
Proceedings of the 2015 Winter Simulation Conference 
L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds. 
 
 
 

OBJECT ORIENTED FRAMEWORK FOR HEALTHCARE SIMULATION 
 
 

Akshay Venkitasubramanian 
Stephen D Roberts 

Jeffrey  A Joines 

  
Edward P Fitts Department of Industrial and 

Systems Engineering 
Department of Textile Engineering, Chemistry 

and Science 
North Carolina State University 

400 Daniels Hall   
North Carolina State University 

1000 Main Campus Drive 
Raleigh, NC 27695, USA Raleigh, NC 27695, USA 

  
  

 
 
ABSTRACT 

Healthcare is a highly interconnected dynamic environment where multiple combinations of individuals 
and teams come together to serve patients.  Because of the interconnections in the healthcare system, a 
multi-facility, flexible simulation modeling methodology is desirable, where the modeling boundaries are 
flexible enough to capture the complex interactions between service centers. This paper presents a 
flexible framework for multi-facility simulation using an object-oriented simulation paradigm specifically 
designed for health care services. To test the framework’s capabilities, a multi-facility simulation model 
of the patient flow at a University Student Healthcare Clinic (SHC) was implemented using this proposed 
framework and standard out-of-the box methods. Based on this modeling and implementation experience, 
the authors reflect on the utility of a healthcare oriented framework versus standard out-of-the-box 
simulation tools for healthcare simulation projects.  
 

1 DISCRETE EVENT SIMULATION (DES) AND HEALTH CARE OPERATIONS 

Virtually every segment of the health care delivery operation has employed Discrete-Event Simulation 
(DES), owing partly to the growth of computing power and the availability of user friendly software.  The 
extensive literature has been surveyed periodically – see England and Roberts (1978), Jacobson, Jun, and 
Swisher (1999), and Fone et al. (2003).  A consistent theme seen is that despite the growth of simulation 
modeling in the literature, there remains limited evidence of implementation. Hall, Jacobson, and Swisher 
(2006) noted the lack of investigations into complex integrated multi-facility systems or those that 
examined inter-departmental relationships.   Günal and Pidd (2010) concluded that the reuse of models 
for other scenarios or hospital is very limited.  Katsaliaki and Mustafee (2011) also note that models that 
are flexible and reusable to solve a variety of scenarios are needed as well as modeling paradigms to 
facilitate development of multi-facility environments.   
 Some commercial simulation language developers have attempted to address the health care delivery 
field.  MedModel was developed in the late 1990s by Promodel Corporation. It extended the functionality 
of their general simulation language, ProModel, to match lab results to patients, preempting resources, 
staff schedules and subroutines. The MedModel package also came with an extensive 2D healthcare 
symbol library (reference).  The Flexsim HCTM is the healthcare extension of Flexsim, a general 
simulation package. The Flexsim HCM provides 3D custom objects to represent patient queuing, 

1436978-1-4673-9743-8/15/$31.00 ©2015 IEEE



Venkitasubramanian, Roberts, and Joines 
 
processing and resources with an in-depth focus on providing statistics in a graphically interactive way. 
Nonetheless, the commercial packages have a fixed structure . They do not facilitate extensibility of 
classes and limit reusability of objects. The user of these packages do not have the ability to customize 
objects to meet their needs if the objects provided cannot fully or easily model the user's situation. This 
limits the applicability of these languages to address complex healthcare problems.   
 One modeling paradigm that may accommodate the reusable and flexible multi-facility need for 
simulation modeling is the Object-Oriented Simulation (OOS) approach.  The fundamental concepts in 
OOS, such as classes, composition, inheritance, polymorphism, and run-time binding, were first presented 
by Dahl and Nygarrd (1966).  Dessouky and Roberts (1998),  present a comprehensive review of the OOS 
approach.  Some elaboration of OOS is found in Joines and Roberts (1998) which adds the concepts of 
frames and frameworks.  The parallel execution of object-oriented simulations is discussed in Baezner 
and Lomow (1991).  Finally, a perspective on the event, process, and object “world views” of simulation 
modeling is given by Pegden (2010). 
 One of the earliest examples of OOS in the healthcare environment was used to model a hospital’s 
bed resource utilization using SMALLTALK (Birch and Cook 1991). The authors concluded that the 
visual user interface helped in gaining a higher user acceptance. Moreover, the administration did a 
periodic review of the simulation model and the changes were implemented with ease given the OOS 
nature of the language.  For a more detailed systematic review of healthcare simulation literature as well 
as OOS, we ask that the reader to refer to Akshay (2012).  
 Using the OOS approach, software objects (also called agents) are developed that provide a wide 
range of behaviors specially adapted to multi-facility environments.  These objects are specified for the 
particular systems being simulated, allowing objects to be reused from application to application.  
Furthermore, if the objects are defined appropriately then they can be integrated into a multi-facility 
system.  The challenge is to design these objects so that they can be applied to develop effective and 
efficient health care simulations. 

2 THE HEALTHCARE TOOLKIT 

In this research, a comprehensive object-oriented simulation framework for healthcare is presented that 
overcomes the flaws of commercial packages.  This toolkit provides a means for easy creation of complex 
integrated multi-facility simulations based on the object-oriented paradigm.  In this section, we provide 
the software architect’s plan for this development, which is approximately independent of the 
implementation software (design and implementation cannot be completely independent). This 
framework provides a conceptual basis for healthcare that can be employed by an object-oriented 
simulation language.  Obviously, such a basis is not fully compressive of all health care delivery 
processes, but does create a groundwork that can be further extended. 
 Healthcare, as an industry, lacks standardization in service organization and delivery due to its heavy 
dependence on people at both sides of the service table. This lack of standardization has led hospitals and 
other health care organizations to adapt processes to suit their organization and to best cater to their 
patient demographics. It also partly explains the redundancy of numerous simulation models that describe 
the same operation, such as the large number of emergency department simulations (Günal and Pidd 
2010,  Hall, Jacobson, and Swisher  2006). Nonetheless, this “uniqueness” poses a significant challenge 
to healthcare simulation modelers as they need to customize standard simulation constructs to reproduce 
these complex behaviors. Most often, this affects the cost-effectiveness of the simulation model. Thus, 
good healthcare simulation modeling software should have basic structures to model the operations, and 
at the same time, have built-in flexibility to incorporate the modeler’s requirements with relative ease. 
 From a simulation software design point of view, we view healthcare operations as composed of three 
basic object classes (i.e., Stationary, Mobile, and Agent objects).  Stationary objects represent fixed 
hospital structures that provide essential hospital services such as “Registration Desks,” “Patient Beds,” 
“Laboratory Equipment,” “X-ray machines,” etc. Mobile objects are movable objects that move between 

1437



Venkitasubramanian, Roberts, and Joines 
 
these hospital structures in order to facilitate services such as stretchers, wheelchairs, crash-carts, nurses, 
doctors, etc.  Finally, Agents are representative objects that undergo transactions or receive services from 
stationary and mobile objects. Agents represent actual patients, paperwork, specimens, etc. These three 
broad object classes encapsulate the majority of healthcare operations. A high-level object hierarchy is 
presented in Figure 1 to clarify the concepts defined in this section.  

 

 

Figure 1: Healthcare operations simulation hierarchy. 

Hospital operations will be used to frame the remaining discussion. However, you should recognize that 
the basic concepts and approaches can apply to a number of health care related operations including 
rehabilitation, nursing homes, clinical labs, outpatient surgery, clinics, doctor’s offices, etc.  There is an 
implicit assumption that the agent is an active participant within the health care delivery process, so this 
operations structure is less appealing for problems where the patient is stationary or less active, such as 
operating rooms or recovery areas. 

2.1 Agent Objects  

Agent objects represent a class of objects that receive service in hospitals. Typically, these are patients or 
some associated form, such as a specimen or paperwork. Every healthcare system’s operational efficacy is 
also strongly influenced by patient behavior, which should be replicated by the logic embedded in this 
class. This class of objects is central to the design of an effective healthcare simulation toolkit. In 
addition, there should be provisions to store patient preferences as they directly affect patient behavior 
such as a patient’s requirement for a wheelchair. Another factor that must be given attention is a provision 
for the modeler to describe the stages that each patient has undergone (triage, treatment, x-ray visit etc.).  
This information provides a meaningful breakdown of the system’s statistical performance. 
 For every patient who enters a healthcare service, there may be paperwork generated. These 
paperwork entities represent patients and most of the processes in the hospital await paperwork to begin 
service and generate paperwork at the end of service. Secondly, a majority of medical service providers 
heavily depend on secondary medical services such as lab testing, radiology, stress tests, etc. to assist with 

1438



Venkitasubramanian, Roberts, and Joines 
 
treatment diagnosis and action plans, where there is usually a specimen from the patient. The specimen 
undergoes processing in a different environment, where a patient sometimes is not required to be present. 
For post-processing, the specimen gets converted into paperwork, which should be then matched with the 
right patient. In both cases, the agents are replicas of patients, and thus can be developed by extending the 
Patient Entity class. The Specimen Entity class is a logical replica of the patient and accepts services in 
place of the patient. This class must have the intelligence to identify its patient (parent) to whom it 
belongs, so that they can be matched further downstream.  Synchronization of patients and their related 
information is a characteristic prominent in healthcare, but less so in other industries. 

2.2 Stationary Objects 

Agents from the previous section require a network in which to flow and interact. Stationary objects are 
the largest class category and their domain can be divided in two categories: Primary and Secondary. 
Primary stationary objects are those that interact directly with the patient.  These include hospital beds, 
registration desk, waiting room, etc. On the other hand, secondary stationary objects deal with a reference 
to the patient such as specimen in laboratory, paperwork in the hospital records room, a prescription in a 
pharmacy and so forth.  

2.2.1 Primary Stationary Objects 

The primary stationary object design needs to encompass general features of a hospital that interfaces 
directly with the patient (interacts with an agent we call the Patient Entity). These objects can be clinical 
or non-clinical in nature, whereby clinical objects serve a medical purpose and non-clinical objects 
support the clinical structure. To clarify, by clinical we refer to hospital facilities such as treatment beds 
or x-rays, and we term this group of objects Care objects. Non-clinical objects refer to facilities such as 
waiting areas, registration desks, or billing desks.  

2.2.1.1 Redirect Object 

A typical hospital or clinic is comprised of many waiting rooms, registration desks, help desks, and 
nurses’ stations, among many others. These are the places where more than one patient can queue up to be 
redirected for clinical or non-clinical activities. Hence, we take advantage of this functionality by 
designing a Redirect Object. In a nutshell, these objects keep hospital structures glued together by 
providing a means to integrate facilities. Furthermore, it is advantageous to design a framework that 
decouples patient queuing from clinical activities in order to facilitate a realistic simulation of the 
healthcare system. From a design perspective, the Redirect Object models clinical facilities that facilitate 
patient waiting as well as routing. The Redirect Object must also support logical expressions to model 
routing based on patient factors (reneging and balking behavior), clinical policies (FIFO, most severe 
patient, longest waiting time, etc.) as well as collecting statistics related to efficiency and efficacy of 
patient routing (congestion factor, active load, etc.) 
 Based on the above specified design, the developer can easily extend it to model a variety of 
administrative structures such as registration desks, billing desks, etc. Although these non-clinical 
structures are functionally different, their base structure requires only a slight modification of the Redirect 
Object class.  

2.2.1.2  Patient Care Class 

The simplest clinical object construct that addresses patient modeling concerns is a patient processing 
object (Patient care). This object is designed to be a simple processing station with no input or output 
buffer. The reason for the adoption of this design is to force patients to wait at designated locations, which 

1439



Venkitasubramanian, Roberts, and Joines 
 
are modeled by non-clinical objects, specifically at Redirect Object classes, thereby enhancing the fidelity 
of the simulation model.   

2.2.1.3  Lab Care Class 

Modern medicine heavily relies on diagnostic services like laboratory testing and diagnostic imaging as 
well as many other forms of testing for treatment. These objects interact with patients and support 
secondary care functions, which can be broken down into three different sub-processes: specimen 
collection, specimen processing, and result dispatching.  At the Lab care level, we need to design 
processes to handle the interactions at specimen collection and results dispatch. The specimen processing 
aspect is handled by a hospital workstation object class, discussed later. The specimen collection process 
and results dispatching processes are inherently dependent on clinical policies, patient preference and test 
requirements. Furthermore, the specimen processing aspect needs to be modeled at the patient level to 
capture patient-patient variability. This approach represents a natural way of thinking for the modeler, 
since the decision is associated with a patient and facilitates development of customized logic to capture 
decision modeling.  

2.2.1.4 Statistics Collection Class 

The primary objective of a simulation is to understand the system, often from the patient’s perspective. In 
all hospital operational simulations, the primary factor of interest has often been to improve some aspect 
of the patient care process such as the response time for treatment, reducing turnover time from the lab, 
and so on. The Statistics Collector class should be designed to collect these types of predefined statistics 
automatically from the Patient Entity as they exit the system. We expect the collection of absolute 
statistics as well as computing relative statistics. 

2.2.2 Secondary objects 

Secondary objects are those hospital functions that support patient care without directly interacting with 
the actual patient, such as a laboratory department which processes patient specimens. These facilities are 
important to the healthcare simulation toolkit because modern medicine heavily relies on these services 
and these operations are often overlooked by simulation modelers (Bodtker et al. 1993). In this section, 
we deal specifically with the design of the specimen processing systems. 

2.2.2.1 Hospital Workstation 

After a specimen is collected from the patient using the Lab care object, the specimens undergo 
processing at the laboratory. The laboratory processes are generally standardized, which makes them ideal 
to encapsulate into an object. In essence, any lab process can be broken down into three stages: setup, 
processing, and post processing. The setup stage represents the processes that transform the specimen into 
an acceptable form to be processed by the machine. The processing stage encapsulates the logic for 
analyzing the specimen and performing the required tests. The post processing stage captures the result 
preparation logic which could range from preparing paperwork to processing an image or even just 
packaging the processed results. At every stage, the specimen can be processed individually or in a batch, 
Batching and un-batching logic should be defined at each stage as well as modular object design to handle 
the resource deadlock problem. The Hospital Workstation object should also support changeover 
processing logic to account for operational variability between specimens as well as inventory/material 
management to support inventory management  issue modeling.  

1440



Venkitasubramanian, Roberts, and Joines 
 
2.2.2.2 Hospital Workstation with Lab care 

Not all types of patients’ secondary visits are specimen controlled; some require the patient to be present 
for the initial specimen collection.  For example, a patient with a fractured limb is directed to an X-ray 
imaging service, and this requires that the patient visit a service center to initiate the service. The 
HWS_Labcare object class models these classes of systems by combining the logic from Hospital 
Workstation and Lab Care classes.  The resulting dispatching logic is similar to that presented in the 
Hospital Workstation section with two key differentiators: outsourcing and machine failures.  
 In some services, the post-processing stage is outsourced.  Outsourcing can also be modeled using the 
same object by allowing the release of the resource after Patient Entity exits the processing stage. In these 
types of facilities, there are some exceptions to the dispatching of results logic. There are some cases 
where patient reports are instantly handed over to them after the tests are performed, which fall under 
Wait at Current Object redirection logic. To incorporate this combination, we need to append additional 
result batching logic to this class.  
 Finally, the major addition to this object is the concept of “Failures”. Most of the machines modeled 
by HWS_Labcare class are known to be composed of a number of electro-mechanical parts whose 
reliability is often in question. Failures of these facilities are known to be a major hassle for managers, 
and play an important role in facility operations. Failures can also conceptually represent machine 
downtimes, such as when the operator is on a break or off-shift.  Thus, failures may be grouped into 
categories such as: Calendar Time, Processing Time, Processing Count, and Event Count. The 
implementation method behind failure would be similar. A monitor is needed to internally police when 
the event specifications depend on a particular failure type.  

2.3 Mobile Objects 

Mobile objects can be categorized into two main categories: Transporters and Workers. Transporter 
objects only interact with agents and assist in moving them from one point to another. Workers assist the 
patient with hospital services such as nurses, doctors, etc.  In this section, we develop design 
specifications for both a Hospital Transporter and a Hospital Worker.  
 From a design perspective, a transporter is a movable resource, which a patient seizes to reach their 
destination. Thereby, we can leverage the base design of the standard resource and add an efficient 
routing logic specific to a hospital environment.  The routing algorithm can be broken down into two 
modules: navigation and transportation.  
 The navigation aspect of the algorithm is responsible for helping the transporter move within the 
hospital network. The navigation algorithm is responsible for determining if the transporter has arrived at 
it destination. There are three ways that a destination can be determined: 

1. It can be the default place for the transporter to be stored in a hospital, 
2. It can be the location of a patient who has requested it (if free), or  
3. It can be the destination the patient needs to reach (if occupied). 

Once the transporter arrives at its destination, we first determine if it is the default place of storage. If not, 
then it has to either pick up (if free) or drop off (if occupied).  This picking up, dropping off, or 
transportation action may require the assistance of a hospital employee (for example, a patient in a 
wheelchair). If this is the case, then we need to embed additional resource seize/release logic within the 
transporter class.  
 The Hospital Worker class can be viewed as a special case hospital transporter class. In essence, a 
nurse in a hospital moves around the hospital to serve patients as well as help patients navigate the 
hospital. However, nurses work on shifts and may have to perform patient rounds. These can be easily 
attached to the existing Hospital Transporter class. We can implement standardized scheduling 
constructs for facilitating worker shifts. As for routing, we can develop fixed routing which can hold a set 

1441



Venkitasubramanian, Roberts, and Joines 
 
of destinations which fall under the nurse’s purview. This process can be overridden if necessary with a 
higher priority task to account for emergency cases.  

2.4 Implementation 

In order to implement the aforementioned healthcare framework, the SIMIO language (Pegden and 
Sturrock, 2010), an object oriented simulation language, is chosen. A system-centric view over an agent-
centric framework is adopted, since the former has a superior run time performance in complex 
simulation models.  We named our healthcare framework SIMIO-HC. The SIMIO-HC base classes can be 
grouped into four groups which are: Fixed, Entity, Node, and Transporter.  It should be noted that the 
base classes are analogous to standard SIMIO base classes. Figure 2 shows the relationship between the 
SIMIO and the SIMIO-HC classes with the standard SIMIO objects in grey, which illustrates that our 
objects are extensions/specializations of the standard objects. 

 

Figure 2: SIMIO-HC class hierarchy. 

 
Each class in the SIMIO-HC hierarchy corresponds to the previous discussions. The implementation 
documentation of the SIMIO implementation are found in Akshay, (2012).  SIMIO HC is an OOS, and 
users can utilize SIMIO language/constructs to augment the health care objects to create more specialized 
health care operations. 
 

3 APPLICATION TO PATIENT FLOW IMPROVEMENT AT STUDENT HEALTH 
SERVICES CLINIC 

To illustrate the application of the framework, we present a case study where we model the patient flow 
of the North Carolina State Student Health Services (SHS). The SHS provides care for a student 
population of approximately 30,000 people. With a student population this large, even with their best 
efforts, SHS is unable to meet the expected service level, thereby causing long waiting times at the 
clinics. This concern, in turn, leads to patients staying beyond normal work hours, resulting in frequent 
overtime for personnel.  Hence, we were charged with developing a model that could improve the patient 
flow and reduce resource utilization without compromising the services rendered by SHS. 

1442



Venkitasubramanian, Roberts, and Joines 
 

The SHS is composed of five medical clinics. Each clinic has two physicians and one nurse  The 
health center runs four clinics to serve patients via appointments through their online portal. The last 
clinic serves walk-in patients who require medical care but were not able to make an appointment. 
 The appointments are given out in slots of 20 minutes each; however, these 20 minute intervals are 
often not enough to provide the necessary care to patients.  The walk-in clinic was established to deal 
with emergency medical cases and thus serves patients depending on severity rather than the order of 
arrival.  As a result, it is often used by patients who were not able to secure appointments or were late for 
their appointments. 

Currently, each clinic operates individually. Patients wait in a queue outside of each clinic. They wait 
for a nurse to call them for initial triage and then wait in one of the six clinic rooms until a physician is 
free to treat them.  Once treated, a patient goes to the lab for tests, the pharmacy to fill prescriptions, exits 
the system, or follows any combination. If a patient is directed to the lab, they may be required to visit the 
clinic after the appointment. 

3.1 Model Setup 

Two types of SHS models were built.  The first model was built using the SIMIO Standard library 
exclusively.  We shall refer to this model as the Standard Model. The second model used SIMIO-HC 
objects along with the SIMIO standard library objects, and thus will be referred to as the Simio-HC 
Model. This approach helped the team to qualitatively assess the efficacy of the SIMIO-HC toolkit. 
 In both models, we used the “building blocks” approach where the simulation model is composed of 
two or more facility specific models. This approach allows the simulation project to be broken down into 
smaller units of individual facilities. Each of the individual facilities are modeled, verified and validated 
independently and then combined in their final stages. Hence, we can leverage the expertise in facility-
specific modeling of the simulation community to develop complex simulation models. Furthermore, both 
models were built to mimic the SHS clinic in structure. This approach was taken in order to ensure that 
the models are easy to understand, especially by the SHS stakeholders.  
 In order to implement the Standard Model, we had to modify the standard server object’s input and 
output buffer capacity to zero to ensure no entity will be allowed to wait at a clinic except when 
undergoing service. The waiting room was implemented with a combination of Server and Transfer node, 
where the latter had to be modified to implement FIFO under stochastic condition. The same waiting 
room and server logic was replicated to model radiology and laboratory section.  The laboratory 
processing required another server and required the creation of a reference entity to model processing 
operations, which is similar to the Hospital Workstation logic.  On the other hand, the SIMIO-HC model 
was implemented directly “out of the box”.  The respective objects were directly dragged from the toolkit 
library and their properties were modified to satisfy model requirements.  

3.2 Verification and Validation  

The simulation model was continuously verified throughout its creation as part of the generic debugging 
process.  The model was monitored using the model trace and watch functions in SIMIO to ensure that 
the entity flow from object to object worked as intended in the correct sequence, and without error. 
  Two types of model validation were implemented: visual and statistical. The model was animated and 
the patient flow was visually validated. For statistical validation, total time in system for the model entity 
from the simulation models was compared with the average total time computed from the raw data in the 
time study. One-hundred replications of the model were run to get accurate estimates of the total time in 
system with 95% confidence. The simulation models recorded an average time in system for all entities at 
49.4 ± 1.43 minutes (SIMIO-HC Model) and 48.6 ± 1.13 minutes (Standard Model) which fell within the 
observed confidence interval for average time in system 49.7 ±0.74 minutes.  

1443



Venkitasubramanian, Roberts, and Joines 
 
4 DISCUSSION AND CONCLUSIONS  

The vision behind the development of SIMIO-HC toolkit is to develop a framework which can accelerate 
simulation model development without compromising on modeling detail. In other words, the SIMIO-HC 
toolkit should be easy to use and at the same time, be flexible enough to model a wide range of healthcare 
operations. This hypothesis was qualitatively assessed by developing a model both with and without the 
toolkit. Overall, our experiences with the Standard Model lacked the detail to instill faith in stakeholders 
since it did not directly communicate within the healthcare language. In other words, the outcome metrics 
(such as utilization categories) or input property labels (such as capacity) did not adhere to standard 
healthcare terminology. This communication gap adds a layer of complexity that can be avoided by using 
healthcare specific simulation framework such as the SIMIO-HC toolkit.   Such an advantage would be 
attributed also to the commercial health care simulation languages versus the general simulation 
languages. 
 From a development point of view, the increase in modeling complexity directly translates to an 
increase in the time and cost to develop the simulation model. The increase in cost and time makes the 
simulation option unattractive as the returns (insights and experimentation) are not cost -effective. In our 
experience, the Standard Model took longer to build given the additional customizations that needed to be 
done to the standard SIMIO library. Furthermore, we had to add additional output states for generating 
custom statistics that were required to drive experimentation. Overall, the Standard Model development 
required a strong understanding of the SIMIO tool and healthcare functional knowledge.  On the other 
hand, the SIMIO-HC Toolkit development process accounted both for the tool and healthcare domain.  
This simplified the modeling of the SHS system for the team without compromising modeling fidelity, 
thereby improving the modeling experience for modelers and stakeholders. For example, we had to 
heavily rely on statistical validation for the Standard Model as compared to the SIMIO-HC model, where 
both statistical and visual validation could be implemented. Visual validation accelerated the model 
validation process and reduced the barrier for stakeholder buy-in. 
 Only eight percent of the surveyed literature indicated that the application of simulations to real world 
healthcare problems (Eldabi 2009) resulted in implementation, while the application of Complex 
Integrated Multi-Facility Simulation Models (CIMS) in Healthcare comprises only three percent of the 
reviewed literature (Günal and Pidd 2010, Jacobson, Jun, and Swisher 1999).  Günal and Pidd (2010), and 
Hall, Jacobson, and Swisher (2006), have already established a positive relationship between CIMS 
models and implementation of a simulation model. However, there is no facilitative framework for CIMS, 
which can be addressed by using a “truly” object oriented simulation toolkit. A “truly” object oriented 
simulation toolkit will also bridge the disconnect between simulation practice and healthcare as the 
simulation models are built around objects rather than programming logic The SIMIO-HC toolkit is a first 
step in this direction with the aim of providing a framework for an object oriented toolkit for healthcare 
simulations with support for building CIMS models.   
 The SIMIO-HC toolkit provides basic classes that can be extended to customize for the modeler’s 
need and accelerate the development process. Furthermore, the toolkit is designed with usability and 
modeling accuracy being central issues as these factors make simulation models easy to comprehend for 
stakeholders who are often unfamiliar with simulation modeling. Finally, simulation models must be easy 
to maintain and allow for future customization, which is once again addressed by the OOS framework. 
Overall, the SIMIO-HC toolkit may accelerate the development of healthcare simulation models without 
compromising on modeling fidelity, thereby making simulation modeling a more cost effective and 
attractive option for healthcare problems.  
 Although the toolkit presented here has many of the essential base classes, there exist ample 
opportunities to refine the framework. The toolkit currently does not have costing variables and costing 
elements and these could be added based on the activity-based costing available in SIMIO. Secondly, the 
open framework of SIMIO and SIMIO-HC allows for users to take apart the classes and re-configure 
them. We hope this helps in further refining the toolkit and that it will also lead to the creation of domain-

1444



Venkitasubramanian, Roberts, and Joines 
 
specific specializations of SIMIO-HC. In addition, hospitals are filled with resources such as crash carts 
which are not fixed at a location. These resources can be aptly named as Movable Resources and a future 
class should represent these resources. Finally, the animation provided in SIMIO is three-dimensional in 
nature, which provides realistic views of the simulation model. Prior research has demonstrated that 
animation positively influences model acceptance by stakeholders, which is critical to successful 
implementation. Further interactive hospital graphical elements should be included as SIMIO upgrades its 
graphical capabilities in order to engage the modeler and stakeholders in active model development.  

REFERENCES  

Akshay, V. 2012. “Object-Oriented Framework for Healthcare Simulation.”, Masters Thesis, North 
Carolina State University 

Baezner, B., and G. Lomow, 1991. “A Tutorial Introduction to Object-Oriented Simulation and Sim++.” 
In Proceedings of the 1991 Winter Simulation Conference, edited by B. L. Nelson, W. D. Kelton, and 
G. M. Clark, 157-163. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

Bevan, G., and S. Palmer. 2003. “Systematic Review of the Use and Value of Computer Simulation 
Modelling in Population Health and Health Care Delivery.”  Journal of Public Health Medicine 
25:325-335 

Birch, G., and S. Cook. "Discrete Event Simulation in Smalltalk/V Windows.", In 19991 IEE Colloquium 
on. IET, 1-3. 

Bodtker, K., W. Godolphin, and L. Wilson. 1993. “Simulation Modelling to Assist Operational 
Management and Planning in Clinical Laboratories.” Simulation 60:247-255 

O. Dahl and K. Nygaard, 1966. “SIMULA: an ALGOL-based Simulation Language.” Communication of 
the ACM 9: 671-678 

Dessouky, Y. M., and C. A. Roberts. 1998. “An Overview of Object-Oriented Simulation.” Simulation 
70:359-368 

Eldabi, T. 2009. “Implementation Issues of Modeling Healthcare Problems: Misconceptions and 
lessons.”, In Proceedings of the 2009 Winter Simulation Conference, edited by M. D. Rossetti, R. R. 
Hill, B. Johansson, A. Dunkin, and R. G. Ingalls, 1831-1839. Piscataway, New Jersey: Institute of 
Electrical and Electronics Engineers, Inc. 

England, W., and S. Roberts. 1978. “Applications of Computer Simulation in Health Care.” In 
Proceedings of the 1978 Winter simulation Conference, edited by H.J. Highland; N.R. Nielson; L.G. 
Hull, 665-676. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

Fone, D., S. Hollinghurst, M. Temple, A. Round, N. Lester, A. Weightman, K. Roberts, and E. Coyle. 
2003. "Systematic Review of the Use and Value of Computer Simulation Modelling in Population 
Health and Health Care Delivery." Journal of Public Health 25(4): 325-335. 

Günal, M. M., and M. Pidd. 2007. “Interconnected DES Models of Emergency, Outpatient, and Inpatient 
Departments of a Hospital.” In Proceedings of the 2007 Winter Simulation Conference, edited by S. 
G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton. 1461-1466. 
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

Günal, M. M., and M. Pidd. 2010. “Discrete Event Simulation for Performance Modelling in Health Care: 
A Review of the Literature.” Journal of Simulation 4:42-51 

Hall, S., S. Jacobson, and J. R. Swisher. 2006. “Discrete Event Simulation of Healthcare Systems.” In 
Patient flow: reducing delay in healthcare delivery,  edited by R. W.Hall. Springer pp. 211-252 

Jacobson, S. H., J. B. Jun, and J. R. Swisher. 1999. “Application of Discrete-Event Simulation in Health 
Care Clinics: A Survey.”  Journal of Operations Research Society 50:109-123. 

Katsaliaki, K. and N. Mustafee. 2011. “Applications of Simulation within the Healthcare Context.”  
Journal of Operations Research Society 62:1431-1451 

1445



Venkitasubramanian, Roberts, and Joines 
 
Joines, J. A., and S. D. Roberts. 1998. “Object Oriented Simulation.”, In Handbook of Simulation - 

Principles, Methodology, Advances, Applications, and Practice, edited by J. Banks, John Wiley & 
Sons, 397-426, 605-627 

Pegden, C. D. 2010. “Advanced Tutorial: Overview of Simulation World Views.” In Proceedings of the 
2010 Winter Simulation Conference, edited by B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, 
and E. Yücesan, 210-215. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, 
Inc. 

Pegden, C. D., and D. T. Sturrock, 2010. “Introduction to Simio.” In Proceedings of the 2010 Winter 
Simulation Conference, edited by B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. 
Yücesan, 1-10. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

AUTHOR BIOGROPHIES 

AKSHAY VENKITASUBRAMANIAN is a product manager at Remedy Partners, a CMMI awardee 
convener for Bundled Payments Collaborative Initiative (BPCI) and manages development clinical care 
coordination products. Akshay received his M.S.I.E from Edward P Fitts Department of Industrial and 
Systems Engineering at North Carolina State and B.S. in Biomedical Engineering from Cochin University 
of Science and Technology. His research interests are focused on application simulation and mathematical 
modeling to health systems. His e-mail address is vsa.akshay@gmail.com.  
 
STEPHEN D. ROBERTS is the A. Doug Allison Distinguished Professor in the Edward P. Fitts 
Department of Industrial and Systems Engineering at North Carolina State University. Professor Roberts 
received his Ph.D., M.S.I.E., and B.S.I.E. from the School of Industrial Engineering at Purdue University. 
His research interests include simulation and health systems engineering. His email address is 
roberts@ncsu.edu. 
 
JEFFERY A. JOINES is an Associate Professor and the Associate Department Head of Undergraduate 
Studies in the Textile Engineering, Chemistry, and Science Department at NC State. He received a B.S. in 
Electrical Engineering and B.S. in Industrial Engineering in 1990, a M.S in Industrial Engineering in 
1993, and Ph.D. in Industrial Engineering in 1996 all from NC State University. He received the 1997 
Pritsker Doctoral Dissertation Award  for the best dissertation from the Institute of Industrial Engineers. 
His expertise is in supply chain optimization utilizing computer simulation and optimization, and  he has 
published numerous papers and given dozens of international conference presentations. He was the Co-
Proceedings Editor for the 2000 Winter Simulation Conference and the Program Chair for the 2005 
Winter Simulation Conference, and is currently the IEEE representative on the WSC Board. He teaches 
undergraduate and graduate classes in computer information systems, computer based modeling in Excel 
and VBA, simulation and six-sigma. He was awarded the 2006 NC State University Outstanding 
Teaching Award and the 2012 Alumni Distinguished Undergraduate Professor.   
 

 

1446

mailto:wsc15chan@gmail.com
mailto:roberts@ncsu.edu

