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ABSTRACT 

The concept of a metamodel has been an important tool for simulation analysis for forty years. These 
models of simulation models have the advantage of faster execution, and they can (sometimes) provide 
insight on the nature of the simulation response as a function of design and input distribution parameters. 
This introductory tutorial will describe metamodeling uses and associated processes, survey commonly 
used metamodel types and associated experiment designs, and give a brief description of some recent 
developments and how they may affect future “mainstream” simulation metamodeling. 

1 INTRODUCTION 

Discrete-event simulation models allow users to examine in relatively high fidelity the expected behavior 
of manufacturing, transportation, health care or other systems. The simulation model can be exercised at 
lower cost and with less risk than the real system. Further, the real system may not yet exist, so simulation 
provides performance prediction for the as-yet-to-be-constructed real system. Exercising such a model in 
an ad hoc way may not lead to general insights on the behavior of the real (either extant or imagined) 
system being modeled, however. Further, when the simulation model fidelity is high and the system is 
complex, the computational effort to simulate can be substantial.  Simulationists then often fit a 
computationally efficient approximation to the simulation model: a metamodel. In this introductory 
tutorial we examine the role of  metamodels and the metamodeling activity in simulation studies. 
Metamodeling permits special insights into system performance, and enables extensive exercise of the 
system under different design conditions at relatively modest computational cost.
 This is the first WSC introductory tutorial focused on metamodeling in at least seventeen years 
(Barton 1998). Closely related tutorials on the design of simulation experiments appear regularly, 
however. See for example the tutorials by Law (2014),  Sanchez and Wan (2012), Barton (2010), and 
Kleijnen (2008). This is not to say that the field is not active: there have been many papers on new 
metamodeling methods and on new uses for simulation metamodels. At WSC‘14 alone there were two 
sessions dedicated to metamodeling, and a total of ten papers across all sessions. And see the very good 
advanced tutorial by Staum (2009). 

This tutorial will provide an accessible view to metamodeling for the beginner. For that reason, open 
access materials receive preference: a reference to a Management Science paper may be omitted in favor 
of an earlier WSC publication - these can be freely accessed under the Archive link at the WSC home 
page (www.wintersim.org). Advanced methods will not be the focus. While this tutorial will discuss the 
design of simulation experiments, the emphasis will be on the historical context of metamodeling, 
metamodel types, and the ultimate uses of metamodels, with guidance on the overall metamodeling 
process. 
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2 METAMODELING: BASICS, PURPOSE, AND PROCESSES  

2.1 Basics of Metamodeling 

Metamodels approximate the input-output behavior of simulation models. The term metamodel was 
popularized and developed by Jack Kleijnen (for example, Kleijnen 1975), but the term and concept were 
both originated by Robert Blanning (1974, 1975a, 1975b). The term indicates a mathematical 
approximation that models the behavior of another model. These approximations are also called surrogate 
and response surface models. Early work explored response surface models for simulations, under the 
name of “regression” or “experimental designs” (Walsh 1963, Burdick and Naylor 1966, Hunter and 
Naylor 1970). While these focused on stochastic, typically discrete-event, simulation (as are ours), 
metamodels are also used to approximate other kinds of simulation models (e.g., finite element, circuit, 
stochastic flow, and boundary element simulation models). An early application of response surface 
modeling in water resource planning simulation appears in Hufschmidt and Fiering (1966). Hufschmidt is 
also a coauthor in Maass et al. (1962) which has a section on response surface modeling of a water system 
simulation model.  

A metamodel is a function, say f, that takes some simulation model design parameters as inputs, 
represented here by a vector x, and produces an approximation to some characteristic of a simulation 
output, say g(Y) (e.g., mean of Y, standard deviation of Y, 0.9-quantile of Y, etc., of some performance 
measure). Examples of model design parameters include input probability distribution parameters, such as 
arrival rate and mean service time; and system configuration parameters, such as the number of servers, 
service priority, operational protocols, and buffer capacity. For now, assume that any design parameter 
can be coded numerically, even if only as a 0-1 variable. There will be more about how to do this later in 
the tutorial. Examples of simulation outputs are time in the system for a set of jobs or customers, 
utilization of a particular resource (e.g., operator, machine), or perhaps net revenue over a specific time 
period. Generally these outputs are averaged over the length of a simulation run, but vary randomly from 
run to run. If the value of the characteristic is Y(x) for an actual simulation run with the design parameters 
set to the values in x, then we represent the fitted metamodel approximation f(x), as: 

 
 h(Y(x)) ≈ f(x), (1) 

 
where h represents some function of the random variable Y. Often it is a composition of functions: some 
nonlinear function of the expected value of Y or of a quantile of  or of a quantile of Y. Note that the 
distribution of y  depends on the values of the design parameters. The simplest and most common 
metamodel type is linear regression. The term “linear” refers to the way the unknown coefficients come 
into the model. Linear regression can capture curvilinear relationships. 

To illustrate the basics of metamodeling, we will fit two regression metamodels to data from a simple 
queueing simulation. Although simulation is not needed for an M/M/1 queue, such a system is easy to 
understand and has behavior that is frequently seen in simulations. In this case we want to explore how 
the average waiting time (the output) varies with service speed (the input, or design parameter), assuming 
an arrival rate of 1 customer per unit time (in some scaled units of time). The plot below, made using 
Minitab® (Minitab 2015) shows the results of simulations of 5000 customers in systems with mean 
service times of 0.7, 0.75. 0.8, 0.85, 0.9 and 0.95. 

If we fit a linear regression model to this data, the metamodel produces the fit seen in Figure 2. If we 
fit a quadratic metamodel to these data it produces the fit shown in Figure 3. Clearly, there are problems 
with the fidelity of both of these fitted metamodels. We will return to this example throughout the tutorial 
to discuss each aspect of the metamodeling process. 

For Figure 2, the metamodel corresponding to (1) has Y Ł average waiting time for the 5000 
customers in a simulation run;  h(Y) Ł the expected value of this run average, i.e., E(Y); x Ł mean service 
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time (the x vector has only one component); and f(x) = -44.19 + 61.42x. For Figure 3, the fitted 
metamodel is f(x) = 269.9 -708.3x + 466.5x2. 

Now that we have a basic understanding of what a metamodel is, we can discuss purposes for which 
metamodels are built. 

 

 

Figure 1: Output of M/M/1 experiments, three replications each at six mean service time settings. 

 

 

Figure 2: A regression metamodel fitted to the data, with intercept and linear term only. 
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Figure 3: The fitted quadratic regression metamodel is an improvement. 

2.2 Metamodeling Purpose 

Metamodels generally have three characteristics that give them advantage over the simulation model for 
certain purposes. A metamodel f generally has explicit form, deterministic output, and, once fitted, is 
computationally inexpensive to evaluate. 

Due to their explicit form, metamodels are often described as providing insight - that is, an 
understanding of the general relationship between design parameters and some performance measure 
related to the simulation output. For the example in Figure 2, we find a positive coefficient, which 
indicates both a positive relationship between service time and the expected value of average waiting 
time, and the magnitude of the slope coefficient gives the level of sensitivity. For a metamodel with one 
design parameter this sensitivity measure may not be very interesting, but when there are tens or hundreds 
of design parameters, the size of the coefficients can be used to identify the most influential design 
variables and screen the others. The coefficients of the metamodel shown in Figure 3 provide more 
insight: the relationship between waiting time and service time is convex. We know that because the 
coefficient of the squared term is positive. Further, it is easy to evaluate either of these metamodels for 
many values of service time, allowing one to characterize global variation in the mean value. 

Metamodels, once fitted, can be used as a proxy, to evaluate instead of making (computationally 
expensive and stochastic) simulation runs. Further, because of their explicit form, they can be used in 
many computationally intensive operations, such as optimization (Cheng and Currie 2004, Barton 2009), 
input model uncertainty (Xie, Nelson and Barton 2014), quantiles and conditional value at risk (Chen and 
Kim 2013) and robust design (Dellino, Kleijnen and Meloni 2009).  

2.3 The Metamodeling Process 

The rest of this introductory tutorial is organized around the steps of the metamodeling process. A nine-
step process was described by Burdick and Naylor (1966), and other authors have provided alternative 
process descriptions (see Section  9: FOR FURTHER STUDY below). We will follow a seven-step 
process. 
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Table 1: The metamodeling process. 

Step Activity 

1 Determine Purpose(s) for Metamodeling 

2 Identify Design Parameter(s) and Output(s) 

3 Choose Metamodel Type 

4 Based on Metamodel Type and on Purpose, Choose Experiment Design to Fit Metamodel 

5 Conduct Simulation Runs Specified by the Experiment Design; Fit Metamodel 

6 Validate Metamodel Adequacy: If Unsatisfactory (usually) Return to Step 3 

7 Use Metamodel for Intended Purposes 

3 IDENTIFYING DESIGN PARAMETERS AND OUTPUTS 

3.1 Design Parameter and Output Selection 

Typically, simulation models have many design parameters that might be included in a metamodel. Each 
parametric probability distribution used in the model has parameters. These are called input distribution 
parameters. They characterize randomly varying interarrival times, service times, times until machine 
breakdown, message lengths, routing choices, transport times, number of workers out sick, uncontrollable 
environmental factors, and other characteristics of the simulated system that have a stochastic nature. 
 In addition, there are design parameters that are deterministic in value: number of workers scheduled 
to work at a particular time, number of machines, processing protocols and other characteristics of the 
system being modeled that can be changed, either for a currently operating system or some system to be 
built in the future. 
 The particular parameters to include in the metamodel depend on three things: i) a desire to include 
parameters that the decision maker would like to explore changing; ii) the need to model the impact of 
any uncontrollable environmental factors that affect system performance; and iii) the recognition that 
more metamodel parameters generally means a larger fitting experiment, and more computational effort 
to fit the metamodel. Further, for regression metamodels, the inclusion of higher order terms to capture 
interaction effects and nonlinearity (x2 for the M/M/1 example) also adds to the size of the experiment 
design. Cause-effect diagrams and a-priori plots can help identify the design parameters and any expected 
interactions or nonlinearity (Barton 2010). For the M/M/1 example above, the experiment design was 
presented as given. In actuality it would be selected after considering whether to include x2 in the 
metamodel. 

Functions of the simulation outputs that are of interest generally are each modeled separately, that is, 
a separate metamodel is fitted for each function of the simulation outputs needed for the purpose(s) 
identified in Step 1. Multiple response surface models were considered in the early paper by Burdick and 
Naylor (1966) and many subsequent authors. True multivariate metamodels have been used for physics-
based simulations (Tu 2003). For the M/M/1 example, only one function of one simulation output is of 
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interest: h corresponds to the expected value, and Y is the average waiting time of 5000 simulated 
customers. Occasionally, h will be chosen to reduce the nonlinearity of the output with respect to the 
design parameters, or to achieve equal (homogeneous) output variance across the design space. Methods 
for choosing such transformations are summarized in Barton and Meckesheimer (2006). 

3.2 Continuous and Discrete Design Parameters and Outputs 

Generally metamodeling assumes that all design parameters and outputs can take on continuously varying 
values. But many design parameters are discrete. Examples include numbers of servers, machines or other 
resources, buffer sizes, number of products, type of processing protocol, system configuration 
alternatives, and so forth. 
 When the parameter has a numerical value that is restricted to a discrete set of values, then assuming 
that the parameter can take on a continuous set of values is practical. The discrete nature places a 
restriction on the experiment design that is used for fitting, but the fitted metamodel can be evaluated on 
the discrete set of allowed values. 

When there are only two values for the parameter (e.g., Protocol A and Protocol B), a discrete 
numerical characterization can be assigned, for example, x = 0 for Protocol A and x =1 for Protocol B. If 
the parameter does not have numerical value and there are more than two levels, numerical conversion is 
still possible, but requires additional x components. For example, for three protocols, let x1 = 1 if Protocol 
A is used, and = 0 otherwise. Let x2 = 1 if Protocol B is used, and = 0 otherwise. If Protocol C is used, 
then both x1 and x2 = 0. Then metamodel terms for x1 (or x2) will indicate the differences of Protocol A (or 
Protocol B) from Protocol C. 

When the simulation output is discrete (e.g., success or failure), there is a restriction on the type of 
metamodel. These are generally called classifier or discriminant metamodels. Meckesheimer et al. (2001) 
consider metamodels with both continuous and discrete responses. 

3.3 Scaling/Coding Parameters and Outputs 

In addition to the output transformations and qualitative variable coding mentioned previously, the ability 
of the metamodel to provide insight depends on careful scaling and coding of all design parameters. 
Generally, code all numerical design parameters so that -1 is the smallest value taken, and +1 is the 
largest value. This coding is accomplished by the following: 
 
 xnew = 2[x- ((xmax + xmin)/2)/( xmax - xmin)]. (2) 

 
Compare the insight from the fitted metamodel in Figure 2 with that in Figure 4, based on the same 

data but rescaling the average service time using (2), to -1 for .7 and +1 for .95.  
Insight from Figure 2: a unit increase in mean service time would result in an increase in average 

waiting time of approximately 61 time units (note: a unit increase in mean service time could not happen 
– the system would be unstable). Also, if the mean service time were reduced toward zero, the average 
waiting time would tend toward -44 time units (note: negative time is impossible). 

Insight from Figure 4: moving from the middle service time (.825) to the highest service time (.95) 
will increase the average waiting time by approximately 7.7 time units. If the system is operated at the 
middle service time value (.825), the average waiting time will be approximately 6.5 time units. 

Clearly, basic insights from the regression model coefficients fail to materialize without careful 
coding of the design parameter value(s). 

Further, Figure 5 shows that, unlike the difference between the models in Figures 2 and 3, the linear 
coefficient does not change between Figures 4 and 5. Note that the metamodel fit does not change – 
Figure 2 has the same shape as Figure 4 and Figure 3 as Figure 5 – only the interpretation of the 
coefficients changes. The intercept did change between Figure 4 and Figure 5, however. Fixing this 
requires more than coding of the design parameters, it requires coding the functions of those parameters 
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used in the regression models. The topic of orthogonal polynomials is beyond this tutorial. See for 
example Montgomery (2012). 

 

 

Figure 4: The linear regression metamodel with coded service time: fit is identical to that in Figure 2.  

 

Figure 5: The quadratic regression metamodel with coded service time. 
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4 CHOOSE A METAMODEL TYPE 

For this introductory tutorial we focus on two types of metamodels: linear regression and stochastic 
Kriging (spatial correlation) models. There are descriptions of other metamodel types in Barton (1998) 
and Barton (2009). We identify the metamodel type before selecting an experiment design for practical 
reasons: factorial and fractional-factorial designs, appropriate for linear regression, can cause significant 
numerical difficulties when used to fit Kriging models. Further, the complexity of the proposed regression 
model places (minimum) requirements on the type of factorial or fractional-factorial design that can be 
employed for fitting. 

4.1 Linear Regression Metamodels 

Regression metamodels use a probability model to characterize the simulation output of interest. The 
form of the probability model that characterizes the simulation output is: 

 
 Y = β0 + β1g1(x1, x2, ..., xd) + ... + βpgp(x1, x2, ..., xd) + ε, (3) 
 
where ε are independent, normal random quantities with mean zero and unknown variance and there are d 
design parameters. Again, the term linear comes from the fact that the unknown coefficients (β ’s) to be 
fitted in the experiment appear linearly (as multipliers) in the model. The g functions can be nonlinear in 
the x’s. There are p terms in the model (not counting the intercept), allowing for terms involving functions 
of one or more design parameters, for example, g5(x1, x2, ..., xd) = x1

2, or g12(x1, x2, ..., xd) = x1x5. The 
assumption is that the variance does not change depending on the values of (x1, x2, ..., xd). This model (3) 
implies 
 E(Y ) = β0 + β1g1(x1, x2, ..., xd) + ... + βpgp(x1, x2, ..., xd), (4) 
 
and  the metamodel f(x) will match (4) but with estimated values b0, b1, …, bp for the unknown 
coefficients. Since the estimated values b0, b1, …, bp will vary randomly from one experiment to the next, 
conceptually the fitted metamodel depends randomly on the data. Given a set of data {xi, yi} where xi = 
(xi1, xi2, …, xid) is the vector of design parameter values for the ith simulation run, and yi is the 
corresponding output, let X be the matrix whose ith row is xi and let y be the column vector consisting of 
the elements {yi}. Then the estimated coefficient vector b = (b0, b1, …bp) is computed by: 

 
 b = (X'X)-1X'y. (5) 
 
where the prime symbol denotes matrix transpose. The solution (5) minimizes the average squared 
deviation of the metamodel prediction from the observed simulation outputs (MSE): 

 nYY i

n

i
i /)ˆ(min 2

1

−∑=
, where the minimization is over b and ∑=

= p

j
ipiijji xxxgbY

0
21 ).,...,,(ˆ  (6) 

The fitted regression metamodel is then 
 

 ∑=
= p

j
pjj xxxgbxY

0
21 ).,...,,()(ˆ  (7) 

The intercept term b0 has corresponding g0 Ł 1. For the M/M/1 example, the fitted metamodel in Figure 4 
has b0 = 6.477, and b1 = 7.677. The fitted metamodel in Figure 5 has b0 = 3.076, b1 = 7.677, and b2 = 
7.289. 

Linear regression models have simple form and so provide direct insight on the behavior of the 
simulation. When design parameters are coded over [-1, +1], then the magnitude of the linear coefficients 
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indicate the relative sensitivities of the simulation output to all design parameters (over the defined ranges 
of parameter values). Similarly, quadratic coefficients can indicate nonlinearity, and convexity/concavity. 
Coefficients for cross-product terms indicate interaction effects – the sensitivity of the output to changes 
in one design parameter may vary, depending on the setting of another design parameter. Also, linear 
regression models are readily available in commercial statistical software. 

Linear regression models using polynomial functions of the design parameters have limited 
flexibility, however. Figure 6 shows an attempt to find a better-fitting metamodel for the M/M/1 example 
by adding a cubic term. While the curve comes closer to the observed waiting times overall, it is no 
longer monotonically increasing, something we expect in a metamodel of mean waiting time versus mean 
service time. Adding more terms improves the fit near the six experiment design points but increases the 
excursions of the metamodel away from the design points. For the classic illustration of this “excursions” 
shortcoming of polynomial models see Figure 1 in Barton (1992). 

Looking at Figures 1-6 it is apparent that the variance of the response is larger at higher average 
waiting times. This is particularly important for models where the output is some function of a queueing 
system, as is often the case in discrete-event simulation.  One approach to reducing this heteroscedasticity 
is to take different numbers of replications at different design points. By taking more replications at high-
variance points, the variance of the average response at such points is reduced. This is an expensive 
proposition though: the spread you see is related to the standard deviation, which is only reduced as the 
square root, so to reduce the spread by a factor of two requires 4x the replications! 

 

 

Figure 6: A cubic regression metamodel is not monotonic. 

Often problems with heteroscedasticity and fitting can be reduced by transforming the dependent 
variable(s). A typical transformation for queueing output data is the logarithmic transformation. Figure 7 
shows the same model as Figure 5 but using ln(Y) as the dependent variable. Note that i) the large 
differences in spread across the design points is reduced and ii) the fit as measured by R2 is better. 
 

1.00.50.0-0.5-1.0

30

25

20

15

10

5

0

S 2.52791

R-Sq 88.6%

R-Sq(adj) 86.1%

C Mean Service

A
v
g

 W
a
it

Fitted Line Plot
Avg Wait = 3.076 + 1.521 C Mean Service

+ 7.289 C Mean Service^2 + 7.619 C Mean Service^3

1773



Barton 
 

Figure 7: Transforming to ln(Avg Wait) reduces heteroscedasticity and improves fit. 

4.2 Stochastic Kriging Metamodel 

Stochastic Kriging methods for discrete-event simulation metamodeling are a relatively recent 
development (Ankenman, Nelson and Staum, 2008). The simplest Kriging probability model is: 

 
 Y(x) = β0 + M(x), (8) 
 
where M is the realization of a mean zero random field. That means it is a function drawn at random from 
the set of all functions whose nearby values are correlated according to a prespecified spatial correlation 
function. For that reason these models are also called spatial correlation models. Other g terms as in (4) 
can be added to the model, but are rarely necessary for a good fit.  For a history of spatial correlation 
models and associated references, see Barton (1998).  
 Such models have been used to approximate deterministic response functions, since once the 
realization occurs, the model (8) has no intrinsic randomness. Since stochastic simulation models have an 
output with intrinsic randomness, Nelson, Ankenman and Staum added a normally distributed intrinsic 
error term, ε (x) to (8), and allow covariance between ε (xi)  and ε (xj). In this metamodel i indexes a 
unique set of design parameter values, i  = 1, …, k, with ni replications run with the design parameter 
vector set to xi. The fitted stochastic Kriging metamodel is: 
 

 )1(]ˆ)ˆ([)(ˆ 0
12

0 kM bYRtbxY −Σ++= −εθ  (9) 

 

where t2 and θ̂  are spatial correlation parameters estimated from the experimental data, εΣ̂  is the sample 

intrinsic error covariance matrix (sample variances and covariances across all experiment design points), 

)ˆ(θMR is an approximate spatial correlation matrix computed using θ̂ , and k1  is a k-dimensional vector 

of ones. 
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 Stochastic Kriging models have great flexibility. They can model more complex response function 
shapes than is possible with polynomial regression metamodels. If one requires a global approximation to 
a nonlinear response, it is unlikely that regression will provide a good fit, however. In that case, stochastic 
Kriging provides an alternative. This makes them very attractive, but comes at a cost. First the model is 
more complex to fit, and the fitting and prediction software for (9) is not commonly a part of simulation 
or statistical packages. A package of MATLAB routines implementing stochastic Kriging is available on 
the Web at http://www.stochasticKriging.net/. Second, fitted model coefficients give some indication of 
how rapidly the response changes as components of x change, but the detailed insight available in a fitted 
regression model cannot be obtained. Further, if experimental run conditions are scarce, predictions in 
design parameter space between experimental runs can be significantly in error due to mean reversion. 
Staum (2009) shows some error patterns that can occur. Because this is an introductory tutorial, the best 
advice here is to stay tuned – it is likely that stochastic Kriging metamodels are in your future. 

4.3 Choosing a Metamodel Type 

In addition to stochastic Kriging, there are many other metamodel types to choose from, including radial 
basis functions, neural networks, and regression trees. See Chen et al. 2006 for a review. Because of the 
simplicity, broad availability of software, and advantage in terms of insight, linear regression seems the 
place to start in metamodeling.  

5 CHOOSE EXPERIMENT DESIGN 

In choosing an experiment design, one determines the number of distinct simulation settings to be run, 
and the specific values of the design parameters for each of these runs.  There are many strategies for 
selecting the number of runs and the factor settings for each run.  These include random designs, optimal 
designs, combinatorial designs, Latin hypercube designs, orthogonal arrays, uniform designs, mixture 
designs, sequential designs, and factorial designs. For regression metamodels, the number and kinds of 
terms to be fitted places constraints on the minimum number of runs and minimum number of levels 
tested for each design parameter. Barton (2010) is a reference for this discussion, but see also Sanchez 
and Wan (2012). 

5.1 Experiment Designs for Regression 

Experiment designs for regression are well-developed. There is a clear link between the form of the 
model being fitted and the kind of experiment design that is preferred. Typically, regression designs are 
either factorial designs or fractional factorial designs. Factorial designs are based on a grid, with each 
factor tested in combination with every level of every other factor.  Factorial designs are attractive for 
three reasons:  i) the number of levels that are required for each factor is one greater than the highest-
order power of that variable in the model, and the resulting design permits the estimation of coefficients 
for all cross-product terms ii) they are probably the most commonly used class of designs, and iii) the 
resulting set of run conditions are easy to visualize graphically for as many as nine factors.   

The disadvantage of factorial designs is that they require a large number of distinct runs when the 
number of factors and/or the number of levels of the factors are large.  In this case, fractional-factorials 
are often employed. See Sanchez and Wan (2012) for a good overview. Table 2 gives some guidance on 
experiment designs appropriate for regression modeling, depending on the purpose and nature of the 
model. 

5.2 Experiment Designs for Stochastic Kriging 

While the focus of this tutorial is on regression metamodels, it is instructive to see how the strategy would 
differ for a different metamodel type. Very little research has been published on experiment designs for 
stochastic Kriging (but see Xie, Ankenman, and Nelson 2010 for a study using common random 
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numbers). Factorial designs have been found to work poorly with deterministic Kriging models generally. 
Latin hypercube designs are often used for Kriging models, but the set of Latin hypercube designs has 
many designs (for the same number of levels and runs) that give poor coverage. For that reason it is 
important to sample many Latin hypercube designs and choose one with good properties. For example, 
one can choose the design that maximizes the minimum distance between any two design parameter 
vectors (maximin). Good alternatives are Hammersley sampling sequences, orthogonal arrays, and 
uniform designs. Alternative designs are discussed in Chen et al. (2006), Sanchez and Wan (2012), and 
Kleijnen (2015). 

Table 2: Experiment designs for regression metamodels. 

Objective Minimum Size Factorial Designs References 

Initial screening Saturated and supersaturated fractional factorial Li and Lin (2003) 

Sensitivity Saturated and resolution III Plackett-Burman 
fractional factorial  

Kleijnen (2015) 

Insight 3-level full or fractional factorial or central 
composite (more than 3 levels needed to check 

lack of fit) 

Sanchez and Sanchez (2005), 
Kleijnen (2015), Montgomery 

(2012), Sanchez and Wan (2012) 

Optimization 3- or more level fractional factorial Montgomery (2012), Law 
(2015), Kleijnen (2015) 

6 CONDUCT RUNS AND FIT MODEL 

Unlike physical experiments, external environmental factors generally do not affect  simulation results. 
Once the model type and design selection steps are complete, running the experimental conditions is 
straightforward, provided the experimenter keeps the simulation results attached to the correct values of 
the design parameter settings for each run.  
 It is possible to deliberately introduce correlation of randomness across runs with different design 
parameter settings. This can be done by reusing random number streams for runs with different design 
paramemeter settings. This correlation induction can be hard to achieve, but it can result in better fits for 
regression metamodels (Schruben 1979, Tew and Wilson 1987). 

The work by Chen, Ankenman and Nelson (2010) that was mentioned above found that correlation 
induction using common random numbers was not effective for stochastic Kriging. 

6.1 Incorporating Gradient Information in Fitting the Metamodel 

It is often possible to generate more than just an output value at the end of a simulation run. When one 
can also estimate the gradient of the response with respect to the design parameters, metamodel fit can be 
improved, often quite significantly (Qu and Fu 2012).  

7 VALIDATING METAMODEL ADEQUACY 

The fitted model must be checked to see if the fidelity is adequate for the intended use. For a regression 
metamodel for screening, simple statistical significance checks may be sufficient. For purposes where 
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fidelity is important, additional goodness of fit tests are employed. There are well-developed goodness of 
fit tests for regression that appear in all commercial packages. To use them you will need to include more 
than the minimum number of design parameter levels.  

For regression models, mean squared error (MSE) is provided automatically with the fit, as is R2. 
High R2 values can occur when there are just a few extreme values of x and correspondingly high or low 
values of the response. MSE will give a better assessment of fit in this case.  

A general-purpose measure of fit that can be used outside the regression setting is to leave some 
design configurations and corresponding responses out of the set used to fit the model and then check the 
error of the fitted model at the design parameter settings left out of the fitting process. This process can be 
computationally expensive if it is repeated for each possible omission. Meckesheimer et al. (2002) 
provide some efficient and effective assessment methods of this sort. 

8 PUT THE METAMODEL TO USE 

Assuming the fitted model passed the validation checks, it is ready to be used. Congratulations on 
successfully developing a metamodel! Remember though, that uses beyond the original purpose (e.g., 
using a screening metamodel for prediction or, worse, optimization) are not appropriate. 

9 FOR FURTHER STUDY 

Many books on simulation have a chapter on the design of experiments, which usually cover 
metamodeling. Three books with comprehensive coverage are Friedman (1996), Kleijnen (2015), and 
Law (2015). Kleijnen’s book includes design of experiments issues for Kriging metamodels. 
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