport, then the closest forklift is used.  When a forklift finishes moving a job to a 
work station, it remains at that station if there are no pending job requests.  Each station has  a  single  
FIFO 

         
 
 
 
 
 
 
 
 
 
 
               Figure 2: Factory with five workstations. 

 
 queue.  The time to perform an operation at a particular machine is a  gamma random variable with a 

shape parameter of 2, whose mean depends on the job type and the station to which the machine be-
longs.  For example, the mean service time for a type 1 job at station 3 (the first station on its routing) 
is 0.25 hour.  When a machine finishes processing a job, the job blocks that machine (i.e., the ma-
chine cannot process another job) until the job is removed by a forklift.   

  The factory is open 8 hours a day, and thus the arrival rate is 120 jobs per day.  The system con-
figuration described here is called system design 3 in Law (2015). 
 Let 1 2, ,...N N  be the output stochastic process corresponding to daily throughputs.  Then we are 
interested in obtaining a point estimate and 90 percent confidence interval for the steady-state mean 
daily throughput ( ).  E N  Since the simulation starts out with no jobs present at time zero, the 
throughput will tend to be “small” during the early part of a run and a warmup period is needed.  Us-
ing Welch’s graphical procedure, we determined that a reasonable warmup period for this output pro-
cess is 15l   days [see Law (2015, chapter 14)]. 

Workstation 2 Workstation 3 

Workstation 1  Workstation 5  Receiving/Shipping  

Forklift 
Workstation 4 

In Out 
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  We made 10n   (production) replications of length 115m   days, and used a warmup period of  
 15l   days.  Let 
 

115

16

100

ji
i

j

N
X    

 
 where jiN  is the throughput in the ith day of the jth replication.   

  Substituting the 'jX s  into Expressions (1), (2),  and (3), we get the following point estimate and 

approximate 90 percent confidence interval for ( )E N  : 
 

ˆ (10) 120.29X    
  
 and 
 

120.29 0.63   or   [119.66,120.92]  
 
 Thus, subject to the correct interpretation, we are approximately 90 percent confident that the steady-

state mean daily throughput is between 119.66 and 120.92 jobs per day.  Note that this confidence in-
terval contains 120, which should be the mean daily throughput if the system has enough machines 
and forklifts.  (In a real application,   would not, of course, be known.)  

             Note also that the confidence interval is quite precise, with the half-length being less than 1 per-
cent of the point estimate.   Also, since jX  is the average of 100  'jiN s , it should be approximately 

normally distributed by a central-limit-theorem type effect.  This suggests that the coverage of the 
confidence interval should be close to the desired coverage probability of 0.9.  Finally, if, for exam-
ple, we wanted to decrease the half-length by a factor of 3, then a total of approximately 90 replica-
tions would be required. 

6 SUMMARY AND PITFALLS IN OUTPUT-DATA ANALYSIS 

We have seen that both terminating and non-terminating analyses can be performed easily by making in-
dependent replications of the simulation model and using Expressions (1), (2), and (3), which come from 
a first undergraduate course in statistics.  In the case of steady-state parameters, we also have to determine 
a warmup period, but this can be reliably addressed using Welch’s graphical approach.  The method of 
replication can also be easily applied to comparing alternative system configurations [see, for example, 
Law (2015, chapters 10 and 11)] and to estimating multiple measures of performance.  Moreover, multi-
ple replications can be made simultaneously on computers having multiple-core processors, on computers 
connected by a local-area network, or by using cloud computing! 
 
 The following are three major pitfalls in output-data analysis: 
  Analyzing simulation output data from one run using formulas [e.g., Expression (2)] that assume 

independence, which might result in a gross underestimation of variances and standard devia-
tions.  This problem is exacerbated by the use of these formulas by some simulation-software 
packages.  Failure to have a warmup period for steady-state analyses 
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  Failure to determine the statistical precision of simulation output statistics by the use of a confi-

dence interval, which can be accomplished easily using the replication approach.  
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