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ABSTRACT

Nanorobotics is an emerging field of research in robotics technology, which may someday benefit clinical

medicine by delivering both drugs and diagnostics into the human body. Potential applications of medical

nanorobotics include early diagnosis of cancer, neutralisation of viruses, precise and incisionless surgery,

targeted drug delivery, and monitoring and treatment of diabetes. To further study the application of

nanorobotics in medicine, this paper focuses on the design of an agent-based simulation system, which is

a computer simulation composed of multiple interacting intelligent agents within an environment. Agent-

based modeling has been used to solve problems that are difficult for an individual agent to solve. A swarm

of simulated robots that has individual skills and partial information about a medical problem can work

collaboratively to develop a solution to it. We particularly want to investigate the scalability requirements

of data distribution and communication techniques under different constraints at the nano scale.

1 INTRODUCTION

A nanorobot is a type of active structure capable of actuation, sensing, manipulation, propulsion, signaling,

information processing, intelligence, and swarm behavior at the nanoscale (10−9m) (Mavroidis and Ferreira

2013). Nanorobotics is a major development pathway of nanomedicine and may someday benefit clinical

medicine by delivering both drugs and diagnostics into the human body. Medical nanorobotics should be

able to treat, if not eliminate, most of the major diseases of the 20th century. Its potential applications include

early diagnosis of cancer, neutralisation of viruses, precise and incisionless surgery, and monitoring and

treatment of diabetes (Cavalcanti, Shirinzadeh, and Kretly 2008). Targeted drug delivery (TDD) (Lenaghan

et al. 2013; Cavalcanti et al. 2007; Dadkhah1 and Yoon 2013), which uses nanoparticles functionalised

with targeting moieties such as antibodies and DNA aptamers, has been used effectively in the clinic to

direct drugs and diagnostic molecules to sites of interest, such as a solid tumor or an atherosclerotic plaque.

Amongst the various possible medical endeavours described, TDD bears the most promise and research

interest in nanomedicine.

To further study the application of nanorobotics in medicine, this paper introduces an agent-based

model, which is a computational model for simulating the actions and interactions of autonomous agents.

Agent-based modeling and multiagent system (MAS) (Wooldridge 2009) have been used to solve problems

that are difficult for an individual agent to solve. A swarm of simulated robots that has individual skills

and partial information about a medical problem can work collaboratively to develop a solution to it.

These agents are organised without any centralised control unit and can act according to simple local rules.

The agent-based model is an essential tool for exploring the human body, giving a better understanding

on the requirements, constraints, and working principles of nanorobots through the use of virtual reality

technologies.

This cross-disciplinary research lies at the intersection of mechanical and biomedical engineering,

clinical medicine, artificial intelligence, and virtual reality. In this paper, we focus on the communication
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requirements of the agent-based model. Some typical application scenarios such as TDD were developed and

studied, which will provide a stepping stone for more research into nanomedical applications. Furthermore,

we also propose a system model, which exploits parallelism and therefore enhances the computational

efficiency of the simulations.

The remainder of this paper is organized as follows: Section 2 briefly reviews the background and

related work of medical nanorobotics and agent-based simulations. Section 3 presents the details of the

proposed simulation models. Section 4 evaluates the performance of a TDD simulation scenario. Finally,

Seciont 5 presents the conclusions of this paper and briefly describes our future work.

2 BACKGROUND AND RELATED WORK

This section briefly reviews the background and related work of medical nanorobotics and agent-based

modeling.

2.1 Medical Nanorobotics

Nanorobotics is the technology of creating machines or robots at or close the scale of a nanometer (Mavroidis

and Ferreira 2012). It is a still largely hypothetical nanotechnology engineering discipline of designing

and building nanorobotic devices that are constructed of molecular components. One of the primary useful

applications of nanorobotics might be in medical technology. Freitas’s book (Freitas 1999) presents a

historical overview of the nanorobotic concept for medical applications.

At present, there is no universally accepted design for practical nanorobots. Some prior work (Patel

et al. 2006; Lenaghan et al. 2013) describes a number of key components of a fully functional nanorobot.

Typically, it is desirable that medical nanorobots have the following essential characteristics and abilities.

The nanorobots would be present in large numbers and use these abilities to collaboratively perform a

given task in a human body.

• Swarm intelligence (Bonabeau, Dorigo, and Theraulaz 1999): the collective behaviour of decen-

tralised, self-organized nanorobots;

• Propulsion: the nanorobots would be able to move and navigate in a human body;

• Power supply: the nanorobots would consume energy when performing their various actions;

• Sensing: the nanorobots would be able to sense the sites of interest (e.g., differentiate tumor and

normal cells);

• Control: the nanorobots would control the release of drugs;

• Communication: nanorobots would need to communicate with each other and with external devices;

• Decision making: if the nanorobots detect the sites of interest, it would move towards the site.

2.2 Communication Techniques for Nanorobots

Early work such as (Lewis and Bekey 1992) suggests that a chemical communication is feasible at the nano

scale. Events or objects can be made noticeable by a nanorobot through the release of diffusing chemical

substances, which can attract other nanorobots through the gradient associated to the signal intensity. As

observed in (Cavalcanti et al. 2006), following gradient with attractant signal is a practical method for

orientation and coordination of nanorobots. It has enabled a better performance for nanorobots to detect

and reach targets. It can also be useful in medical applications that requires detailed examination and

intervention in a patient’s body.

Another approach proposed by (Cavalcanti et al. 2006) is based on the assumption that collision at the

nano scale could be negligible. Therefore, communication between nanorobots can happen through direct

physical interactions. If the nanorobots cluster around cancer cells and the cluster is sufficiently large, it

can easily be captured by x-ray computerised axial tomography.
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(Loscrı́ et al. 2012) proposed a communication technique called NanoBee. If a nanorobot discovers a

cancer cell, it eliminates the cell and starts to ‘dance’ (sends signals), which will attract other nanorobots

to the signal source. This technique allows nanorobots to communicate through vibration (waggle dance

for the bees), which generate acoustic waves that propagate in an elastic medium and can be detected from

a acoustic detector. The authors claimed that the NanoBee approach is more effective to face cancer than

the Lew and Bekey’s approach.

2.3 Agent-based Simulations

Agent-based simulation is a well-established field of research that is positioned in application domains

including telecommunications, business process modeling, computer games, control of mobile robots, and

military simulations (Logan and Theodoropoulos 2001). A typical agent can be regarded as a self-contained

and autonomous entity that can sense its environment, including other agents, and use this information in

making decisions. It also has attributes and a set of basic rules that determine its behaviours. Interoperability

is one of the primary advantages of agent-based simulations. It allows independently developed components

to interoperate in a heterogeneous environment, such as distributed virtual environments (Steed and Oliveira

2010) and military simulations (DMSO 1998). A comprehensive review of agent-based simulations can

be found in (Macal and North 2009).

In this paper, we focus on the scalability of the nanorobotic simulation. A TDD application scenario

is presented, which aims to simulate a virtual environment that contains tens of thousands of agents. The

computational requirements of MAS at such scale may far exceed the capabilities of conventional computer

systems. Therefore, we propose a solution that exploits the parallelism inherent in MASs. The simulation

can be run on multiple processors, which are able to work concurrently and thus enhances the overall

scalability of the simulation.

2.4 Interest Management and Scalable Data Distribution

Data distribution for parallel and distributed simulations have been studied extensively in the literature.

The simplest data distribution approach is to have each agent broadcast the states it maintains. These states

are received by every agent in the simulation, and are used to update their local copy of the world states.

This approach works acceptably in a small scale simulation. However, a large-scale nanorobotic simulation

may involve thousands of agents, which will generate a large amount of data communications. Given

the limited resources available for the nanorobotic system, state broadcasting is obviously an infeasible

approach. Therefore, scalable data distribution services, or commonly known as interest management, have

been development to satisfy the scalability requirement.

The basic idea of interest management is to have all agents receive only the data that are of interest

to them. This involves an interest matching process, which determines what data should be sent to the

agents as well as what data should be filtered. Much of the influential work in interest management has

been reviewed and discussed in Liu and Theodoropoulos’s comprehensive survey (Liu and Theodoropoulos

2014). In this paper, we focus on the aura-based interest management approach, which was originally

proposed in (Bassiouni, Williams, and Loper 1991) and was later employed in the DIVE system (Carlsson

and Hagsand 1993). The basic idea of this approach is to use ‘auras’ to represent the interests of simulation

entities. When two auras overlap, a connection between their owners is established and messages are

exchanged through the connection. This approach provides a precise data filtering mechanism, however,

the simulation system needs to periodically check the overlap status for the auras, resulting in increased

computational costs. In Section 3.2, we present a parallel approach to reduce the computational costs of

this matching process.
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3 SIMULATION MODELS

In this section, we present the design principles of a TDD nanorobotic simulation. The proposed simulation

system consists of an application model and a system model, which are described in the following two

subsections, respectively.

3.1 Application Model

The application model describes the attributes of nanorobots. Each robot has two sensors with various

ranges, which allow the robot to sense cancer cells and other robots within a circular aura (hereafter

referred to as the ‘sensor aura’) at its current position. This is similar to the aura-based interest management

approach presented in (Liu and Theodoropoulos 2014). When the robot sees a cancer cell, it will engage

the target and deliver the drugs. The NanoBee approach described in Section 2.2 is also incorporated in

our design, which allows the robots to attract other robots by sending signals. To implement this design,

an additional circular aura (hereafter referred to as the ‘signal aura’) would be associated with the robot.

When a sensor aura and a signal aura overlap, the robot that owns the sensor will engage the signal source

in order to collaborate with other robots to eliminate the cancer cells. Table 3.1 describes the nanorobot

model. The parameters are set based on the estimations presented in (Hogg and Freitas Jr. 2012).

Table 1: Nanorobot Model.

Robot size 0.5µm radius

Sensor aura One sensor aura is associated with each nanorobot.

Its radius is set to 2.5µm

Signal aura One signal aura is associated with each nanorobot.

Its radius is set to 100µm

Robot actions Robot actions are based on the following three

modes:

• Search: the robot moves randomly around

the virtual space searching for a cancer cell or

a signal source. If it encounters an obstacle, it

moves away in a different random direction.

If a target appears, it then changes to Engage

mode.

• Engage: the robot moves towards the target.

If it reaches a cancer cell, it then changes

to the Eliminate mode and starts sending

signals to attract other robots

• Eliminate: the robot deliver drugs to the

cancer cell and eliminates it. Once the target

is eliminated, the robot changes to the Search

mode.

The simulation system has to match the sensor and signal auras to determine which pairs of auras

overlap. Since both of them are circular auras, a simple circle to circle overlap test is carried out. Let

R1 be the radius of the sensor aura, R2 be the radius of the signal aura, and D be the distance between

the two robots. If D < R1 +R2, then the two auras overlap and the robot with the sensor aura should

move towards the signal source. If the robots are static, the computational cost of this process would be

insignificant. However, in our simulations the robots move frequently during runtime in order to search for
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cancer cells. Therefore, the matching process should be carried out at every simulation time-step, which

introduces an O(n2) computational overhead. (Liu and Theodoropoulos 2014) has reviewed a number of

interest matching algorithms to reduce this overhead. However, most of these approaches are designed

as sequential processes appropriate for execution on a single processor. Since, nowadays, most of the

workstations are shared-memory multi-core machines, the performance gain would be limited if we deploy

the sequential algorithms to these workstations. In the next subsection, a spatial decomposition approach

is presented, which can reduce the computational overhead of the matching process by distributing the

workload across multiple processors.

3.2 System Model

The system model describes how and when agents send and receive information, and also defines the updates

and the rules of data distribution that each processor will perform over time. The preliminary design of

the data distribution algorithm is as follows: it divides the data distribution process into two phases. In the

first phase it employs a spatial data structure called ‘uniform subdivision’ (Liu and Theodoropoulos 2009)

to efficiently decompose the virtual environment into a number of subdivisions, and hashes the agents into

them. In the original approach, rectangular auras (coined ‘regions’) are used to represent the interests of

the simulation entities and the hashing process is based on a hash value H(v), where v is a vertex of a

region. Moreover, if not all vertices of a region are hashed into the same hash table slot, then the region

exists in multiple slots. In the proposed application model, however, we use a circular aura to represents

the agent sensors. For the sake of simplification, we only compute the hash value of H(c), where c is the

position of an agent (i.e., the centre of its sensor). Therefore, no agent would exist in more than one hash

table slot (space subdivision). The hash function is defined as follows:

H : Rn → Zn
,H(xi) = ⌊

xi

li
⌋, i = 1,2, ...,n

where xi and li are the position of an agent and the length of space subdivision, respectively, on the

corresponding dimension i.

Figure 1. illustrates an example of spatial hashing. In the figure, three agents are hashed into space

subdivision (0,1); three agents are hashed into (1,2); two agents are hashed into (2,0); all other space

subdivisions are empty.

Figure 1: Example of Spatial Hashing.
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After the hashing phase, each slot of the hash table represents a space subdivision which will be

distributed across different processors and can be processed concurrently. The system then uses a task

queue to organise the unprocessed subdivisions. During the second phase, each processor fetches a

subdivision from the queue and performs simulation for it. Since only one processor has the authority

to manage each space subdivision, there will be no ambiguous simulation results. Moreover, since every

space subdivision is isolated during the simulation process, lock mechanisms for each subdivision are not

required. Locking is only needed when a processor tries to fetch a subdivision from the task queue.

The task queue is desired for task distribution and provides a very good workload utilization. When

a processor finishes processing a subdivision, it would fetch another subdivision from the task queue

immediately unless the queue is empty. Therefore, no processor would be idle until all subdivision are

fetched.

The performance of the system model is evaluated experimentally in the next section. Theoretically, in

the best case, when all robots are distributed uniformly in the virtual space, the computational complexity

of the simulation is O( n
p
), where n is the number of robots and p is the number of processors. The

worst case happens only when all robots reside in a single subdivision. In this situation, the workload

cannot be shared, a single processor would be responsible for performing simulations for all robots. The

computational complexity would become O(n).

4 SIMULATION RESULTS

This section describes the evaluation of the parallel simulation model presented in this paper. The evaluation

is based on the computational performance of the simulation. We carried out several experiments to compare

the following two simulation systems:

1. SLS: a simulation system constructed based on the application model presented in Section 3 but

not the system model

2. PLS: a simulation system constructed based on both the application model and the system model

presented in Section 3

For the sake of simplification, no robot would be out of power during the simulations. The systems

were implemented in C++. All of the experiments were executed on a HP Z420 workstation with a Intel

Xeon E5-1620v2 3.7GHz 4-Core processor and 16GB main memory. The experiments were conducted

based on the follow set-ups:

• Robot distribution: the robots were initially deployed at a single point in the virtual space

• Number of cells: 106 cells

• Cancer size: 10,000 cells

• Number of nanorobots: 10,000 - 50,000

The first set of experiments measured the average elapsed time per simulation time-step of SLS and

PLS with the number of virtual entities extending from 10,000 to 50,000. All four cores of the Intel Xeon

E5-1620v2 were enabled. Figure 2 shows the simulation results. It is not difficult to see that PLS is much

more computational efficient than SLS. Their difference becomes significant when the number of robots

is gradually increased.

The second set of experiments measured the average elapsed time per simulation time-step of SLS

and PLS when running on different number of physical cores. In the case of number of active processor

cores less than 4, some of the physical cores of the Intel Xeon E5-1620v2 were disabled. The number of

nanorobots was set to constant (50,000). Figure 3 shows the simulation results. Since SLS is designed

as sequential algorithm, its elapsed time did not change significantly when the number of active physical

cores increased. The elapsed time of PLS, however, decreased gradually due to increased number of active
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Figure 2: Average Elapsed Time of SLS and PLS (Number of Nanorobots varies).

processor cores. This suggests that PLS is more scalable when running on a 4-core machine since it is

able to exploit parallelism and distribute the workload of the matching process across multiple processors.

It is worth to note that, at the time of writing, a 4-core CPU is common as a mainstream workstation

CPU. Although our experiments suggest that PLS is more suitable to deploy on this type of machines,

we still think it is important to investigate its scalability on a larger scale system. In the future, we plan

to perform experiments on a machine with 8 or more cores, in order to further evaluate it and report our

findings.

Figure 3: Average Elapsed Time of SLS and PLS (Number of Active Physical Cores varies).

5 CONCLUSIONS AND FUTURE WORK

This paper presented an agent-based simulation model for medical nanorobotics, which used a swarm of

nanorobots (agents) in medical applications. A typical TDD scenario was implemented and used to evaluate

the performance of the simulation system. We demonstrated how the workload of the simulation can be

distributed across shared-memory multiprocessors, which is essential to meet the scalability requirement

of large-scale agent-based simulations.
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The future work will be focused on performing experiments on a machine with more physical cores

and extending the system model so it can be applied on a cluster of distributed-memory processors. We

will also extend the application model to simulate the power consumption of the nanorobots.
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