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ABSTRACT 

Many terms exist within Modeling and Simulation that refer to models consisting of more than one 
modeling paradigm, more than one model, or more than one formalism. To provide some clarification this 
paper identifies nine terms from the Modeling and Simulation literature and compares them against a 
taxonomy of model characteristics including time representation, basis of value, behavior, expression, 
resolution, and execution in order to classify the various terminologies and allow for a discussion from a 
generalized perspective. Results show that all nine modeling terminologies share the characteristic of 
resolution, none of the terminologies deal with all six characteristics, and that many of the terminologies 
deal with only three or less of the characteristics. Finally, this paper explores challenges with using 
multiple models that contain competing characteristics that are not covered in the literature. 

1 INTRODUCTION 

A model is a representation of a real or imaginary system and is used in lieu of the real system in order to 
learn about that system (Fishwick 1995; Sokolowski and Banks 2009). Modeling is the process of solving 
a problem or answering a question about a real or imagined system through the use of abstraction or 
simplification (Bennett 1995; Tolk 2012). Models are approximations of the real system that describes 
specific aspects of that system (Sokolowski and Banks 2010). There are numerous ways to classify a 
model: physical models represent physical objects; mathematical models represent procedures, 
algorithms, and mathematical equations that can be solved discretely; and procedural models represent 
dynamic relationships of situations expressed through mathematical or logical processes (Tolk 2010). 
Other classifications for models rely on the representation of time, the appearance of randomness, and 
whether the states within the model change instantaneously or continuously (Fishwick 1995).  

Within the Modeling and Simulation (M&S) literature many terms exist and are used interchangeably 
for describing models that use multiple paradigms, formalisms, or models. For instance, multi-paradigm 
modeling (MPM) applies when a model consists of more than one modeling paradigm (Vangheluwe, de 
Lara, and Mosterman 2002), hybrid modeling applies when a model contains more than one model 
(Mosterman 1999), and multi-method modeling applies when a model contains multiple modeling 
methods (Borshchev 2013). This causes a problem in clearly identifying the difference between the terms 
which makes it more difficult to differentiate between different types of models. Multi -paradigm 
modeling shares similarities with several of the other terminologies. Similar to hybrid modeling, multi-
paradigm modeling can consist of both discrete and continuous elements. In this sense, hybrid models 
qualify as multi-paradigm models; however, not all multi-paradigm models qualify as hybrid models as a 
multi-paradigm model does not have to contain both discrete and continuous elements. 
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We propose to address the problem of describing models by clarifying the M&S modeling 
terminologies through the use of a taxonomy that classifies models with respect to the model 
characteristics of time representation, basis of value, behavior, expression, execution, and resolution. 
Additionally, we explore a set of challenges associated with simulations that use multiple models which is 
not addressed within the literature. This paper is structured as follows: Section 2 provides background 
information on modeling terminologies within M&S. Section 3 presents a taxonomy of model 
characteristics for classifying the modeling terminologies. Section 4 presents challenges involving 
simulations that consist of competing characteristics due to the use of multiple models. Section 5 presents 
conclusions and identifies future work. 

2 BACKGROUND 

Single models are not always sufficient for providing the level of depth needed to capture real world 
processes; whereas simulations that use multiple models can provide a greater depth into the problem 
(Yilmaz and Ören 2005). Many terminologies exist that provide the ability to capture a problem in greater 
depth and involve modeling with multiple paradigms, formalisms, or models. A multimodel is a model 
comprised of multiple models that collectively serve to represent the behavior of a system (Fishwick and 
Zeigler 1992; Fishwick 1995; Fishwick 1998; Tolk 2012) Conducting experimentation with multimodels 
allows for the simulation to represent several aspects of reality (Yilmaz and Ören 2005; Yilmaz et al. 
2007). A multi-paradigm model uses two or more modeling paradigms to address a modeling question 
(MQ) (Lynch et al. 2014; Vangheluwe, de Laura, and Mosterman 2002; Villa and Costanza 2000). A 
hybrid model consists of both discrete and continuous elements (Mosterman 1999; Swinerd and 
McNaught 2012; Tolk 2012). Multifacetted modeling uses multiple models to answer a MQ (Zeigler, 
1984). Multi-resolution modeling incorporates multiple models from different resolution levels to address 
the problem (Fishwick and Zeigler 1992; Tolk 2012). A multi-formalism model uses at least two 
formalisms (Vangheluwe, de Laura, and Mosterman 2002). A coupled model consists of independent 
models connected together through a network (Vangheluwe, de Laura, and Mosterman 2002). Multi-
method modeling uses multiple modeling methods, such as system dynamics (SD) and agent-based 
modeling (ABM) to create a simulation (Borshchev 2013). Composite modeling applies a combination of 
simulation approaches to address a problem (Viana, et al. 2014). A further discussion on M&S 
terminologies is presented in Balaban, Hester, and Diallo (2014). 

Embedded within the modeling terms are the concepts of methods, methodologies, formalisms, and 
paradigms. Paradigms, methodologies, and methods assist in transitioning from the real system to the 
model and each term plays a different role in this transition. A paradigm contains a set of “assumptions, 
concepts, values, and practices that constitutes a way of viewing reality” that is commonly shared within a 
community (McGregor and Murnane 2010 pg. 1). The selection of a paradigm “sets down the intent, 
motivation and expectations” that drives the research process (Mackenzie and Knipe 2006 pg. 2). 
Modeling paradigms reflect the ways of thinking about how to represent systems within M&S and contain 
the assumptions that generally accompany each way of thinking (Lorenz and Jost 2006). A paradigm does 
not need a standard interpretation or a full set of rules in order to guide research (Kuhn 1970). Within 
M&S, modeling paradigms encompass various ways to think about representing systems and are 
purposefully well equipped to address specific questions from the real system. 

Methodologies and methods provide the connections between modeling paradigms and a model’s 
construction. A methodology is an approach linking a paradigm to research (Mackenzie and Knipe 2006) 
and deals with the “philosophical assumptions that underlie any natural, social or human science” 
(McGregor and Murnane 2010 pg. 2). A method is the technique, procedure, or tool used to collect data, 
conduct research, or analyze data and is based upon the selected methodology (Mackenzie and Knipe 
2006; McGregor and Murnane 2010). Formalisms are one method within M&S for implementing models 
into a computer executable simulation. Formalisms provide explicit representations of a model necessary 
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for the model’s implementation on a digital computer (Zeigler 1984). These concepts show a separation 
of focus on the way of thinking about the system (paradigms) and on how to implement a computer 
executable simulation (methods, methodologies, and formalisms). However, this does not provide a solid 
enough foundation for comparing the differences between MPM and the other modeling terminologies.  

A taxonomy provides a means for creating a hierarchical classification of a system that is both 
exhaustive and mutually exclusive (Bailey 1994). Several taxonomies have been applied to M&S. 
Sulistio, Yeo, and Buyya (2004) provides a taxonomy for designing computer-based simulations with 
respect to parallel and distributed systems. Taxonomies exist to classify multimodel formalisms based on 
the structure and behavior of the models (Yilmaz and Ören 2004; Yilmaz and Ören 2005; Yilmaz and 
Tolk 2008) as well as to classify multimodels based on conceptual, declarative, functional, constraint, and 
spatial categories contained within the models (Fishwick 1998). 

In particular, Sulistio, Yeo, and Buyya (2004) provides a simulation taxonomy that characterizes 
simulations in terms of presence of time, basis of value, and behavior and a simulation execution 
taxonomy that characterizes simulations in terms of execution. These characteristics provide a baseline 
for describing a model. Tolk, Turnitsa, Diallo and Winter (2006) describes models through their atomic, 
aggregated, and composite levels of resolution while other models are described in terms of their 
mathematical (Fishwick 1995; Sokolowski and Banks 2010) or logical representations (Woolridge & 
Jennings 1994). We combine these characteristics to describe models as follows:  

 • Static and dynamic time representation characteristics refer to the dependency between the 
progression of the model and the advancement of time (Birta and Arbez 2007; Law 2007; Ljung 
and Glad 1994; Sulistio, Yeo, and Buyya 2004). In a static model, the model’s state does not 
depend upon a representation of time; whereas, a dynamic model’s states are dependent upon the 
advancement of time.  • Discrete and continuous bases of value characteristics refer to the change in values that variables 
can take (Chung 2003; Law 2007; Tolk 2012). A discrete model produces variable values at 
specific points during the model’s execution; whereas, a continuous model can produce values for 
the variables at any point during the model’s execution (Bennett 1995; Sokolowski and Banks 
2012). Therefore, discrete models can be envisioned as producing a finite number of values over 
a specified range while continuous models produce an infinite number of values over a specified 
range (Aburdene 1988; Sulistio, Yeo, and Buyya 2004).  • Deterministic and stochastic behavioral characteristics refer to the notion of uncertainty and 
randomness (Bennett 1995; Law 2007). A deterministic model always produces the same output 
for a given input and system state (Aburdene 1988). A stochastic model produces potentially 
many outcomes for a given input and system state; therefore, a specific output cannot be known 
with certainty in advance of running the model (Ljung and Glad 1994; North and Macal 2007; 
Sulistio, Yeo, and Buyya 2004; Tolk 2012).  • Serial and parallel execution characteristics refer to the execution of the model (Law 2007). A 
serial model is generally executed on a single processor and the simulation execution proceeds 
sequentially. Simultaneous events can still occur but each event is calculated in a sequential order 
(Fishwick 1995). Generally, a model constructed for serial execution cannot be executed in 
parallel fashion (Sulistio, Yeo, and Buyya 2004). Parallel models are executed over multiple 
processors either within a single computer or distributed across multiple computers (Fishwick 
1995; Law 2007). • Mathematical and logical expression characteristics refer to the notional development of the 
model (Sokolowski and Banks 2012). Notional expressions help in expressing the structure of a 
language and establishes a “common ground” for assigning truth to content (Féry and Krifka 
2008 pg. 124). The assumptions associated with communication form the common ground 
through which the communication process is enhanced (Stalnaker 1977). The perception of the 
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modeler forms the words and relationships that create the abstract representation of a system 
(Bennett 1995). Expressions (logical or mathematical) allow for the translation of an abstract 
representation into an executable simulation. Logical models capture causality and decision 
processes and result in defined sequences of events (Tolk 2012). Mathematical models use 
equations to provide quantitative or analytical representations of systems (Fiskwick 1995; 
Sokolowski and Banks 2010). • Atomic, aggregated, and composite resolution characteristics refer to the level of detail, scale, or 
abstraction used by the model. Abstraction is the level of detail needed to construct the model 
assists in the modeling process by directing focus to features of the objects within the system 
being modeled that are relevant to addressing the problem (Fishwick 1995; Zeigler 1984). An 
atomic model cannot be decomposed into a smaller element by anything else within the model 
(Tolk et al. 2006). An aggregated model exists when a collection of individually represented 
components within a simulation are merged to form a higher level object (Tolk 2012). Composite 
models are comprised of elements at varied resolution levels. A composite simulation may consist 
of entities which can change resolution levels during a simulation run (Davis and Hillestad 1993). 
A model that contains multiple atomic level resolutions becomes a composite resolution model 
unless all of the atomic resolutions are the exact same atomic level. Figure 1 shows the adapted 
taxonomy. 

 
 

 

Figure 1: Taxonomy of Model Characteristics adapted from Sulistio, Yeo, and Buyya (2004). The 
characteristics of time representation, basis of value, behavior, execution, expression, and resolution 
provide a mutually exclusive description for categorizing models. The bottom-most level of this hierarchy 
provides an exhaustive description by further describing each of the six categories.  

The addition of the expression and resolution categories to the four categories provided by Sulistio, 
Yeo, and Buyya’s (2004) simulation and simulation execution taxonomies provides a mutually exclusive 
classification for describing models and the sub-categorization of each characteristic provides an 
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exhaustive description of the model. The next section presents the classification of terms against the 
taxonomy. 

3  CLASSIFYING THE M&S MODELING TERMINOLOGIES 

We examine the literature to identify the characteristics that are explicitly mentioned with each of the 
modeling terminologies. Any characteristic that is referenced with respect to a terminology contains an 
“X” and any characteristic that is not specifically mentioned contains a blank space within Table 1. 
Multimodels capture multiple aspects of reality (resolution) (Fishwick and Zeigler 1992; Ören 1987; 
Yilmaz et al. 2007). Ören (1987) classifies multimodels in terms of continuous, discrete, and memoryless 
types; however, these classifications do not appear in the later multimodel taxonomy presented in (Yilmaz 
and Ören 2004; Yilmaz and Ören 2005) and basis of value is therefore not included. Multi-paradigm 
models deal with levels of abstraction (resolution) (Lorenz and Jost 2006; Vangheluwe, de Laura, and 
Mosterman 2002) as well as the characteristics included in the assumptions of the paradigm itself, such as 
differences in time representation, basis of value, behavior, and expression between the discrete-event 
simulation and system dynamics paradigms. Hybrid models contain feedback between simulation models 
(resolution) (Swinerd and McNaught 2012) and deal with continuous and discrete elements (basis of 
value) (Mosterman 1999). Multifacetted models consist of integrating multiple perspectives (resolution) 
to produce the whole picture of reality (Zeigler 1984; Zeigler and Ören 1986). Multi -resolution models 
allow for entities to be represented at different levels of resolution within the same simulation 
environment (Tolk 2012). Multi-formalism models can be grounded in predicate logic or mathematical 
theory  (Balaban, Hester, and Diallo 2014) dealing with time representation, basis of value, and 
expression as well as handling parallel executions (Chow 1996). Coupled models consist of multiple 
models connected together (resolution) in a graph or network layout (Vangheluwe, de Laura, and 
Mosterman 2002). Multi-method models deal with implementing paradigms (therefore, contain the same 
characteristics as paradigms) and utilize couplings between models (resolution) (Balaban, Hester, and 
Diallo 2014). Composite models involve the use of multiple simulation methods or techniques (Viana et 
al. 2014) and contain the same characteristics as multi-method models. Table 1 provides a visual mapping 
of the terminologies to their characteristics. 

Table 1: Mapping of model terminologies against the taxonomy of model characteristics. Column 1 
provides the terminology. The remaining columns represent the characteristics from the taxonomy in 
Figure 1. Blank cells represent that the characteristic is not mentioned with respect to the terminology. 

M&S Modeling 
Terminology 

Time 
Representation 

Basis of 
Value 

Behavior Expression Execution Resolution 

Multimodel      X 
Multi -paradigm 
Model 

X X X X  X 

Hybrid Model  X    X 
Multifacetted Model      X 
Multi -resolution 
Model 

     X 

Multi -formalism 
Model 

X X  X X X 

Coupled Model      X 
Multi -method 
Model 

X X X X  X 

Composite Model X X X X  X 
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Resolution produces the greatest driver within the list of characteristics with all nine terminologies 
relying on it; therefore, a main motivator behind the use of multiple models, formalisms, or paradigms 
within a model appears to be the desire to capture multiple aspects of reality. A model fitting under any of 
these terminologies contains some combination of resolutions (atomic, composed, and aggregated), but 
does not necessarily contain all three at once. Multimodels, multifaceted models, multi-resolution models, 
and coupled models have the same characteristics and are only associated with resolution with the 
literature. Likewise, multi-method models, composite models, and multi-paradigm models have the same 
characteristics and are associated with all of the characteristics except execution. This leaves hybrid 
models and multi-formalism models in the position of having unique descriptions with respect to the 
characteristics. From the perspective of the characteristics, execution stands out as being the only one that 
maps to only a single terminology. 

Due to the potentially many paradigms, models, or formalisms included within these models, there 
can be challenges in constructing and running the simulations due to competing child-characteristics 
within a single category of the taxonomy. For instance, multimodels allow for a system to be represented 
at multiple levels of resolution; however, this brings in the challenge of how to properly construct the 
model so that the simulation runs correctly when involving a combination of atomic, composed, and 
aggregated resolutions. We explore the challenges that arise with respect to each of the model 
characteristics in the following section.  

4 CHALLENGES WITH SIMULATIONS CONTAINING COMPETING MODELING 
CHARACTERISTICS 

The use of multiple modeling paradigms and models results in a number of challenges for simulations. 
Each category within the taxonomy provides a number of challenges to consider when constructing a 
model using any of these terminologies as there exists the possibility of having competing characteristics 
within the model. These challenges make the verification process crucial to the development of the model 
since the model’s components can exist in potentially many specifications that need to be checked to 
ensure that they are correct regarding each formalism. A potential consequence of not verifying a multi-
paradigm model is that an error produced during model validation may be a result of (1) a conceptual 
error (i.e. something missing from the model structure or model parameters) or (2) an implementation 
error (i.e. something is missing from the simulation that is supposed to be there). Without conducting 
verification first, the process of identifying whether the error was conceptual or implementation related is 
much harder to determine. Thinking that the model is programmed correctly when analyzing an 
unexpected outcome from a multi-paradigm model can lead to the conclusion that the new behavior is a 
result of the multi-paradigm model when the unexpected outcome is really caused by an implementation 
error. The following six items explore the challenges that pertain to each of the model characteristics 
within the taxonomy as well as challenges involving the use of more than one model. 

 • Challenges with Multiple Time Representations: Combining static and dynamic time 
representations requires determining how to integrate a dynamic time models with static time or 
event-driven models. Standards such as the HLA exist to deal with issues of time management 
(IEEE 1515-2010). Fujimoto and Weatherly (1996) identify that the simulations within a 
federation may deal with varied event ordering requirements, time flow mechanisms, real and 
scaled time data, and combinations thereof. The synchronization of events must account for 
differences in the use of time steps and events between simulations. Two simulations running in 
parallel may consider the use of a least common denominator in time-steps to ensure 
synchronization of time. The combination of continuous and discrete time requires a mapping of 
real numbers and integer numbers. The set of real numbers is uncountable whereas the set of 
integer numbers is countable; therefore, the set of integers used by a discrete time simulation is 
able to map all of its possible values to the set of real numbers that the continuous time simulation 
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uses; however, this relationship does not work in reverse (Hein 2010). For simulations running at 
different time scales, there must be a way to ensure that the faster simulation can recover from 
changes in the slower simulation that occurs after the fast simulation has already passed that time 
step. • Challenges with Multiple Bases of Values: Multiple bases of values provide challenges with 
respect to cardinality and computability. Bijective functions provide a means for observing the 
input and output relationship in a model. A function or model is bijective if there is a one-to-one 
mapping from the input set to the output set (Hein 2010). A countable set has a bijective relation 
to a subset of the natural numbers and a countable infinite set is bijective to the set of natural 
numbers. The union of countable sets is also countable; however, if both sets were bijective the 
union of the sets may be surjective (Hein 2010). Uncountable sets are not computable. 
Computability deals with the computational complexity or the amount of real time required to 
solve a problem. Issues involving computability deal with the ability to solve problems in 
polynomial (P) time using a one-tape deterministic Turing Machine or to solve problems in 
polynomial time on a nondeterministic (NP) Turing Machine (Karp 1972). Combining a model 
that is not solvable in non-deterministic polynomial (NP) time with a model that is solvable in P 
results in a NP problem. • Challenges with Multiple Behaviors: Combining multiple behaviors in a model results in 
challenges of composition pertaining to the injective, bijective, and surjective nature of the 
models. Every model has a set of possible input values (domain) and a set of possible outputs 
values (codomain), in the same fashion as a function (Hein 2010). MPM produces a feedback 
setup between paradigms and as a result the output of a model (i.e. codomain MA) can replace the 
input set of another model (i.e. domain MB). The set of values comprising codomain MA must 
match or be a subset of domain MB or there will be an error in consistency for model MB. If the 
set of input values is only a subset of the total input set that the model can have, then the input 
relationship may result in an injective model which restricts the total set of outputs that the model 
can produce. This effect can potential cascade through all of the models and alter the injective, 
bijective, and surjective functions of each model. Constraints may need to be added to explicitly 
reinitialize state variables when they are functions of the final values from another configuration 
(Mosterman 1999). Inconsistent units of measure between models can lead to contradictory 
outcomes if the conversion functions are not accounted for properly. Additionally, combining 
models with multiple behaviors can disrupt the homomorphism relationship of the model. 
Homomorphic functions can preserve the behaviors of the reference system by mapping lower 
level models to higher level models (Fishwick 1995). • Challenges with Multiple Expressions: The combination of logical and mathematical 
expressions, specifically when the combination contains both discrete and continuous elements, 
can result in a very large state space of possible state changes within the model (Mosterman and 
Vangheluwe 2004). This can potentially lead to an issue in computability and cardinality (refer to 
challenges with multiple bases of value). Additionally, the works of Mosterman (1999) and 
Mosterman and Vangheluwe (2004) identify four potential issues that result from combining 
executable formalisms. Event detection and location deals with continuous variables that cause 
events to occur once they cross over specific thresholds and both the time of occurrence of the 
cross and the level of the threshold needs to be detected (Mosterman 1999; Mosterman and 
Vangheluwe 2004). Sequences of discrete transitions deals with known events that will occur due 
to time reaching a specific value and can be planned for in advance to help maintain 
synchronization of the simulation (Mosterman 1999; Mosterman and Vangheluwe 2004). 
Consistent semantics of formalisms deals with maintain consistency of meaning of elements 
contained within multiple formalisms to ensure that the formalisms communicate properly 
(Mosterman and Vangheluwe 2004). Sensitivity to initial conditions deals with the input 
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parameters of the model being sensitive to alterations when combining formalisms (refer to 
challenges with multiple behaviors for a discussion of model composition effects) (Mosterman 
and Vangheluwe 2004). • Challenges with Multiple Executions: Multiple models executed in series need to be configured 
in a manner that events occur sequentially between all of the models. The field of Parallel and 
Distributed Simulation (PADS) deals with challenges in executing simulation in parallel. 
Fujimoto (1999) identifies several challenges with parallel simulation, including synchronization, 
local causality constraint (running a simulation in parallel should produce the exact results as 
running the simulation sequentially), and increased memory requirements for maintaining 
synchronization of the simulation. The crucial component of running a simulation in parallel or 
distributed over multiple computers is ensuring that all of the events within the simulation 
execute in the correct order (Fishwick 1995; Law 2007). Conservative and optimistic 
synchronizations seek to prevent violations of the local causality constraint or to provide a 
method for recovery to handle violations of the local causality constraint (Fujimoto and 
Weatherly 1996).  • Challenges with Multiple Resolutions: Some paradigms and their associated formalisms exist at 
specific levels of resolution, such as System Dynamics taking a high level view of a system while 
ABM takes a low level view of a system. Davis and Hillestad’s (1993) work identifies a number 
of issues pertaining to multiple resolutions. Do the assumptions and operations hold across all 
levels of resolution? Is the representation of time maintained across all resolutions? Are spatial 
representations maintained across levels of resolution? Are aggregation and disaggregation 
relationships maintained? When combining models at different levels of resolution, a common 
information exchange model can establish a common view of entities and properties of the 
problem. In order to establish a common exchange between models, the higher resolution models 
need to aggregate their views or lower resolution models need to disaggregate their views (Tolk 
2012). Inconsistencies can occur when transitions occur for an entity across varying levels of 
resolution such as a leading an entity into a state that it could not have reached through the 
normal time span of the model due to transitions between resolutions (Reynolds, Natrajan, and 
Srinivasan 1997). Challenges with multiple resolutions also occur when all of the models use the 
same resolution level. An example involves the use of ABM agents and DES entities where the 
model requires that the agents move through a DES process (Borshchev 2013). This requires that 
the agents and entities have semantic and syntactic compatibility to enable correct movement 
between the model components. • Challenges with Multiple Models: Running multiple models in series results in increased time 
required to generate results. However, this time may not scale linearly as removing repeated 
functions between the models can serve to reduce the run time of the overall model (Mosterman 
1999). Constructing a multi-paradigm model using multiple models involves challenges of 
communication between models and falls within the domain of interoperability. The models need 
to share relevant information and use the shared information (Diallo, Padilla, and Tolk 2010). A 
common goal of both interoperability and MPM is to achieve effectiveness, efficiency, and 
correctness and timeliness of exchanged information between systems (Tolk 2012). Effectiveness 
is achieved when all of the exchanged information is delivered to the correct simulation elements. 
Efficiency is achieved when only the required information is delivered to the target simulation 
element. Correctness and timeliness are achieved when the delivery of the information occurs at 
the correct time. Additionally, there can also be challenges pertaining to polymorphism 
(simulations interpret the same information differently) and encapsulation (hiding information 
within the simulation) pertaining to issues of data misalignment and misrepresentation (Diallo, 
Padilla, and Tolk 2010). Overall, all of the models need to maintain consistency and be non-
contradictory with respect to each other and the reference system. 
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These challenges represent some of the main roadblocks that may occur in constructing and executing 

simulations that contain competing characteristics due to the use of multiple models. The following 
section presents areas for future work based on these challenges. 

5 CONCLUSION AND FUTURE WORK 

We construct a taxonomy to describe modeling terminologies with respect to the characteristics of their 
models. Interestingly, we find that none of the modeling terminologies explicitly deal with all six 
categories of model characteristics, that all of the terminologies deal with resolution, and that several of 
the terminologies only care about multiple resolutions. While multimodeling, MPM, hybrid modeling, 
multifacetted modeling, multi-resolution modeling, multi-formalism modeling, coupled modeling, multi-
method modeling, and composite modeling are used by the M&S community, the challenges with 
building and verifying these models have not been addressed by the literature in an in-depth manner. The 
M&S community needs a verification framework to assist modelers in ensuring that the challenges 
associated with competing model characteristics do not cause errors within their simulations. This 
framework should be generalizable so that it can be applied to the models based on the model’s 
characteristics which would allow for the framework to be applicable to any of the modeling 
terminologies. This taxonomy can potentially be applied to a problem during the conceptual modeling 
phase of the project in order to identify the characteristics that are needed to answer the MQ. This can 
help to identify the paradigms or types of models needed to address the problem. 

Future works involves extending this research to tie the taxonomy of model characteristics into the 
simulation design phase in order to (1) guide modelers in the process of selecting paradigms or 
formalisms to use in constructing simulations that use multiple models, (2) illuminate possible challenges 
that may arise in constructing the simulation, (3) help in selecting the best tool to use for implementing 
the simulation, and (4) assist in verifying the simulation. Additionally, future work involves exploring 
different modeling formalisms and classifying them with respect to the taxonomy to provide another 
option for determining how to handle simulation implementation based on the desired characteristics for a 
simulation.  
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