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ABSTRACT

The concept of a metamodel has been an importahtfor simulation analysifor forty years These

models of simulation models have the advantage of faster execution, and they can (sometimes) provide
insight on the nature of the simulation response as a function of design and input distribution parameters.
This introductory tutorial willdescribe metamodeling uses and associated processes, survey commonly
used metamodel types and associated experiment designs, and give a brief descriptionre¢esime
developments and how they may affect futuralistream” simulation metamodeling.

1 INTRODUCTION

Discreteevent simulation models allow users to examine in relatively high fidelity the expected behavior
of manufacturing, transportation, health care or other systEmessimulation model can be exercised at
lower cost and with less risk than the real system. Further, the real system may not yet exist, so simulation
providesperformance prediction fahe asyetto-be-constructed real systefaxercising such a model in
an ad hoc way may not lead to general insights on the behavior of theitlead extant or imagined)
system being modeledhowever Further, when the simulation model fidelity is high and the system is
complex, the computational effort to simulate can dodstantial. Simulationists then often fit a
computationally efficient approximation to the simulation model: a metamodel. Innthigluctory
tutorial we examine the role of metamodels and the metamodeling adtivitimulation studies
Metamodelingpermits special insights into system performance, and enekiensive exercise of the
system under different design conditions at relatively modest computational cost.

This is the first WSC introductory tutorial focuse@dn metamodeling irat leastsevemeen years
(Barton 1998). Closely related tutorials on the design of simulation experiments appear regularly,
however. See for example the tutorials law (2014), Sanchez and Wan (2012), Barton (2010), and
Kleijnen (2008).This is not to say that the fikis not active: there have been many papers on new
metamodeling methods and on new uses for simulation metamodels. AtLYV8IGhe there were two
sessions dedicated to metamodeling, and a total of ten papers across all gesdieas.the very good
advanced tutorial by Staum (2009).

This tutorial will provide an accessible view to metamodeling fobgginner For that reason, open
access materials receive preference: a referenc&lamagement Sciengaper may be omitted in favor
of an earlier WSC publicationthesecan be freely accessed under the Archive link at the WSC home
page (vww.wintersim.org. Advanced methods will not be the focWghile this tutorid will discuss the
design of simulation experiments, the emphasis will be on the historical context of metamodeling,
metamodel typesand the ultimate uses of metamodels, with guidance on the overall metamodeling
process.
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2 METAMODELING: BASICS, PURPOSE, AND PROCESSES

21  Basicsof Metamodeling

Metamodels approximate the input-output behavior of simulation models. Thentetamodel was
popularized and developéy Jack Kleijnenfor example, Klgnen 1975)but the term and concept were
both originated by Robert Blanning (1974, 1975a, 1975b). The iaditates a mathematical
approximatiorthat modelsthe behavior of another mod&hese approximations are also called swateg
and response surface modelsrlf work exploredresponse surface moddts simulations, under the
name of “regression” or “experimental design®Walsh 1963, Burdick and Naylor 1966, Hunter and
Naylor 1970. While thesefocused onstochastic, typically discre®vent, simulation (asare ours),
metamodelsare alsoused to approximatether kinds ofsimulation models (e.gfinite element, circuit,
stochastic flow and boundary element simulation model#\n early application of response surface
modelingin water resource planning simulatiappears irHufschmidtand Fiering(1966). Hufschmidtis
also a coauthor in Maass et al. (1962) which has a section on response surface modeling of a water system
simulation model.

A metamodel is a function, say that takes some simulation model design parameters as inputs,
represented herby avector x, and produces an approximation to some characteristic of a simulation
output say g¥) (e.g.,meanof Y, standard deviation df, 0.9-quantile ofY, etc, of some performance
measure). Examples of model design parameters include input probability distribution parameters, such as
arrival rate and mean service time; and system configuration parameters, such as the number of servers,
service priority, operational protocols, and buffer capacity. For now, assume that any design parameter
can be coded numerically, even if only ashvariable. There will be more about how to do this later in
the tutorial. Examples of simulation outputs are time in the system for a sgibefor customer
utilization of a particular resource (e.g., operator, machine), or perhaps net revenue over a specific time
period.Generally these outputs are averaged over the length of a simulation run, but vary randomly from
run to run.lf the value of the characteristicY§x) for an actuakimulation run with the design parameater
set to the values ix then we represent the fitted metamodel approximagQnas:

h(Y(x)) = f(x), 1)

whereh represents some function of the random varidbl@ften it is a composition of functions: some
nonlinear function of the expected valueYobr of a quantile of or of a quantile of Xote that the
distribution of y depends on the values of the design parametéms.simplest and most common
metamodelype is linear regression. The tertméar’ refers to the way the unknown coefficients come
into the model. Linear regression can capture curvilinear relationships.

To illustrate the basics of metamodeling, we will fit two regression metastodddta fom a simple
gueueing simulation. Although simulation is not needed for an M/M/1 queue, such a system is easy to
understand and has behavior that is frequently seen in simulations. In this case we want to explore how
the average waiting timghe outpu) varies with service spegthe input or design parametgrassuming
an arrival rate of ustomer per unit tim@n some scaled units of timeThe plot below, made using
Minitab® (Minitab 2015) show the results of simulations of 5000 customers in systems with mean
service times of 0.7, 0.75. 0.8, 0.85, 0.9 and 0.95.

If we fit a linear regression model to this data, the metamodel produces the fit seen in Figure 2. If we
fit a quadratic metamodel to these data it produces the fit shown in Figure 3. Gleadyare problems
with the fidelity of both of these fitted metamodels. We will return to this example throughout the tutorial
to discuss each aspect of the metamodeling process.

For Figure 2, the metamodel corresponding to (1) Yas average waiting time for the 5000
customers in a simulation run;(¥h = the expected value of this run average, i.e., E(Y); X = mean service
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time (the xvector has only one component); affd) = -44.19 + 61.42xFor Figure 3, the fitted
metamodel is(k) = 269.9 -708.3x% 466.5¢.

Now that we have a basic understanding of what a metamodel is, we can discuss purposes for which
metamodels are built.
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Figure 1: Output of M/M/Experimentsthreereplications each at six mean service time settings.

Fitted Line Plot
Avg Wait = - 44.19 + 6142 Mean Service
30 S 4.24279

R-Sq 63.2%
R-Sq(adj)  60.9%

0.70 0.75 0.80 0.85 0.90 0.95
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Figure 2: A egression metamodétted to the datawith intercept and linear teronly.
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Fitted Line Plot
Avg Wait = 269.9 - 708.3 Mean Service
+ 466.5 Mean Service”2
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Figure 3: The fitted quadratic regression metamodel is an improvement.

2.2  Metamodeling Purpose

Metamodelgyenerally have three characteristics that give them advaovegehe simulation model for
certain purposesA metamodel fgenerally has explicit forndeterministic outpytand, once fitted, is
computationally inexpensite evaluate.

Due to thé& explicit form, metamodels are often dwibed as providing insight that is, an
understanding of the general relationship between design parameteiome performance measure
related to the simulation outputor the example in Figure 2, we find a positive coefficient, which
indicates both a positive relationshigtween service the and the expected value of average waiting
time, and the magnitude of the slope coefficient gives the levadritivity. For a metamodel with one
design parameter this sensitivity measure maybe very interesting, but when there are tens or hundreds
of design parameters, the size of the coefficients can be used to identify shéenfluential design
variables and screetine othersThe coefficients of the metamodel shown in Figure 3 provide more
insight: the relationship between wagitime and service time is convé¥'e know that because the
coefficient of the squared term is positive. Further, it is easy to evaluate either of these metamodels for
many values of service time, allowing one to characterize global variation in the mean value.

Metamodels, once fitted, can be used as a proxy, to evaluate instead of making (computationally
expensive and stochastic) simulation runs. Further, because of their explicit form, they can be used in
many computationally intensive operations, sucbmsnization(Cheng and Currie 2004, Barton 2009)
input model uncertaintgXie, Nelson and Barton 2014), quantiles and conditional value atGrsén(and
Kim 2013)and robust desigrbgllino, Kleijnen and Meloni 2009)

2.3  TheMetamodeling Process

The rest of this introductory tutorial is organized around the steps afd@te@nodeling process. A nine-

step process was described by Burdick and Naylor (1966), and other authors have provided alternative
process descriptions (see Sectith FOR FURTHER STUDYbelow) We will follow a severstep
process.
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Table 1: The metamodeling process.

Step Activity
1 Determine Purpose(s) for Metamodeling
2 Identify Design Parameter(s) and Output(s)
3 Choose Metamodel Type
4 Based on Metamoddlype and on Purpose, Choose Experiment Design to Fit Metampdel
5 Conduct Simulation Runs Specified by the Experiment Design; Fit Metamodel
6 Validate Metamodel Adequacy: If Unsatisfactory (usually) Return to Step 3
7 Use Metamodel for Intended Purposes

3 IDENTIFYING DESIGN PARAMETERS AND OUTPUTS

3.1  Design Parameter and Output Selection

Typically, simulation models have many design parameters that might be included in a metamodel. Each
parametric probability distribution used in the model has param@tegse are called input distribution
parameters. They characterize randomly varying interarrival times, service times, times until machine
breakdown, message lengths, routing choices, transport times, number of workers out sick, uncontrollable
environmental factors, and other characteristics of the simulated system that have a stochastic nature.

In addition, there are design parameters that are deterministic in value: number of workers scheduled
to work at a particular time, number of machines, processing protocols and other characteristics of the
system being modeled that can be changed, either for a currently operating system or some system to be
built in the future.

The particular parameters to include in the metamodel depend orthimg® i)a desireto include
parameters that the decision maker would like to explore chargirige need to model the impact of
any uncontrollable environmental factors that affect system performance; and iii) the recognition that
more metamodel parameters generally means a larger fitting experiment, and more computational effort
to fit the metamodelF-urther, for regression metamodels, the inclusion of higher order teroapture
interaction effects and nonlineari¢f for the M/M/1 example) also adds to the sizethaf experiment
design.Causeeffect diagrams andgriori plots can help identifthe design parameters and any expected
interactions or nonlinearity (Barton 2010). Rbe M/M/1 example above, the experiment design was
presented as given. In actualityvibuld be selected after considering whether to includen xthe
metamodel.

Functions of the simulation outputs that are of interest generally are each modeled separately, that is,
a separate metamodel is fitted for each function of the simulation outpetied for the purpose(s)
identified in Step 1Multiple response surface models were considered in the early paper by Burdick and
Naylor (1966) and many subsequent authdrae multivariate metamodels have been used for physics-
based simulationélTu 2003). For the M/M/1 example, only one function of one simulation outpait is
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interest: h correspondgo the expected value, andis the average waiting time of 5000 simulated
customersOccasionally,h will be chosen to reduce the nonlinearity of the output with respect to the
design parameters, or to achieve equal (homogeneous) output variance across the design space. Methods
for choosing such transformations are summarized in BartoMeaoklesheimer (2006).

3.2  Continuous and Discrete Design Parameters and Outputs

Generally metamodeling assumes that all design parameters and outputs can take on continuously varying
values. But many design parameters are discrete. Examples include numbers of servers, machines or other
resources, buffer sizes, number of products, type of processing protocol, system configuration
alternatives, and so forth.

When the parameter has a numerical value that is restricted to a discrete set of values, then assuming
that the parameter can take on a continuous set of values is practical. The discrete nature places a
restriction on the experiment design that is used for fitting, but the fitted metamodel can be evaluated on
the discrete set of allowed values.

When there are only two values for the parameter (Brgtocol A and Protocol B, a discrete
numerical characterization can be assigned, for exampl®, for Protocol Aandx =1 for ProtocolB. If
the parameter does not have numerical value and there are more than two levels, numerical conversion is
still possible, but requires adidihal xcomponents. For example, for three protocols, let X if Protocol
Ais used, and = 0 otherwise. Let=x1 if Protocol Bis used, and = O otherwise. If Protocoliused,
then both xand % = 0. Then metamodel terms far(®r %) will indicate the differences of Protocol (Ar
Protocol B from Protocol C

When the simulation output is discrete (e.g., success or failure), there is a restriction on the type of
metamodel. These are generally called classifier or discriminant metamodels. Meckesheimer et al. (2001)
consider metamodels with both continuous and discrete responses.

3.3  Scaling/Coding Parameter s and Outputs

In addition to the output transformations and qualitative variable coding mentioned previously, the ability
of the metamdel to provide insight depends on careful scaling and coding of all design parameters.
Generally, code all numerical design parameters so th& the smallest value taken, and +1 is the
largest valueThis coding is accomplished by the following:

Xnew = 2[X- ((Xmax + Xmin)/2)/( Xnax - Xmin)]. (2

Compare the insight from the fitted metamodel in Figure 2 with that in Figure 4, based on the same
data but rescaling the average service time usindo(2},for .7 and +1 for .95.

Insight from Figure 2: a unit increase in mean service time would result in an increase in average
waiting time ofapproximately 6Xime units(note: a unit increase in mean service time could not happen
— thesystem would be unstable). Also, if the mean service time were reduced toward zero, the average
waiting time would tend towardi4 time units (note: negative time is impossible).

Insight from Figure 4moving from the middle service time (.825) to the highest service time (.95)
will increase the average waiting time by approximately 7.7 time units. If the system is operated at the
middle service time value (.825), the average waiting time will be approxintafetime units.

Clearly, basic insights from the regression model coefficients fail to materialize withoeful
coding of the design parameter value(s).

Further, Figure 5 shows that, unlike the difference between the models in Figures 2 and 3, the linear
coefficient does not change between Figures 4 and 5. Note that the metamodel fit does not change —
Figure 2 has the same shape as Figure 4 and Figure 3 as Figuoml$ the interpretation of the
coefficients changes. The intercept did change between Figure 4 and Figure 5, however. Fixing this
requires more than coding of the design parameters, it requires coding the functione patho®ters
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used in the regression models. The topic of orthogonalnpoiials is beyond this tutoriabee for
example Montgomery (2012).

Fitted Line Plot
Avg Wait = 6.477 + 7.677 C Mean Service

30 S 424279

R-Sq 63.2%

R-Sq(adj 60.9%
25 q(adj)
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Figure 4:The linear regression metamodel with coded service time: fit is identical to that in Figure 2.

Fitted Line Plot
Avg Wait = 3.076 + 7.677 C Mean Service
+ 7.289 C Mean Service~2

30 S 3.00762

R-Sq 82.7%
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Figure 5:The quadratic regression metamodel witkded service time.
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4 CHOOSE AMETAMODEL TYPE

For this introductory tutorial we focus on two types of metamodigsar regression and stochastic
Kriging (spatial correlation) models. There are descriptionstleér metamodel types in Barton (1998)
andBarton (2009) We identify the metamodel type before selecting an experiment design for practical
reasons: factorial and fractionfaetorial designs, appropriate for linear regression, can cause significant
numerical difficulties when used to friging models. Further, the complexity of the proposed regression
model places (minimum) requirements on the type of factorial or fractional-factorial design that can be
employed for fitting.

41  Linear Regression Metamodels

Regression metamodels use a probability model to characterizénthiation output of interest. The
form of the probability model that characterizes the simulation oigput

Y = fo+ SiOa(Xe, Xor ey ) F oo F BoGp(Xa, X, 1y ) + 5 3

where¢ are independent, normal random quantities with mean zero and unknown vandrthere are d
design parameterégain, the terminear comes from théact that the unknown coefficient§ §) to be
fitted in the experiment appear linearly (as multipliers) in the modelgThections can be nonlinear in
the Xs. There arg terms in the model (not counting the intercept), allowing for terms involving functions
of one or more desigparamegrs, for examplegs(Xy, X2, ..., Xg) = X2, or O12(X1, X2, ...y Xg) = XXs. The
assumption is that the variance does not change depending on the vakles,af.( »). This model (3)
implies

E(Y )= Bo+ Ai10a(Xe, X, s X) + oo + BoBo(X1, %, -0 K), (4)

and the metamodd{x) will match (4) but with estimated values, lb,, ..., b, for the unknown
coefficients.Since the estimated valubg b, ..., b, will vary randomly from one experiment to the next,
conceptually the fitted metamod#épends randomly on the data. Given a set of datg} where x =
(X1, X2, -.., %q) IS the vector of design parameter values for {hesimulation run, andy; is the
corresponding outpptet X be the matrix whosd"irow isx and let ybe the column vector consisting of
the elementsy}. Then the estimated coefficient vector (oo, by, ...1,) is computed by:

b = (X'X)*X'y. (5)

where the prime symbol denotes matrix transpose. The solution (5) minimizes the average squared
deviation of the metamodel prediction from the observed simulation outputs (MSE):

noo N p
min> (Y -Y,)?/n, where the minimization is ovérand Y = Z B g (% %20%p)  (6)
i=1 j=0
The fitted regression metamodel is then

V9= (6 %0 %,) @

The intercept terny, has corresponding, g 1. Forthe M/M/1 example, the fitted metamodelRigure 4
hasb, = 6.477, and b= 7.677. The fitted metamodel in Figusehasb, = 3.076 b, = 7.677, and p=
7.289.
Linear regression models have simple form and so provide direct insight on the behavior of the
simulation. When design parameters are coded elet1], then the magnitude of the linear coefficients
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indicate the relative sensitivities of the simulation output to all design parameters (over the defined ranges
of paraneter values). Similarly, quadratic coefficients can indicate nonlinearity, and convexity/concavity.
Coefficients for crosproduct terms indicate interaction effeetthe sensitivity of the output to changes

in one design parameter may vary, depending on the setting of another design pafdsaetknear
regression models are readily available in commercial statistical software.

Linear regression models using polynomial functions of the design parameters have limited
flexibility, however. Figure 6 showasn attempt to find a bettéitting metamodel for the M/M/1 example
by adding a cubic termihile the curve comes closer to the observed waiting times overall, it is no
longer monotonically increasing, something we expect in a metamodel of mean waiéngtsus mean
service time. Adding more terms improves the fit near the six experiment design points but increases the
excursionof the metamodedway from the desigpoints.For the classic illustration of ih“excursions”
shortcoming of polynomial models see Figure 1 in Barton (1992).

Looking at Figures & it is apparent that the variance of the response is larger at higher average
waiting times. This is particularly important for models where the output is some function of a queueing
system, as is tén the case in discregaent simulation. One approach to reducing this heteroscedasticity
is to take different numbers of replications at different design points. By taking more replications at high
variance points, the variance of the average response at such points is reduced. This is an expensive
proposition though: the spread you see is related to the standard deviation, which is only reduced as the
square root, so to reduce the spread by a factor of two requires 4x the replications!

Fitted Line Plot

Avg Wait = 3.076 + 1521 C Mean Service
+ 7.289 C Mean Servicer2 + 7.619 C Mean Service”3

= s 252791
R-Sq 88.6%
o R-Sq(adj)  86.1%

20

Avg Wait
G

-10 -0.5 0.0 0.5 10
C Mean Service

Figure 6: A aibic regression metamodel is not monotonic.

Often problems with heteroscedasticity afitfing can be reduced by transforming the dependent
variable(s). A typical transformation for queueing output data is the logarithmic transformation. Figure 7
shows thesame model as Figure 5 but usingYlhés the dependent variable. Note that i) the large
differences in spread across the design points is reduced and ii) the fit as measdriebtér.
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Fitted Line Plot

LnWait = 1693 - 8.056 Traffic Intensity
+ 9.647 Traffic Intensity”2

s 0.378466
R-Sq 88.9%
L4 R-Sq(adj) 87.4%

LnWait

0.5 0.6 0.7 0.8 0.9 10
Traffic Intensity

Figure 7:Transforming to In(Avg Wait) reduces heteroscedasticity and improves fit

42  Stochastic Kriging M etamodel

Stochastic Kriging methods for discretevent simulation metamodeling are a relatively recent
development (Ankenman, Nelson and Staum, 2008). The sinkplgstg probability model is:

Y(X) = fo + M(X), (8)

where Mis the realization of a mean zero random field. That means it is a function drawn at random from
the set of all functions whose nearby values are correlated according to a prespecified spatial correlation
function. For that reason these models are also called spatial correlation i@tidetg. terms as in (4)

can be added to the model, but are rarely necessary for a good fia history of spatial correlation
models and associated referencses Barton (1998).

Such models have beamsed toapproximatedeterministic response functions, since once the
realization occurs, the model (8) hasimiminsic randomness. Since stochastic simulation models have an
output with intrinsic randomness, Nelson, Ankenman and Staum added a normally distributed intrinsic
errorterm, ¢ () to (8), and allow covariance between(x) ande (x). In this metamodel indexes a
unique set of design parameter valuess i, ..., k, with n; replications run with the design parameter
vector set tog. The fitted stochastic Kriginmetamodel is:

Y3 =h+[PR, (O)+Z, 1 (Y —b,L,) 9

wheret? and @ are spatial correlation parameters estimated from the experimentaigasa;he sample
intrinsic error covariance matrigample variances and covariances across all experiment design, points)
Ry (é) is an approximatepatial correlation matrix computed usiég andl, is ak-dimensional vector

of ones.
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StochastidKriging models have great flexibility. They can model more complex response function
shapes than is possible with polynomial regression metamodels. If one requires a global approximation to
a nonlinear response, it is unlikely that regression will provide a good fit, however. In that chsestistoc
Kriging provides an alternativ@.his makes them very attractive, but conas costFirst the model is
more complex to fit, and the fitting and prediction softwfare(9) is not commonly a part of simulation
or statistical packages. A packageMATLAB routines implementing stochastic Kriging available on
the Web athttp://www.stochasticKrigingnet., Second, fitted model coefficients give some indication of
how rapidly the response changes as componentshainge, but the detailed insight available in a fitted
regression model cannot be obtained. Further, if experimental run conditions are scarce, predictions in
design parameter space betwestperimental ruscan be significantly in error due to mean reversion.
Staum (2009) shows some error patterns that can occur. Because this is an introductory tutorial, the best
advice here is to stay tuned — it is likely that stochastic Krigisgamodels are in your futur

4.3  Choosing a Metamodel Type

In addition to stochastiKriging, there are many other metamodel types to choose from, including radial
basis functions, neural networks, and regression trees. See Chen et al. 2006 for a review. Because of the
simplicity, broa availability of software, anddvantage in terms of insight, linear regression seems the
place to start in metamodeling.

5 CHOOSE EXPERIMENT DESIGN

In choosing an experiment design, one determines the number of distinct simulation settings to be run,
andthe specific values of the design parameters for each of these runs. There are many strategies for
selecting the number of runs and the factor settings for each run. These include random designs, optimal
designs, combinatorial designs, Latigpercube dgigns, orthogonal arrays, uniform designs, mixture
designs, sequential designs, and factorial designs. For regression metamodels, the number and kinds of
terms to be fitted places constraints on the minimum number of runs and minimum number of levels
testal for each design paramet®arton (2010) is a reference for this discussimt see also Sanchez

and Wan (2012).

51  Experiment Designsfor Regression

Experiment designs for regression are weleloped.There is a clear link between the form of the
modelbeing fitted and the kind of experiment design that is preferred. Typicafyessiordesigns are
either factorial designs or fractional factorial desidgfectorial designs are based on a grid, with each
factor tested in combination with every level of every other factor. Factorial designs are attractive for
three reasons: i) the number of levels that are required for eachifaotwr greater than the highest-
order power of that variable in the model, and the resulting design permits the estiratefficients
for all cross-product terms ii) they are probably the most commonly used class of designs, and iii) the
resulting set of run conditions are easy to visualize graphically for as many as nine factors.

The disadvantage of factorial designghat they require a large number of distinct runs when the
number of factors and/or the number of levels of the factors are large. In this case, friattonals
are often employed. See Sanchez and Wan (2012) for a good ovéralde/.2 gives some guidance on
experiment designs appropriate for regression modeling, depending on the purpose and nature of the
model.

5.2  Experiment Designsfor Stochastic Kriging

While the focus of this tutorial is on regression metamodels, it is instructive to see how the strategy would
differ for a different metamodel type. Very little research has been published on experiment designs for
stochastic Kriging (but see Xie, Ankenman, and Nelson 2010 for a study using common random
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numbers)Factorial designs have been found to work poorly with deterministic Kriging models generally.
Latin hypercube designs are often used for Kriging models, but the set of Latin hypercube designs has
many designs (for the same number of levels and runs) that give poor coverage. For that reason it is
important to sample many Latin hypercube designs and choose one with good properties. For example,
one can choose the design that maximizes the minimum distance between any two design parameter
vectors (maximin). Good alternatives are Hammersley sampling sequences, orthogonal arrays, and
uniform designs. Alternative designs are discussed in Chen et al. (2006), Sanchez and Waan@012)
Kleijnen (2015)

Table 2: Experiment designs for regression metamodels.

Objective Minimum Size Factorial Designs References
Initial screening| Saturated and supersaturated fractional factgrial Li and Lin (2003)
Sensitivity Saturated and resolution Il PlackBtirman Kleijnen (2015)

fractional factorial

Insight 3level full or fractionalfactorial or central Sanchez and Sanchez (2005),
compositgmore than 3 levels needed to check Kleijnen (2015), Montgomery
lack of fit) (2012) Sanchez and Wan (201p)
Optimization 3- or more level fractional factorial Montgomery (2012), Law

(2015) Kleijnen (2015)

6 CONDUCT RUNSAND FIT MODEL

Unlike physical experiments, external environmental factors generally do not affect simulation results.
Once the model type and design selection steps are complete, running the experimental cinditions
straightforward, provided the experimenter keeps the simulation results attached to the correct values of
the design parameter settings for eaan

It is possible to deliberately introduce correlation of randomness across runs with different design
parameter settings. This can be done by reusing random number streams for runs with different design
paramemeter settings. This correlation induction can be hard to achieve, but it can result in better fits for
regression metamodels (Schruben 1979, Tew and Wilsor).1987

The work by Chen, Ankenman and Nelson (2010) that was mentioned above fouramtrilation
induction using common random numbers was not effective for stochastic Kriging

6.1  Incorporating Gradient Information in Fitting the M etamodel

It is often possible to generate more than just an output value at the end of a simulation run. When one
can also estimate the gradient of the response with respect to the design parameters, metamodel fit can be
improved, often quite significantly (Qu and Fu 2012).

7 VALIDATING METAMODEL ADEQUACY

The fitted model must be checked to see if the fidelity is adequate for the intended use. For a regression
metamodel for screening, simple statistical significance checks may be sufficient. For purposes where
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fidelity is important, additional goodness of fit tests are employédre are weltleveloped goodness of
fit tests for regression that appear in all commercial packages. To use them you will need to include more
than the minimum number of design parameter levels.

For regression models, mean squared error (MSE) is provided automatically with the fit,%as is R
High R values can occur when there are just a few extreme valuesnof correspondingly high or low
values of the response. MSE will give a better assessrhninahis case.

A generalpurposemeasure of fit that can be used outside the regression setting is to leave some
design configurations and corresponding responses out of the set used to fit the model and then check the
error of the fitted model at ¢hdesign parameter settings left out of the fitting process. This process can be
computationally expensive if it is repeated for each possible omission. Meckesheimer et al. (2002)
provide some efficient and effective assessment methods of this sort.

8 PUT THE METAMODEL TO USE

Assuming the fitted model passed the validation checks, it is ready to be used. Congratulations on
successfully developing a metamodel! Remember though, that uses beyond the original purpose (e.g.,
using a screening metamodel for prediction or, worse, optimization) are not appropriate.

9 FOR FURTHER STUDY

Many books on simulation have a chapter on the design of experiments, which usually cover
metamodeling Three bookswith comprehensiveoverage are Friedman (1996), Kleijnt015), and
Law (2015). Kleijnen’s book includes design of experiments issues for Kriging metamodels.
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