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ABSTRACT 

The High Level Architecture for Modeling and Simulation (HLA) comes with the promise of facilitating 
interoperability between a wide variety of simulation systems. HLA’s time management offers a unique 
support for heterogeneous time advancement schemes and differentiates HLA from other general 
interoperability standards. While it has been shown that HLA is applicable for connecting commercial 
off-the-shelf simulation packages (CSPs), the usage of HLA time management in this application area is 
virtually always limited to conservative synchronization. In this paper, we investigate HLA’s capabilities 
concerning optimistic synchronization. For the first time, we show its use in combination with a 
commercial-off-the-shelf simulation package (CSP), namely the simulation system SLX. We report on 
implementation details, performance results, and potential limitations in the current HLA 1516.1-2010 
standard and its interpretation by runtime infrastructure (RTI) software vendors. 

1 INTRODUCTION 

HLA has been used for facilitating interoperability between commercial-off-the-shelf simulation packages 
(CSPs) for quite a number of years. First investigations into the subject were based on the “Simulation 
Language with Extensibility” (SLX) (Straßburger et al. 1998) and were soon followed by several other 
studies involving CSPs such as Matlab (Pawletta et al. 2000) and Simul8 (Mustafee and Taylor 2006). 
While early work on HLA integration was clearly focused on the technical feasibility of such an 
integration, later studies also investigated the industrial applicability of HLA-based coupling of CSPs 
(Boer 2005; Lendermann et al. 2007; Strassburger, Schmidgall, and Haasis 2003). HLA seems to be an 
adequate interoperability standard for supporting hybrid simulations (Mustafee et al. 2015). 

Several implementation options regarding the HLA integration of CSPs have been discussed in 
literature and can be classified as using either an explicit or implicit approach of providing HLA 
functionality (Strassburger 2001; Wang et al. 2005). In the explicit approach, typically a CSP-specific 
mapping of the original HLA application programming interface (API) is integrated into the CSP 
somehow. This may be in the form of functions or statements extending the original simulation language 
(as used in SLX (Strassburger 2006)) or in the provision of HLA components (“building blocks”) for 
component based simulators (e.g., Plant Simulation, Quest, etc. (Strassburger 2006; Strassburger, 
Schmidgall, and Haasis 2003)).  

In the implicit approach, it is attempted to hide HLA functionality from the user, freeing him from 
any implementation overhead concerning HLA functionality. The feasibility of this approach was 
demonstrated using the simulation system Simplex 3 (Strassburger 2001). 

Integrating a CSP into the HLA typically imposes significant requirements on the CSP. While the 
implicit approach typically requires full access to the source code of the CSP, the explicit approach at
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least requires some way of extending the CSPs original functionality. A common means for that are 
library interfaces, such as the Dynamic Link Library (DLL) interface that many CSPs based on the 
Windows operating system offer. 
 Further requirements are imposed by the need to meaningfully exchange data between the CSP and 
the HLA runtime infrastructure (RTI) software. CSP capabilities regarding the fulfillment of these 
requirements vary. Regarding the most important requirement in distributed simulation, which is the 
efficient synchronization; capabilities of CSPs are often quite limited.  
 The synchronization aspect of the HLA integration of CSPs requires the user to have some influence 
on the event scheduling mechanism of the CSP. The vast majority of know publications is in that regard 
limited to the application of conservative synchronization schemes. Often, even time stepped approaches 
have been applied.  
 While conservative synchronization schemes are rather easy to use and implement, their performance 
depends on the ability to specify (desirably large) Lookahead values for each simulation model. 
Lookahead represents a way of providing guarantees to other members of a distributed simulation on how 
far into the future a subsequent message/event will be scheduled. This requirement is both complicated to 
convey to modelers not familiar with distributed simulation and often highly dependent on the simulation 
problem at hand. In the worst case, Lookahead values of zero have to be assumed, leading to a quasi-
sequential execution of the CSPs in the distributed simulation.  
 In parallel simulation, it is frequently stated that the use of optimistic synchronization provides more 
hope for faster model execution (Fujimoto 2000). In CSPs, optimistic synchronization has not yet been 
used in practice, as CSPs typically do not provide any state-saving capabilities. 
 The objective of the research presented here was to practically investigate, whether HLA based 
optimistic synchronization could actually be integrated into a CSP of our choice. With SLX, a CSP was 
found which fulfilled the basic requirement of a state saving capability. Our investigation focused on 
options of integrating optimistic synchronization into an existing HLA interface of this CSP and on ways 
for transparently offering optimistic synchronization to SLX. 
 The remainder of this article is structured as follows. Section 2 discusses related work. Section 3 
introduces requirements for optimistic synchronization in conjunction with a CSP. Section 4 analyzes the 
capabilities of SLX and its HLA interface. Section 5 presents the concept and implementation of the 
extensions needed for optimistic synchronization. Section 6 presents a small case study and performance 
results. Section 7 discusses problems encountered in conjunction with the use of HLA’s 
flushQueueRequest service. Section 8 summarizes and gives recommendations of further actions. 

2 RELATED WORK 

Efficient synchronization protocols have been a focal point in parallel discrete event simulation (PDES) 
research for a significant number of years. In this article it is assumed that the reader is familiar with the 
basic concepts behind conservative and optimistic synchronization protocols. For those who are not 
Fujimoto (2000) and a Perumalla (2006) provide in-depth discussions.  
 Conservative protocols are generally considered to be easier to implement and use. They maintain 
causality in a distributed simulation by forcing its members to block until it can be safely guaranteed that 
no messages in their logical past will be received. Their major drawback is a dependency on the ability to 
specify Lookahead values.  
 In optimistic protocols, simulations can process messages even if there is no guarantee that messages 
with a lower timestamp will not be received in their future. This “optimistic” execution of messages is 
based on the hope that causality violations, although possible, in fact will not or only sparsely occur. If an 
optimistically synchronized simulation receives a message that is in its logical past, it must take actions to 
reestablish causality. This is typically achieved by performing a rollback to a state that was previously 
recorded. The Time Warp protocol (Jefferson 1985) is an example of an optimistic synchronization 
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mechanism using this approach. Other mechanisms to recover from causality violations include reverse 
computation (Carothers, Perumalla, and Fujimoto 1999). 
 The HLA is a distributed simulation standard that intends to support heterogeneous time advancement 
schemes, including the above mentioned conservative and optimistic protocols. The basic idea of HLA 
time management services is that HLA federates (i.e., individual simulations participating in an HLA 
based distributed simulation) have to request time advancement from the RTI. The RTI coordinates these 
requests and issues time advance grants according to the requests and guarantees it has. 
 The usage of HLA for the coupling of CSPs was traditionally based on conservative or time stepped 
synchronization protocols, but did not include optimistic protocols. For CSPs that allow access to event 
scheduling mechanisms, classical conservative synchronization was applied, based on HLA services such 
as “nextMessageRequest” (NMR) and “nextMessageRequestAvailable” (NMRA) (Straßburger et al. 
1998; Strassburger 2006). For CSPs without access to event scheduling, often time stepped 
synchronization was applied (Strassburger, Schmidgall, and Haasis 2003), taking into account its 
potential disadvantages concerning performance and accuracy. 
 Not many publications focus on the usage of HLA-based optimistic synchronization in general and on 
bringing HLA-based optimistic synchronization to the domain of CSPs in specific. The prior is likely due 
to reasons of HLA not being a standard commonly frequented by the PDES community, at least if high 
performance and efficient execution are intended. The few exceptions include Ferenci, Perumalla, and 
Fujimoto (2000), who investigated the options for federating different instances of Georgia Tech Time 
Warp (GTW) simulations and Vardanega and Maziero (2000), who proposed the idea of a generic 
rollback manager for freeing optimistic HLA federates from some of the implementation overhead of 
optimistic synchronization. 
 The latter (bringing HLA-based optimistic synchronization to CSPs) is fundamentally challenged by 
the general unavailability of state saving capabilities in CSPs and the impossibility to implement concepts 
such as state saving or reverse computation in a CSP without dedicated vendor support. 
 The only research that investigated optimistic synchronization in the context of CSPs was conducted 
by Wang et al. (2005). Their work focused on ways of providing optimistic synchronization capabilities 
to a CSP in a manner that does not require major user involvement. Towards that goal they put forward 
the use of a rollback controller (comparable to that discussed in (Vardanega and Maziero 2000)) that was 
supposed to handle the rollback procedure on behalf of the CSP. The rollback controller would control the 
state saving of a CSP by calling “setState” and “getState” functions in the CSP. 
 While some of the ideas of the rollback controller have been adopted in our work, the major 
limitation in the publication of Wang et al. (2005) is that no actual CSP was used to validate the approach; 
instead CSP emulation was applied. 
 A different approach for transparently encapsulating requirements imposed from optimistic 
synchronization was introduced by Santoro and Quaglia (2005) under the name “MAgic State Manager” 
(MASM). MASM allows performing checkpointing/recovery of the state of a federate in a way 
completely transparent to the federate itself. MASM implementation is based on identifying and storing 
the memory image of the federate (i.e., the federate state) at the operating system level. Therefore the 
solution requires low level access to processes at the operating system level, which limits the approach to 
open operating systems such as Linux.  
 Further ideas capable of bringing optimistic synchronization to simulations only capable of 
conservative synchronization include the transparent time-management conversion introduced in (Santoro 
and Quaglia 2012). Here, conservative time-management calls to the HLA RTI are intercepted by a Time-
Management-Converter (TiMaC) which interfaces with the RTI using optimistic message delivery. A 
prerequisite in this approach, however, is the existence of the aforementioned MASM. 
 Further related work concerning the HLA integration of CSPs investigated interoperability patterns 
that typically occur when connecting models from different CSPs (Taylor et al. 2012). As a result, 
interoperability reference models were defined as SISO standard SISO-STD-006-2010 (SISO 2010). 
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3 REQUIREMENTS FOR OPTIMISTIC SYNCHRONIZATION 

Several requirements are imposed on a simulation system when optimistic synchronization shall be 
applied. The most prominent requirement results from the need for a recovery mechanism. A recovery 
mechanism must be capable of undoing the potentially damaging results that out-of-order-processing of 
messages can incur.  

As part of a recovery mechanism, a previous state of the simulation must be restored. Typically this is 
achieved by applying some kind of state saving and state restoration technique (only these are considered 
here). For a CSP, a major requirement is therefore to provide/implement a state saving technique which is 
capable of storing all relevant state information during a simulation run at arbitrary simulation time 
stamps. Relevant state information includes the state of the user model (e.g., state variables, object 
instances) as well as system state (e.g., position of random number generators, event lists, etc.). Stored 
state information must be identifiable by timestamp. Furthermore, the CSP must provide mechanisms to 
restore and delete previously stored system states. 

Other requirements needed to recover from causality violations are the need to cancel any sent 
messages that become invalid, because a straggler message has been received. To be able to cancel such 
messages, a federate must keep a log of all sent messages and their time stamp. To be able to reprocess 
any received messages after a state rollback, an optimistic federate must also keep a log of all incoming 
messages including their time stamps. In the HLA, all calls to services of the federate interface 
specification that carry time stamps should be considered as relevant messages. Such services return 
message retraction handles needed to identify and retract (i.e., cancel) a message. Most prominent HLA 
services which fall into these categories are updateAttributeValues (UAV) and sendInteraction (SI). 
 Other requirements imposed by optimistic synchronization protocols include the need to perform 
“global virtual time” (GVT) calculations (Jefferson 1985) (especially needed for fossil collection, 
including the deletion of unneeded system state checkpoints) as well as the need for a mechanism to 
correctly determine the simulation end condition. 

4 CAPABILITIES OF SLX AND ITS HLA-INTERFACE 

The “Simulation Language with Extensibility” (SLX) is a discrete event simulation language developed 
by the Wolverine Software Corporation (Henriksen 1999). The modeling world view in SLX can be 
characterized as process oriented. As such, it is not based on classical event scheduling. Instead, SLX 
offers an object oriented modelling paradigm, in which users describe active and passive objects. Active 
objects have their own algorithmic behavior description (typically, but not necessarily used for modeling 
items/parts moving through the modeled system). Passive objects have no executable behavior and are 
typically used for simple resources. More complex resources can have their own behavior as well. 
 SLX is a layered simulation language, allowing user extensions to the core SLX simulation language 
(“statements”) as well as extensions through a DLL interface. SLX offers a state-saving and restoration 
capability originally intended for purposes such as saving a model state after a warmup-period (e.g., for 
efficiently performing replications in non-terminating simulations). 
 SLX was among the first CSPs for which an HLA integration was demonstrated. The SLX-HLA-
Interface makes use of the SLX DLL interface and provides a wrapper library with an SLX-specific 
mapping of the original HLA API (Straßburger et al. 1998; Strassburger 2006). Please note that the bi-
directional calling convention that HLA implies has to be converted into a uni-directional calling 
convention, i.e., function calls will always be initiated by SLX, as an SLX model cannot define its own 
callback mechanism. This is a restriction that virtually all CSPs have to deal with. 
 The basic principles of the SLX-HLA-Interface are visualized in Figure 1. An interesting aspect of 
the SLX-HLA-Interface is that it can access SLX objects directly, e.g., when an attribute update is sent or 
received it can be taken/stored directly from/in SLX memory, removing the need for costly parameter 
passing conventions and query mechanisms.  
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Figure 1: Architecture of the SLX-HLA-Interface. 

 Traditional (conservative) time advancement with the SLX-HLA-Interface works as follows: 
Whenever the simulation needs to advance its logical simulation time, a dedicated process (“puck” in the 
SLX terminology), is activated and a call to either RTI_NextMessageRequest or 
RTI_NextMessageRequestAvailable is executed. The code of this process is shown below. 
 
procedure synchronize () {        //conservative approach 
 double nextEventTime; 
 double grantTime; 

 
 forever { 
  nextEventTime = next_imminent_time();     //get next local event time  
  grantTime = RTI_NextMessageRequest(nextEventTime);  //request time advancement 
  advance (grantTime - time);       //advance to grantTime 

  …           //process any received messages/updates 
  yield;          //turn control over to other processes/pucks 

 } 
} 

Code Fragment 1: Synchronization loop for conservative synchronization 

 In the wrapper library, the time advance request calls are translated into calls to the appropriate RTI-
Ambassador methods nextMessageRequest (NMR) and nextMessageRequestAvailable (NMRA), 
respectively. After these methods have been called, the flow of control remains in the wrapper library, 
which then repeatedly calls evokeCallback until a timeAdvanceGrant (TAG) callback to the Federate 
Ambassador has been received. Any other callbacks received in the meantime are processed 
automatically. Any data received in such callbacks (attribute updates, interaction messages) are directly 
stored into the appropriate SLX objects. Returning control to SLX only after a TAG ensures that any 
received data is processed at the logically correct simulation time. 

5 CONCEPT AND IMPLEMENTATION OF OPTIMISTIC EXTENSIONS 

The guiding principle in designing the optimistic extensions for the SLX-HLA-Interface was to make 
usage of optimistic synchronization as easy as possible for the modeler. With that in mind, we intended to 
put as much implementation as possible into the wrapper library, following the idea of an external 
rollback controller put forward by other authors. For bookkeeping tasks, such as keeping message logs of 
received and sent messages, this was a rather straightforward task, as it simply translated into adding this 
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logging capability to each relevant RTI and federate ambassador service. Functionality also put into the 
wrapper library was the detection of causality violations and the processing of incoming and outgoing 
message retraction requests (“cancellations”). With that, it was possible to hide most bookkeeping tasks 
from the user. The most important concern which conceptually had to be placed on the side of the SLX 
model relates to the state saving and restoration approach. 
 Firstly, the general applicability of the state-saving mechanism of SLX for the intended purpose had 
to be investigated. The “SLXCheckpoint” command can be used to store the complete state of a model in 
memory. The call returns a unique ID to restore or delete a checkpoint later on. Initial tests with the 
reference model explained in section 6 showed that a total of approximately 3500 checkpoints could be 
created very fast, afterwards a slowdown in checkpoint creation was observed. This observation can be 
most likely attributed to reaching the main memory capacity and the start of swapping memory to hard 
disk. In any case, a capacity of storing 3500 checkpoints was deemed completely sufficient for the 
ongoing tests. As the tested models contained a rather small number of concurrently active objects 
(typically less than 50), this issue must be revisited for industrial strength models. For such models, 
appropriate techniques (e.g., pruning) should be applied in order to not exceed the model specific capacity 
for efficient checkpoint storage in main memory. 
 SLX checkpoints are restored using the “SLXRestore(ID)” statement and deleted using the 
“SLXReleaseCheckpoint(ID)” statement. It should be noted, that storage and restoration of a models state 
has some peculiarities, as these activities are (naturally) performed from within the model. This 
characteristic renders approaches using getState/setState methods as suggested by some authors useless, 
as they incorrectly assume a CSP checkpoint feature accessible to be called from „outside“ a model. 
 As a model restoration without any precautionary measures to identify the occurrence of a restoration 
would lead to exactly the same model execution as previously observed (leading to infinite cycles of 
restoring over and over again), some part of the model state must be exempt from checkpointing and 
restoring.  
 In SLX, this requirement can be fulfilled by implementing an “exempt” class, which can contain user-
defined variables and arrays. Code Fragment 2 shows the implementation proposed here. Checkpoint time 
stamps and their validity are maintained in two arrays contained within this class. These arrays are 
accessed via a checkpoint ID. This fixed-size approach is required here, as the exempt class cannot 
contain variable size data such as linked lists, sets, etc. As checkpoint IDs are assigned strictly in 
numerically increasing order by SLX, two variables (LargestValidCheckpointID and 
SmallestValidCheckpointID) are sufficient to indicate the range of potentially valid checkpoints in this 
array. Finding a checkpoint in case of a needed rollback comes down to iterating through the array of 
valid checkpoints and finding the one which has a timestamp appropriate for the rollback (i.e., typically a 
time stamp shortly before the causality violation). 
 
class Exempt { 
 double  CheckpointTimeStamp[10000]; 
 boolean  CheckpointValid[10000]; 
 int  LargestValidCheckpointID; 
 int  SmallestValidCheckpointID = 1; 
 double LargestValidCheckpointTime; 

} 

Code Fragment 2: Exempt Class for managing checkpoints 

 With that, the basic prerequisites for state saving and rollback can be considered as fulfilled. The 
remaining question is about how to adapt the synchronization process in SLX to include checkpointing, 
restoration, and requesting out-of-order delivery of messages. Towards that, the following extensions of 
the SLX-HLA-Interface were created. Firstly, the service RTI_FlushQueueRequest was added to the 
interface, which allows access to the RTI ambassador method flushQueueRequest (FQR). This service is 
included in the HLA for requesting the RTI to deliver all messages stored in the RTI’s internal queues to 
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the federate invoking this service, despite the fact that the RTI may not be able to guarantee that messages 
containing a smaller time stamp could arrive later. 
 Another addition which was conceptually necessary was the inclusion of an RTI_GetNextMessage 
function for pulling messages from the input message queue maintained in the wrapper library into SLX 
memory. In traditional conservative synchronization, this function was not needed, as messages were 
delivered in a push-mode, whenever they arrived. As this could only occur between a NMR/NMRA and 
TAG call, it was assured that they were processed at the correct logical simulation time. Since FQR was 
to be used now, this push mode was no longer appropriate. With the RTI_GetNextMessage function, 
messages received in FQR can now be retrieved one after each other at the correct logical time stamp. 
 Finally, another function is needed with which the SLX model can inform the wrapper library that it 
has fulfilled a request to rollback (the need for that is determined in the wrapper library). The function 
RTI_NotifyRestoration is intended for that purpose. Once called with a time stamp indicating the local 
time of the model after the restoration, the wrapper library can perform all message cancelations for 
messages in the output queue that have become invalid. Furthermore, all messages in the input queue that 
were previously delivered to the federate and must be delivered anew will be marked as undelivered. 
 With these functions, the conservative synchronization loop from Code Fragment 1 can be replaced 
by an optimistic synchronization loop as shown below. This replacement can be made completely 
transparent to the rest of the model, i.e., the model does not need to know if optimistic or conservative 
synchronization is performed. 
 The basic idea of the optimistic synchronization loop is very straight forward and follows the 
principle ideas of the time warp protocol. Initially it is validated if a checkpoint for the current simulation 
time exists, if not, it is created. Afterwards, it is checked if there is an external event in the federate’s 
input queue that has to be executed before the next local event. If so, it is retrieved and executed. 
Otherwise, a FQR request to the RTI is made, flushing potentially more remote messages into the input 
queue. If there now is an external event to be executed before our local event, it is retrieved and executed. 
Otherwise the next local event is executed. In case that the FQR call has resulted in a causality violation, 
the need for a rollback is indicated to the SLX model. The model then prepares for the rollback by 
identifying the appropriate checkpoint which shall be restored, informs the RTI of the time stamp it will 
roll back to (RTI_NotifyRestoration) and then performs the rollback.  
 Some code sections have been omitted in Code Fragment 3. This includes the release of any 
checkpoints invalidated by a rollback. Please also note that no code for fossil collection based on GVT 
calculations are included here, the reason for this being explained in section 7. 

 
procedure synchronize () { 
 double nextLocalEvent; 
 double grantTime; 
 int ID; 

 
 forever { 

 if (myExemption.LargestValidCheckpointTime < time) {       //create a new checkpoint if required 
   ID = SLXCheckpoint( &myExemption); 

 … (code for checkpoint management omitted) 
 } 
 nextLocalEvent = next_imminent_time();           //get next local event time 
 
 if (SLX_StateObjectPtr->earliestUnprocessedRemoteEvent <= nextLocalEvent) {   //check for earlier external event 

    grantTime = RTI_GetNextMessage();          //retrieve next external event 
 } 
 else {                 //no external events already received 
    grantTime = RTI_FlushQueueRequest(nextLocalEvent);       //request delivery of any message from RTI  
    if (SLX_StateObjectPtr->rollbackRequired) {        //check if FQR triggered a rollback 

  … (code for determination of appropriate checkpoint ID omitted) 
     RTI_NotifyRestoration(CheckpointTimeStamp[ID]);       //inform about rollback time stamp 
     SLXRestore(ID);            //perform rollback 

    } 
    else {               //no rollback required 
     if (SLX_StateObjectPtr->earliestUnprocessedRemoteEvent <= nextLocalEvent) { //check for new external events  
       grantTime = RTI_GetNextMessage();  
      } 
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     else {             //execute next local event 

       grantTime = nextLocalEvent; 
     } 
    } 
 } 
 advance grantTime-time;            //advance local clock to appropriate time stamp 

     …                //process any received messages/updates 
 yield;                 //turn control over to other processes/pucks 

}//forever 
}//synchronize 

Code Fragment 3: Synchronization loop for optimistic synchronization (simplified) 

 Obviously, the shown synchronization approach does not include any gadgets known from advanced 
optimistic synchronization techniques such as pruning, sparse checkpointing etc. Also, due to the nature 
of the SLX checkpoint feature, always a full checkpoint of the model is made, precluding the application 
of incremental checkpointing techniques. Initial research on pruning techniques has shown no positive 
effect on performance, as long as checkpoints can be stored in main memory. Future research will 
certainly have to look at applying pruning depending on main memory availability. 

6 CASE STUDY AND PERFORMANCE RESULTS 

A small case study was used to test the feasibility of the outlined optimistic synchronization approach and 
its performance compared to conservative synchronization. The case study is based on a CSP 
interoperability reference model proposed in (SISO 2010). A bounded buffer entity transfer problem 
characterized as an IRM A.2 was implemented with two SLX federates. The federates model a simple 
connected queuing system (Figure 2). 

 

 

Figure 2: Conceptual model of the case study (based on IRM Type A.2 (SISO 2010)). 

Federate 1 produces and processes entities which are subsequently delivered for further processing to 
federate 2. The entities are sent into a bounded queue in federate 2. As a result, federate 1 must correctly 
act if the queue in federate 2 becomes full, and block its last station until the receiving queue in federate 2 
becomes not full again. While being minimalistic, this simple federation contains all elements that, in the 
general case, will lead to a zero Lookahead requirement for conservative synchronization. As this 
represents a worst-case-scenario for conservative synchronization, our initial hypothesis is that the 
optimistic synchronization will perform better than the conservative synchronization. 

Both federates were implemented in SLX (Version 2.3, Build EP 264). The commercial pRTI 5.0.0.0 
(Build 1887) from Pitch was used as RTI software. The applied implementation of the SLX-HLA-
Interface uses the HLA 1516.1-2010 (“HLA-Evolved”) C++ API. In the experiments, both federates and 
the RTI were executed on a single PC with an Intel i5-3470 Multi-Core-Processor with 3.20 GHz and a 
main memory capacity of 16 GB. This execution environment represents a realistic working environment 
when interoperability between two or more CSPs is intended, as those are not typically executed in a truly 
distributed environment including multiple PCs or workstations. 

In the experiments, the behavior of federate 1 was kept constant. It produces entities following a 
uniform distribution, processes the entities in a workstation and tries to transfer them to federate 2. If the 
queue in federate 2 is full, it will block processing at its last workstation. To induce different requirements 
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on the synchronization algorithm, the behavior of federate 2 was varied. Two sets of experiments were 
conducted, each modifying the processing time in WS 2. The first set of experiments limited the length of 
Q2 to 10 (Figure 3, left side), the second set to 100 (Figure 3, right side). With that, different frequencies 
for communication between federates were induced, leading to different numbers of rollbacks required 
(results shown in Figure 4). A set of 10 replications was conducted for each experiment. The figures show 
the mean values obtained from these replications. In total, 280 simulation runs were executed. 

 

 

Figure 3: Performance results of two sets of experiments (left: size of Q2=10, right: size of Q2=100). 

The performance results show that for this small test case, the optimistic synchronization outperforms 
the conservative synchronization approach in each instance. The performance gain is greater in case of 
larger sizes of Q2, as here the models are more loosely coupled and both federates can progress rather 
independently, until the queue Q2 fills up for the first time.  

 

 

Figure 4: Combined number of rollbacks depending on Q2 capacity and processing time at WS2. 

Figure 4 confirms that smaller values of Q2 lead to more rollbacks, as the probability for causality 
violations is larger. In the case of Q2 = 100 we see that up to a processing time of 200 in WS2 not a single 
rollback is incurred. This is logically consistent with the production frequency of entities in federate 1 – it 
is configured in a way that the queue Q2 never reaches its capacity at such a fast processing time. 

Summarizing the performance results we see support for our hypothesis that optimistic 
synchronization outperforms conservative synchronization in the zero Lookahead case. While this result 
was to be expected, it was important here to validate this insight under the side conditions incurred by a 
CSP with its given stave saving capabilities and other intrinsic properties. While these findings are very 
positive, there is obviously more experimentation needed. This will involve both more complex models 
and fairer conditions for the conservative approach (Lookahead values larger than zero). Ultimately, it 
will also be necessary to more thoroughly investigate the costs associated with state-saving and rollback 
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and to identify situations where an optimistic approach is preferable to conservative synchronization. 

7 GVT AND FQR 

The prior sections have knowingly omitted one important feature needed for optimistic synchronization, 
which is the determination of a value called Global Virtual Time (GVT). GVT in general imposes a lower 
bound on how far back a rollback can occur and is essential in optimistic synchronization for fossil 
collection. GVT can be used as a bound for deleting checkpoints and freeing memory: Checkpoints that 
have timestamps below GVT can generally be regarded save to delete. 
 Efficient GVT computation has been an important point in PDES research. In the design of the HLA 
Time Management, the FQR service in conjunction with the TAG service was intended to provide such 
functionality to optimistic federates (Carothers et al. 1997; Fujimoto 1998; U.S. DoD 1996). 
 In essence, the TAG service that would eventually be issued in response to the FQR request was 
supposed to indicate GVT to the model. This is correct, as the time stamp that the RTI passes in a time 
advance grant is a guarantee that all messages with time stamps smaller than the grant time have been 
delivered. With that, the return value of TAG can be used as the GVT value to perform fossil collection. 
 The history of the FQR specification and implementation in the HLA has not been untroubled, 
unfortunately. Wang et al. (2005) discovered in their work, that the HLA 1.3 standard had a mistake 
concerning the definition of the return value of FQR(t). This was corrected in the HLA 1516.1-2000 
version of the standard. 
 In theory, HLA compliant RTI implementations should therefore now live up to the visions of 
“enable[ing] optimistic execution among a collection of optimistic federates” and “federations [that] may 
include both optimistic and conservative federates” (Fujimoto 1998). 
 Reality is different. The experiments described above were conducted with the latest RTIs of two 
leading RTI vendors, namely pRTI 5.0.0.0 from Pitch for the initial experiments and MÄK RTI 4.3 from 
MÄK for a verification of the observations. Both RTIs failed miserably calculating a correct grant time 
following the use of FQR. A detailed discussion of the observed problems is given in (Strassburger 2015). 
 In the setup with two optimistic federates this has rendered it impossible to perform fossil collection 
and releasing checkpoints. In a different setup, with one federate optimistically synchronized and the 
other federate conservatively synchronized, interoperation between both federates was completely halted. 
The symptoms here were that the conservative federate was stuck after its first NMRA-call, while the 
optimistic federate used FQR to advance through its simulation time. Only after the optimistic federate 
had resigned would the conservative federate receive a time advance grant to its NMRA call. 
 While both behaviors seem to be obviously different from what HLA Time Management intended, 
feedback from the Pitch priority support indicates a different view on the issue. They consider the 
behavior as a correct interpretation of the HLA standard. The main issue at hand here is, which influence 
the parameter t passed in FQR(t) shall have on GVT calculation. (Note that the relevant time boundaries 
in the HLA 1516.1-2010 are referred to as Greatest Available Logical Time (GALT) and Least Incoming 
Time Stamp (LITS).) 
 Currently, it appears, that t is not taken into account at all. This is very unfortunate, as the parameter 
passed to FQR constitutes a conditional guarantee that the federate will not generate a time stamped 
message before the next TAG service invocation with a timestamp less than the specified logical time 
plus the current lookahead of the joined federate. Only taking this guarantee into account can the RTI 
perform a correct distributed calculation of grant times. 
 Further discussion is needed to clarify, whether a change in the HLA standard is needed to prevent 
the interpretation embraced by Pitch. Currently, the FQR service description contains the sentence that “A 
Flush Queue Request service can always be granted without waiting for other joined federates to 
advance.” This is rather misleading as it implies that the time stamp passed in FQR(t) has only local 
relevance (as to determine up to which time stamp to flush queued messages). In fact, the phrasing above 
encourages ignoring t’s function as a conditional guarantee important for other federates. 
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8 SUMMARY AND OUTLOOK 

Our work has shown that optimistic synchronization of CSPs using the HLA is possible and demonstrated 
a suitable form of implementation. Our case study has confirmed that optimistic synchronization can yield 
a significant performance increase, especially when conservative synchronizations perform poorly, e.g., 
due to zero lookahead requirements. Further work in this area is required (e.g., regarding fossil collection 
and pruning techniques), but is currently obstructed by limitations of current RTI implementations. We 
have further demonstrated that conservative and optimistic synchronization can be exchanged “plug-in-
style” in a CSP, requiring no model modifications. 
 Our work has revealed that the current implementation of the flushQueueRequest service in the RTIs 
of leading RTI vendors (Pitch, MÄK) is in conflict with the initial intentions associated with FQR. Future 
work is intended to clarify these issues. It appears, however, that the current HLA 1516.1-2010 
specification leaves room for different interpretations of the intentions of FQR. While on the one hand, 
the initial time management design document puts a clear mandate on what is intended by FQR, the 
current specification leaves room for a much narrower interpretation, not mentioning the exact influence 
that time stamps passed to FQR shall have on LBTS/GALT computation. This issue will be put forward 
to SISO’s HLA Product Support Group seeking corrective actions either in the next revision of the HLA 
standard or towards achieving a common interpretation of the current phrasing of the standard. 
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