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ABSTRACT

Circadian cycles and other self-regulatory biological processes are the result of complex interactions between
gene expression and molecular interactions. In this paper we study a Petri net model of the circadian clock
and use gradient estimation methods for finding optimal input rates.The significance of our research is the
potential early identification of pathologies caused by aberrant cycles, and the discovery of those rates that
are of main importance for the control of the cycles, enabling specific cures for people, in accordance with
personalized (or precision) medicine. We use SPSA to drive the simulation to the optimal rates that result
in a desired period, then propose a surrogate model for gradient estimation that evaluates the exact gradient
for an ”aggregate” system described by ODEs. Our hybrid model for gradient estimation addresses the
high-dimensionality problem and can potentially increase the efficiency of the optimization method by at
least one order of magnitude.

1 INTRODUCTION

The recent announcement from the White House to allocate a budget of $215 million in 2016 for precision

medicine acknowledges the need to increase research efforts to address the specific causes of disease, which
may vary from person to person, rather than develop cures for the “average” person (MSNBC 2015).

Most of the research in this area falls within the scope of genomics and health informatics. In this
work we focus on a specific problem, related to defects in self-regulatory mechanisms that keep the cells’
biological clocks in order. Because of the daily periodic exposure to sunlight, cells must adjust to 24-hour
patterns to function correctly. These are called circadian cycles (meaning “close to a day”). In mammals
there is a master clock located in the in the hypothalamus that can function autonomously (without need
of light exposure). The master clock can regulate other peripheral clocks via humoral signals and other
chemicals. Peripheral circadian clocks are present in the liver, heart, lungs and kidneys, among other
organs. It has been recently discovered (Sahar and Sassone-Corsi 2009) that aberrant circadian rhythm may
cause tumorigenesis (when otherwise normal cells become cancer cells). Other mono-cellular mechanisms
that rely on keeping good biological clocks are present in insulin regulation, sleeping patterns, etc.

The circadian mechanisms usually exhibit periodic patterns for the amount of certain molecules in the
cell exhibiting peaks every 24 hours. Usually these patterns alternate for different molecules. As explained
below, such patterns can be explained through the interaction of activation and repression mechanisms that
affect these two types of molecules.

The mathematical model that we use in this paper describes a complete functioning circadian self-
regulated mechanism for two molecules in a single cell. We use a stochastic process to model the number
of molecules present in the cell. Various processes determine rates of production, destruction, binding and
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unbinding of various molecules in order to achieve the periodic behavior. Importantly, our model requires
a set of 15 rates in order to reproduce the simplest circadian self-regulatory mechanism. The question that
we address is the following. When the rhythm is aberrant, what are the optimal rates that are required

in order to restore the 24 hour cycle?

We pose this problem as a stochastic approximation problem and solve it first using SPSA (Fu and Hill
1997). Then we propose a hybrid model to increase the efficiency in gradient estimation with potential
increase in efficiency.

Establishing the optimal rates may provide indication for plausible treatment. Our model permits the
use of stochastic simulation to first mimic the situation observed for the real biological system under study,
and then to determine which rates should be increased or decreased to promote resetting of the clocks.
Importantly, gradient estimation can provide insight as to which of the firing mechanisms is more important
to restore the 24 hour cycle. How the rates can be controlled is outside the scope of our research for now
and would require laboratory analysis of single cell systems. As an example, in (Seo, Park, Lim, Kim,
Lee, Baldwin, and Park 2012) it was determined that both light and temperature may affect the circadian
clock in plant cells. These are examples of exogenous stimuli that may help to modify the rates.

The paper is organized as follows. Section 2 presents a model for a self regulated clock. The chemical
equations can be described in a fluid approximation as a set of differential equations or ODE’s (Vilar, Kueh,
Barkai, and Leibler 2002) that can provide information on an aggregate level. However when the number
of molecules is small the fluid approximation is not justified. Section 3 explains the discrete event (Petri
net) model that we use, following the ideas proposed by (Gillespie 1977). Section 4 describes the hybrid
model for estimating the period of the clock. Section 5 states the optimization problem and the hybrid
gradient estimation technique. The last section 6 contains the simulation results using finite differences
and SPSA.

2 BIOCHEMICAL MODEL FOR SELF-REGULATED CLOCK

We first review the basic mechanisms for gene expression and regulation. A gene is a functional segment
of a DNA molecule that encodes the structure of a certain biomolecule: usually, the product is a protein,
however it can be a functional RNA as well. The process of constructing a protein from its corresponding
gene is called gene expression.

The first stage of this process is called transcription: at this stage the DNA segment that encodes the
protein is copied to a new relatively short RNA molecule that is a called messenger RNA (or mRNA for
short). After that, at the second stage called translation, the mRNA is translated into the protein. To sum
up, for making a protein molecule, first, a mRNA is constructed, which becomes the blueprint for making
the protein itself.

The rates at which the transcription process may increase or decrease when certain proteins (called
transcription factors) bind to the gene. Two main types of gene regulation are activation and repression.

The gene regulatory network (GRN) consists of two genes DA and DR, the former is encoding a
transcription factor A (“activator”), and the latter is encoding another protein that we call R (“repressor”).
The genes are first transcribed into mRNA (we call them mA and mR) at corresponding rates αA and αR.
The messenger RNAs mA and mR are then translated into corresponding proteins with the rates βA and βR.

The protein A is able to bind to the genes DA and DR, which is why we call it a transcription factor.
Binding increases the rates of production to α ′A > αA and α ′R ≫ αR of their mRNAs, and the effect is
particularly strong for the gene DR. We use the notation Db

A and Db
R to represent the gene under binding.

The protein R, on the other hand, is not a transcription factor. It binds with the protein A making a
complex C, which exists until the protein A in the complex degenerates. Figure 1 shows a diagram with
the basic interactions that occur in the process.

The following chemical equations state the various processes (Vilar, Kueh, Barkai, and Leibler 2002).
We have also included actual values for the rates that we use later on in our simulation experiments.
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Figure 1: A diagram of the circadian clock model.

Transcription (mRNA production): DA
αA−→ DA +mA

Db
A

α ′A−→ Db
A +mA

DR
αR−→ DR +mR (αR ≈ 0)

Db
R

α ′R−→ Db
R +mR

Translation (protein production): mA
βA
−→ mA +A

mR
βR
−→ mR +R

Binding and unbinding: DA +A
γA
−→ Db

A

Db
A

µA
−→ DA +A

DR +A
γR
−→ Db

R

Db
R

µR
−→ DR +A

Degradation: mA

δmA−→ ∅

mR

δmR−→ ∅

A
δA−→ ∅

R
δR−→ ∅

Binding of A and R: A+R
γC
−→ C

C
δA−→ R

γA 1.0

µA 50.0

γR 1.0

µR 100.0

αA 50.0

α ′A 500.0

αR 0.01

α ′R 50.0

βA 50.0

δmA
10.0

βR 5.0

δmR
0.5

γC 2.0

δA 1.0

δR 0.2

The vector of rates will be denoted by θ ∈ (R+)16. These rates control the dynamics of the process. We
use the common notation [X ] for the concentration of protein X in the cell.

Figure 4 shows the concentrations of mA, mR, A, R, and C for one period of the circadian clock.
The dynamics of the system can be described as follows. The system starts with two genes DA and DR

in the unbound state with the concentrations of the other chemicals equal to zero (or close to zero). DA

immediately starts producing mRNA mA, which get translated into A. After producing a few molecules

1473



Nikolaev and Vázquez-Abad

of A, they quickly bind to the genes, which switch to the bound state, Db
A and Db

R, and stay in this state
almost always as long as the molecules of the protein A are still present in the system. In this bound state,
the production rate of mA is constant, and the concentration [mA] increases until the production and decay

balance each other. The ODE approximation
∂ [mA]

∂ t
= α ′A−δmA[mA], yields the steady state concentration

of [mA] = α ′A/δmA ≈ 50.
Soon after, the production of mR catches up, and its concentration reaches the steady state level at

[mR] = α ′R/δmR ≈ 100. The concentrations of mA and mR remain at this level until eventually all proteins
A deplete, and the genes switch to the unbound state (thus decreasing the production rates of mA and mR).

While the concentrations of mA, and mR stay close to their steady state, the proteins A and R start
getting produced. However, since the production rate of A is higher than the production rate of R, there is
more A present in the system, and the quick complexation process make almost all R bind with A, producing
the complex C. So, we get concentrations [A] and [C] growing, while [R] stays close to zero. However,
since C itself degenerates into R, eventually the complex C will “eat up” all free proteins A, thus depleting
their concentration.

After this event, the genes switch to the unbound state, the production of mA and mR drops. With
the huge supply of C, which degenerate into R, and still a considerable amount of mR, which also keep
producing R, the amount of [R] increases. A few proteins A that get produced at this stage quickly join
with R and eventually degenerate. So, this second phase of the oscillation is primarily governed by the
production of R followed by their exponential decay. When R get completely depleted, the production of
mA and A restarts, and the cycle repeats itself.

3 SIMULATION MODEL PETRI NET

The ODE model for chemical reactions can be a good approximation of an aggregate behavior when the
number of molecules is high, thereby describing the dynamics of the concentration of material. However,
in biochemical settings where the number of molecules may be very few, it is not always appropriate
to use the concentration as a state description. An alternative model was introduced by (Gillespie 1977)
assuming that particles are created or destructed individually, according to the given rates. When the state
of the system (measured in occupancy or number of molecules of each of the various components) is X ,
there are a number of possible events that can happen either producing new particles, destroying particles
or binding. Each event corresponds to one chemical equation. The model assumes a Markovian structure
where all residual times are independent exponential random variables.

Let Y (t) = (X(t),D(t)) ∈ R
5×{0,1}2 be the process that counts the number of molecules of each

type. Specifically, let XA(t) = [A](t), XmA(t) = [mA](t), XmR(t) = [mR](t), XR(t) = [R](t), XC(t) = [C](t),
D1(t) = [DA](t) ∈ {0,1},D2(t) = [DR](t) ∈ {0,1}. In particular, (D1(t),D2(t)) = (1,1) when no protein A

is bound to the genes, and it is equal to (0,0) when A are bound to both genes. Notice that the number
of molecules in each component of X does not have an upper bound and their dynamics follows a general
multidimensional birth and death process. The model is a hybrid model because the rates are dependent
on the regime dictated by the DNA component D(t). Notice also that this component does not behave as
a Markov Hidden Model, but it is dependent on the state Y (t).

Let k label the possible events each associated with a different chemical equation. We define the
increment vector νi,k as the number of molecules of the type i that are added or removed from the system
when the event k happen:

νik =







+1 if event k increases component Yi by one

−1 if event k decreases component Yi by one

0 otherwise,

The propensity ak(Y,θ) is the corresponding event rate (i.e. inverse expected time) at which event k

occurs given state Y and the reaction rates θ . The propensity of a chemical reaction is proportional to
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its rate and the concentrations of the reactants. For example, if k is the event of the production of A,
the propensity ak(X ,D,θ) = βAXmA and νA,k =+1, while for k′ the event of degradation of A, we’ll have
ak′(X ,D,θ) = δAXA and νA,k′ =−1. We use the notation Ft for the natural filtration of the process, that is,
Ft = σ(X(s),D(s);s≤ t).

The simulation model is a particular case of the standard clock simulation model. Assuming exponential
residual times for each chemical equation, the time for the next event has exponential distribution with rate
aaa(Y,θ) = ∑k ak(Y,θ), and the probability that the next event is event j is a j(Y,θ)/aaa(Y,θ).

This model leads to a Petri net model for simulation shown in Figure 2 with corresponding algorithm:

• Initialize the number of molecules Y .
• Loop:

– Compute the propensities ak(Y,θ) of each reaction (event).
– Sample and fire the next reaction. P(event j) = a j(Y,θ)/aaa(Y,θ).
– Update time t← t +∆, where ∆∼ Exp(aaa(Y,θ)).
– Update the state Y := Y +νk.

A

Nil

(|A|*1) card: 1

((|A|*|DR|)*1)((|A|*|DA|)*1)

((|A|*|R|)*2)

DA

(|DA|*50)

DAb

(|DAb|*500) (|DAb|*50)

mA

(|mA|*10) card: 1

(|MA|*50)

R

(|R|*0.2) card: 1

DR

(|DR|*0.01)

DRb

(|DRb|*50)(|DRb|*100)

mR

(|mR|*0.5) card: 1

(|MR|*5)

C

(|C|*1)

Figure 2: A Petri net of the circadian clock model generated by Beta Workbench.

To estimate the period P(θ) of the oscillations, it turns out that the simulation can run for exactly one
period, starting at the time t = 0 with the initial concentrations equal to the concentrations of the chemicals
that are normal at that moment (the choice of the initial conditions is discussed below, when we talk about
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the systems of the ODEs). The simulation runs until the concentration of R depletes ([R] = 0), and the
production of A starts again (in particular, we chose the condtion [A]> 10 for this).

4 HYBRID MODEL FOR ESTIMATION

In order to improve the efficiency of the method we propose to use a hybrid model that approximates the
discrete event Markov chain process with its expected or aggregate behavior dominated by ODE’s only
during certain subintervals within each cycle, avoiding the problem of “fractional” number of molecules
that the full ODE model has.

Theorem 1 For any time T , conditioning on the event of no regime changes: {D(t + s) = D;s≤ T} the
process X satisfies:

E(Xi(t + s)−Xi(t) |Ft) =
∫ t+s

t
∑
k

νi,k E(ak(X(u),D,θ) |Ft)du, (1)

for all i ∈ I = {A,R,mA,mR,C} and for any s≤ T .

Proof. Let h > 0 be an infinitesimal quantity. It follows from the exponential distribution and merging
of Poisson processes that the probability of having two or more events within [t, t + s) is O(h2). The
probability of no events is 1−O(h), and in this case X(t +h)−X(t) = 0. When there is only one event
happening then Xi(t +h)−Xi(t) = νik with a corresponding probability hak(X(t),D,θ)+O(h2), thus

E(Xi(t +h)−Xi(t) |Ft)

h
= ∑

k

νi,k ak(X(t),D,θ)+O(h).

Given a constant regime D on [t, t +T ) the propensities are continuous functions of the state X . For given
h > 0, let t0 = 0, tn = t +nh. Then using a telescopic sum,

E(Xi(t + s)−Xi(t) |Ft) =

= E

(
⌊s/h⌋

∑
n=1

(Xi(tn)−Xi(tn−1)
∣
∣
∣Ft

)

+O(h) = E

(
⌊s/h⌋

∑
n=1

h
E(Xi(tn)−Xi(tn−1) |Ftn−1

)

h

∣
∣
∣Ft

)

+O(h)

= E

(
⌊s/h⌋

∑
n=1

h

(

∑
k

νi,k ak(X(tn−1),D,θ)

))

+O(h)
h→0
−→ E

(
∫ t+s

t
∑
k

νi,k ak(X(u),D,θ)du

∣
∣
∣Ft

)

.

It is interesting to note that if, and only if, the propensities are linear in the state X , then the so-called
averaged process 〈X(t)〉 satisfies the ODE

dx(t)

dt
= ∑

k

νi,k ak(x(t),D,θ). (2)

Gillespie (Gillespie 2000) mentions that this ODE cannot be accurate unless one looks at the limit when
the number of molecules is large enough that one can approximate it by a continuous vector. We remark
here that the ODE may be accurate for describing the expected behavior of the processes, provided that
the propensities are linear, and that the regime is constant. For our particular model of the activator and
repressor proteins, there is a chemical equation for which ak(X(t),D,θ) = γC XA(t)XR(t) is the propensity
for the increase of XC and decrease in both XA and XR. Because of the correlations between components,
in this case E(ak(X(t),D,θ)) 6= ak(E(X(t),D,θ).
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Corollary 2 For any finite θ > 0 the process{Y (t); t > 0} is tight (or,equivalently: “bounded in probability”).

Proof. The proof of the result is based on a stochastic Lyapounov argument. The key observation is
that all decaying propensities are proportional to the amount of material, but increasing rates are not. Wwe
need consider only the X component of the state because there are only two DNA molecules, so D(·) is
bounded w.p.1. Given any regime with constant D, XmA (and similarly for XmR) satisfy

E(XmA(t + s) |Ft) = XmA(t)+
∫ t+s

t
(θk1
−θk2

XmA(u))du,

for some indices k1,k2. Suppose that [t, t + s) is a time interval where XmA(·)> θk1
/θk2

. Then the expected
drift is negative: the process behaves as a strict supermartingale over all such time intervals. A non-negative
supermartingale converges with probability one to a finite value, thus

lim
K→∞

P

(

sup
t≥0

(XmR(t))> K

)

= 0,

which implies that XmA(·)≤ θk1
/θk2

infinitely often w.p.1., proving tightness for the RNA molecules.
Consider now the aggregate count of protein molecules Z(t) = XA(t)+XR(t)+XC(t). Because each

component is non-negative, tightness of Z implies that of all three components. From the chemical equations

E(Z(t + s) |Ft) = Z(t)+
∫ t+s

t
(βAXmA(u)+βRXmR(u)−δAXA(u)−δRXR(u)− γCXA(u)XR(u)) du.

Given the condition C(K) = sup(βA XmA(u)+βR XmR(u))≤ K;u ∈ [t, t + s) there is a bounded region in
the plane (xA,xR) such that outside that region the integrand above is strictly negative. If the process stays
outside this bounded region for an interval of time within [t, t + s) then Z is a non-negative supermartingale
and converges towards the bounded region w.p.1. Because P(C(K))→ 0 as K → ∞ this implies that
{Z(t); t ≥ 0} is tight.

A full cycle can be divided into three distinct periods, each of which corresponds approximately to a
different regime. The first part of the cycle describes the dynamics of A, assuming that D = (0,0) during
this period. The second part of the cycle describes the joint dynamics of R and C when there is no activator
present, assuming D = (1,1) until R depletes to the level of C molecules. The third part is a hybrid
process when all molecules exist in relatively small quantities until R depletes and a few molecules of A

are produced (in simulations, we use the condition XA ≥ 10).

Regime D = (0,0)D = (0,0)D = (0,0). In this regime A is bound to the DNAs, there is large supply of A, i.e. xA≫ 1, and
γCxA≫ δR, which implies that all supply or R almost immediately get transformed into the complex C,
and we can assume the decay rate of R to be close to zero, δR ≈ 0.

If these assumptions hold, there is very little amount of R in the system. Practically all R immediately
joins with A producing the complex C. There are two main sources of R: translation from mR and the
decay of C, this gives the rate βRxmR(t)+δAxC(t). And because R almost immediately becomes C this is
the production rate of C. At the same times, because the production of C requires molecules A, the same
rate contributes to the depletion of A.
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Thus we obtain the following (approximate) system of ODE’s:

dxmA(t)

dt
= α ′A−δmAxmA(t),

dxmR(t)

dt
= α ′R−δmRxmR(t),

dxA(t)

dt
= βAxmA(t)−

(
βRxmR(t)+δAxC(t)

)
−δAxA(t),

dxC(t)

dt
=
(
βRxmR(t)+δAxC(t)

)
−δAxC(t)

︸ ︷︷ ︸

=0

.

Regime D = (1,1)D = (1,1)D = (1,1). The protein A molecules are not bound to the DNAs and xA ≈ 0, xR≫ xA, and xC≫ xA.
Because γCxR≫ δA, all molecules of the protein A immediately get transformed into C. At this stage, xA

is at its steady state value αA/δmA. Therefore, the production of A is equal to βA(αA/δmA), and since all
A are almost immediately transformed into C, this value is the production rate of C, and simultaneously it
contributes to the depletion of R.

Therefore, the (approximate) system of ODE’s is

dxmR(t)

dt
= αR−δmRxmR(t),

dxR(t)

dt
= βRxmR(t)−βA(αA/δmA)−δRxR(t)+δAxC(t),

dxC(t)

dt
= βA(αA/δmA)−δAxC(t)

Initial Conditions for ODE’s. Because the regimes alternate, the initial conditions for the regime D= (0,0)
are the steady state concentrations of xC, xmR, and xmA in the regime D = (1,1). These concentrations can
be determined exactly by setting dxC/dt = 0, dxmR/dt = 0 and dxmA/dt = 0, which yield:

xmA(0) =
αA

δmA

= 5, xmR(0) =
αR

δmR

≈ 0, xA(0) = 0, xC(0) =
βAαA

δmAδA

= 250.

And the concentrations of the chemicals at the end of this first regime D = (1,1) evaluated numerically,
give us the initial conditions the second regime D = (0,0).

We use Mathematica to integrate the first system of ODEs. With this solution we find the moment
when A depletes, that is:

PA(θ) = inf(t > 0: xA(t)≤ 0), (3)

which we do numerically. The concentrations are used as initial condition for the second part of the period.
We use Mathematica to integrate this second system of ODEs. Then find the moment of time when the
concentrations of R and C become equal, that is:

PR(θ) = inf(t > 0: xR(t)≤ κ), (4)

where κ is the steady state value of C in the second regime.
The last part of the cycle is from the point where xR(t) = xC(t) until the point when R depletes and

the production of A starts again. This part of the cycle has more complex dynamics, with non-linear rates
and small amounts of molecules and regime changes that trigger the start of a new cycle. On this part we
do not use the aggregate behavior, but the actual simulation of the process {X(t),D(t)}. The estimation
of the period P can then be done using P̂(θ) = PA(θ)+PRC(θ)+ P̂C(θ), where the last part is estimated
with simulation.
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Figure 3: A comparison between the simulation results and the systems of ODEs.

Figure 4 shows a simulation trajectory using the Gillespie simulation model against the hybrid process
using ODE approximation in the first two parts.

For the simulations we used the rates specified in the chemical equations, and simulated the process
for 100,000 periods. The hybrid estimation method uses the ODE’s for the first two parts and simulations
for the last part, while the naive Monte Carlo estimation uses simulation all along. The hybrid estimator of
the period is P̂H(θ) = 6.41037+14.3311+(5.06924±0.044) = 25.811±0.044 and it took 1.5 minutes of
CPU time on a laptop computer using Linux. The naive Monte Carlo estimator is P̂N(θ) = 25.6343±0.052
and it took 18.4 minutes of CPU time. Thus, hybrid estimation increases efficiency 20 fold.

5 GRADIENT ESTIMATION

5.1 Motivation

In this section we seek to determine the exact rates that result in a desired period, for instance 24 hour cycles.
The input parameters or control variables are the 15 different rates that control the chemical reactions. We
call θ the vector of rates. Notice that the propensities ak are themselves functions of θ and of the current
state of the process. The state describes the number of molecules of each kind as time evolves. In order
to achieve a desired period we pose the optimization problem as a tracking problem, with

J(θ) =
1

2
(P(θ)−π)2,

where π is the desired cycle time (such as 24 hours). The problem is then to minimize J(θ). Many
tracking problems have a monotonic structure, where P(θ) is either decreasing or increasing in each of its
arguments. In that situation it is common to use the Robbins Monro procedure directly with

θn+1 = θn−Mεn(P̂(θn)−π)

where {εn} is a suitable step size sequence, and M is a constant diagonal matrix with ±1 values on the
diagonal, depending on the monotonicity of the function. However in our case the influence of rates in the
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increase or decrease of concentration of proteins is very complex and not necessarily monotonic. Thus it
is necessary to use the information on the gradient of the period with respect to the rates.

Gradient estimation is also important in that the sensitivity to each of the rates θ provides information
about the relative impact that each chemical process has. Rates with no statistically significant impact on
the period should not be targeted for development of possible treatment.

5.2 Hybrid Gradient Estimation

The ODE’s that we use to compute PA(θ) and PR(θ) can also be used to compute ∇θ PA(θ) and ∇θ PR(θ),
as follows. In general notation, the differential equations for xA(t) in the first part, and for xR(t) in the
second are of the form (2). Because the propensities are affine functions of θ the derivative processes

ξ j(t) = ∂x(t)/∂θ j; j = 1, . . . ,16 are well defined and they satisfy the companion system of ODE’s:

dξi j(t)

dt
= ∑

k

νik

(

∇xa(x(t),D,θ)T ξ j(t)+
∂a(x(t),D,θ)

∂θ j

)

; j = 1, . . .15; i ∈ I.

The general form of PA and PB in equations (3) and (4) is Pα(θ) = inf(t > 0: xi(t)≤ α), therefore,
using the Implicit Function Theorem

∂Pα(θ)

∂θ j

=

(
dxi

dt
(Pα(θ))

)−1

ξi j(Pα(θ)).

We used Mathematica to integrate the derivative processes along with the original processes x(t). In
our example the equations simplify because many chemical equations are independent of each rate θ j, and
the partial derivatives of the propensities are either constant or linear in the state space.

The gradients for the third part of the period, for which we don’t have an ODE representation, were
estimated in using finite differences.

Before applying the hybrid estimation technique, we first estimated the gradient using finite differences,
running Monte-Carlo simulation for the entire period. The results are shown in the table below:

Table 1: Components of the gradient of the expected period E(P(θ)). Naive Monte-Carlo method.

γA µA γR µR αA α ′A α ′R α ′R
Mean -2.7* 0.048 0.1 -0.014 -0.048 0.0107 14 -0.044

StdErr 0.4 0.008 0.4 0.004 0.007 0.0008 37 0.008

βA δmA βR δmR γC δA δR

Mean 0.051 -0.36 -0.30 -3.7* 1.09* -8.5* -78.2*

StdErr 0.007 0.04 0.08 0.8 0.19 0.4 1.9

Then, for the most important components (the derivatives with respect to δR and δA) we computed the
hybrid gradient estimation:

∂E(P(θ))

∂δR

= 0+(−62.5)+(−15.3±1.6) =−77.8±1.6,

∂E(P(θ))

∂δA

=−4.667+(−0.017)+(−3.8±0.3) =−8.5±0.3.

The numbers match perfectly with the results of the simpler method, while the running time for the hybrid
method has decreased dramatically (approximately by the factor of 15−20).

Also we would like to note that the numbers in the table agree with our assessment that very few rates
have a significant effect on the period. The rates that have statistically significant non-zero derivative, while
having a relatively large magnitude of the derivative are signaled by an asterisk.
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6 STOCHASTIC OPTIMIZATION VIA SIMULATION

The optimization approach that we followed as benchmark is an application of SPSA (He, Fu, and Marcus
2003), which ensures almost sure convergence to θ ∗ when minimizing J(θ), provided that this is convex.
At each iteration n, we sample N random perturbations (∆n)1 . . . (∆n)N uniformly from the set of two
possible values {+1, −1} and we simulate the biological system for T = 500 hours, at rate θn +cn∆n and
in parallel we also simulate T = 500 hours at rate θn− cn∆n. The gradient is then approximated by the
symmetric finite difference and the rates are updated with:

(θn+1)i = (θn)i− εn

Ĵ(θn + cn∆n)− Ĵ(θn− cn∆n)

2cn(∆n)i

.

The parameters cn = const/(n+ 1)0.101,εn = const/(n+ 2)0.602 are shown to be optimal in (Bhatnagar,
Prasad, and Prashanth 2013).

Figure 4 shows the result of the SPSA for a target cycle of π = 48 hours. Observe that the most
important rate turns out to be δR, the degradation rate of the protein R, which is consistent with the model:
The decay of R has a longer tail now, and so the period increases.
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Figure 4: SPSA iteration procedure is converging to oscillations with the period of 48 hours.

The hybrid gradients are estimated using Mathematica code for two parts of the cycle and simulation
using our own Gillespie algorithm simulator written in C for the third part. We are currently consolidating
our code to perform the full hybrid gradient estimation at each iteration of the stochastic approximation.
From our experiments on gradient estimation we expect a significant increase in the efficiency of the
algorithm. In addition, from the insight gained above, we will incorporate a learning stage to identify
which derivatives are close to zero, and stop evaluating those as the stochastic approximation evolves.

7 CONCLUDING REMARKS

We are currently working on the problem of applying IPA to the derivative estimation of the third part
of the cycle. The simulation model as stated here does not satisfy the Lipschitz continuity assumptions
required for unbiasedness. However under a different representation it is possible to show unbiasedness of
a Filtered Monte Carlo gradient estimator. The results will be reported elsewhere. In future we will focus
on online versions of the algorithms that can achieve monitoring and change detection, with the goal of
triggering early treatment to restore normal cycle operation.
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