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ABSTRACT

We propose a new method for determining the physical sizes of components in an electrical circuit
that maximize some primary performance measure while satisfying some conditions on the secondary
performance measures. The proposed method is based on the observation that the performance measures
are unimodal and smooth. Thus, it focuses on a local search and applies a Lagrangian method to search
for a local optimum. The proposed method has advantages over existing methods because it does not rely
on approximate formulas for the performance measures, like other equation-based methods do, and finds
the “exact” optimal solution by calling an electrical circuit simulator, such as SPICE, at each iteration
to evaluate the performance measures and to compute their gradients. The proposed method also enjoys
fast convergence because it focuses on a local search rather than global searches. Numerical experiments
illustrate the effectiveness of the proposed method in a one-stage operational amplifier.

1 INTRODUCTION

One of the challenges we face when designing analog circuits in semiconductor manufacturing companies
is determining the physical sizes of the transistors and other components that are included in the circuits.
The performance measures of the circuits are directly related to the physical sizes of their components.
For example, the widths of the transistors in an operational amplifier (op-amp) affect the performance
measures of the circuit such as the gain, the phase margin, and the 3–dB bandwidth. In such a case, it is
important to determine the widths of the transistors so that we can achieve the best possible performance
on the primary measure while maintaining satisfactory levels of the secondary performance measures. The
problem of determining the physical sizes of the components in a circuit can be formulated as the following
optimization problem:

maximize f (x) (1)

subject to gi(x)≥ 0, i = 1, . . . ,r,

where x ∈ R
d is a vector of decision variables (such as the widths of the transistors), f : Rd → R is the

primary performance measure we wish to maximize (such as the gain), and the equations gi ≥ 0 are the
conditions on the secondary performance measures (such as the conditions on the phase margin and the
3–dB bandwidth) with gi : Rd → R for 1 ≤ i ≤ r.

In this paper, we propose a new method for solving (1). The main difficulty in solving (1) is that f and
the gis cannot be easily described with mathematical equations. For a complex circuit, it is not obvious
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how to find closed-form formulas for f and the gis. Even when the circuit is relatively simple, we need
to use several approximations to express f and the gis in mathematical equations. These approximations
often lead to an inaccurate solution to (1). The main feature of our proposed method is that we do not try
to find equations for f and the gis. Instead of using formulas for f and the gis, the proposed method calls
an electric circuit simulator, such as SPICE, to accurately evaluate the performance measures.

This idea was inspired when we observed that numerous performance measures arising in the circuit
sizing problems are unimodal and smooth as functions of the decision variables. For example, Fig. 1 shows
the logarithm of the gain and the 3-dB bandwidth of the one-stage op-amp shown in Fig. 2 as functions
of logx1 and logx2, where x1 represents the widths of transistors 1 and 2, and x2 represents the widths of
transistors 3 and 4. These functions appear to be unimodal and smooth, and these properties were observed
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Figure 1: The graph on the left side is the logarithm of the gain (dB). The graph on the right side is the

logarithm of the 3-dB bandwidth (MHz). In all graphs, the horizontal axes are logx1 and logx2, where x1

represents the widths of transistors 1 and 2, measured in µm, and x2 represents the width of transistors 3

and 4, measured in µm.

in a majority of the circuit design problems. Based on this observation, we propose a local search algorithm
that can be best suited for unimodal and smooth functions. The proposed method rewrites problem (1) using
the Lagrangian function L(x,λ ) = f (x)+λ1g1(x)+ · · ·+λrgr(x) with λi ∈ R for 1 ≤ i ≤ r, and iteratively
updates the decision variable x and the dual variable λ = (λ1, . . . ,λr) using a gradient-based method. The
proposed method resembles the Arrow-Hurwicz-Uzawa algorithm (Arrow, Hurwicz, and Uzawa 1958) in
the sense that it updates the decision variable and the dual variable using a gradient-based method. However,
the proposed method is applied to the case where f and the gis are not available as functional equations, and
thus computer simulation is used to estimate the gradients. More precisely, when we update the decision
variable x and the dual variable λ , we evaluate f and the gis using a circuit simulation program such as
SPICE at various values of x and use the finite differences to estimate the gradients of f and the gis. The
use of a circuit simulation program enables us to accurately evaluate f and the gis and to estimate their
gradients without any functional formulas for f and the gis.

As the integrated circuit (IC) technology continues to progress, it is increasingly important to design
circuits more accurately. For example, op-amps are one of the basic building blocks of many analog or
mixed-signal ICs, so it is critical to design them so that they can achieve the best possible performance. If
we approximate f and the gis using mathematical equations and solve (1) with these equations, it typically
takes a few seconds to reach a “crude” solution. However, it is more desirable to find the “exact” global
optimum even if it takes a longer period of time. In this regard, the proposed method has a significant
advantage because it reaches the “exact” optimal solution in a reasonable amount of time. Numerical
experiments in Section 3 show that the optimal solution is found within 4 minutes for a one-stage op-amp.

The idea of using optimization techniques for the circuit design problems has received a great deal of
attention within the past few decades. Previously developed methods can be divided into three categories:
1) Knowledge-based methods, 2) Equation-based methods, and 3) Simulation-based optimization methods.
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In a knowledge-based method, an expert sets a list of rules obtained from previous experiences and
executes them during the sizing process (Degrauwe 1987, El-Turky and Perry 1989, Harjani, Rutenbar, and
Carley 1989, Beenker, Conway, Schrooten, and Slenter 1993, Antoa and Brodersen 1995, Jangkrajarng,
Bhattacharya, Hartono, and Shi 2003). One drawback of the knowledge-based method is that it cannot be
automated because an experienced specialist needs to monitor the process constantly. Furthermore, it often
fails to produce the optimal solution because the search is not exhaustive and is rather heuristic.

In an equation-based method, the performance measures are approximated by mathematical equations
and the equations are used during the sizing process (Koh, Sequin, and Gray 1990, Horta, Franca, and
Leme 1991, Maulik and Carley 1991, Harvey, Elmasry, and Leung 1992, Gielen, Debyser, Lampaert, Leyn,
Swings, Plas, Sansen, Leenaerts, Veselinovic, and Bokhoven 1995, Medeiro, Perez-Verdu, Rodriguez
-Vazquez, and Huertas 1995, Horta and Franca 1996, Ochotta, Rutenbar, and Carley 1996, Fernández-
Fernandéz, Rodrı́guez-Vázquez, Huertas, and Gielen. 1998, Hershenson, Boyd, and Lee 1998, Chen,
Chu, and Wong 1999, Hershenson, Boyd, and Lee 2001, Boyd, Kim, Patil, and Horowitz 2005). This
approach has the advantage of computing the solution quickly, but it requires finding the mathematical
equations for all performance measures. This requirement can be quite restrictive because there are a
number of cases where we need to use several approximations to express the performance measures in
mathematical equations, or there are no appropriate equations for the performance measures. As an example
of an equation-based method, Hershenson, Boyd, and Lee (2001) propose a method that uses geometric
programming (GP). They require all performance measures to be expressed in a particular functional form,
namely a posynomial function. Posynomial functions are then transformed, in their method, to convex
functions. Several approximations are needed to express the performance measures in posynomial functions.
For example, the phase margin of the two-stage op-amp in Fig. 1 in Hershenson, Boyd, and Lee (2001)
can be expressed as a posynomial function only when we approximate arctan(x) by x (Hershenson, Boyd,
and Lee 2001). This approximation does not take into account the secondary effects of the transistors, so
it often leads to inaccurate solutions; see, for example, Section IV. Fig. 3(a) of Maji and Mandal (2013)
provides another example in which a GP-based method cannot be applied. The circuit topology is so
complex that the performance measures are not likely to be posynomial. As evidence for this speculation,
Maji and Mandal (2013) report significant errors when the performance measures are approximated using
posynomial functions. On the other hand, there are cases where no apparent posynomial-type equations are
available for the performance measures. For example, the low–frequency positive power supply rejection
ratio in Equation (42) of Hershenson, Boyd, and Lee (2001) cannot be expressed as a posynomial function.
In such a case, one can attempt to fit posynomial functions after generating data points on the performance
measures using SPICE simulation. However, one often finds difficulties in fitting the performance measures
into posynomial functions when the data set shows non-posynomiality. One of the motivations of this
paper was due to an inquiry from an engineer in the semiconductor industry who had difficulties fitting
performance measures into posynomial functions.

Our proposed method uses a circuit simulation program rather than an equation in order to evaluate the
performance measures; thus, it falls into the third category. Many algorithms developed within this category
fail to use the smoothness and the unimodality of the performance measures. Instead, they use global
search methods such as simulated annealing, a generic algorithm, and a pattern search (Medeiro, Fernandez,
Dominguez-Castro, and Rodriguez-Vazquez 1994, Torralba, Chavez, and L.G.Franquelo 1996, Krasnicki,
Phelps, Rutenbar, and Carley 1999, Kruiskamp and Leenaerts 1995, Phelps, Krasnicki, Rutenbar, Carley,
and Hellums 2000, Cohn, Garrod, Rutenbar, and Carley 1991, Zhang and Kleine 2004, Koza, Bennett,
Andre, Keane, and Dunlap 1997). These global search methods often show prohibitively slow convergence.
Nye, Riley, Sangiovanni-Vincentelli, and Tits (1988) focus on a local search and proposes a gradient-type
algorithm, but they employ a line search method as a subroutine of their procedure, which can significantly
slow down the speed of the algorithm.

To our knowledge, this is the first paper that suggests a Lagrangian-type gradient-based method that uses
electrical circuit simulator. The proposed method produces more accurate solutions than equation-based

1208



Lim, Kim and Choi

methods and enjoys faster convergence than other simulation-based methods. Its performance is illustrated
through experiments in Section 3.

This paper is organized as follows. Section 2 describes our proposed method in greater detail. We
apply the proposed method to a one-stage op-amp and compare the proposed method to a GP-based method
in Section 3.

2 THE PROPOSED METHOD

In this section, we describe the details of the proposed method. The proposed method considers the
Lagrangian function L : Rd ×R

r
+ → R defined by

L(x,λ ) = f (x)+λ1g1(x)+ · · ·+λrgr(x)

for x ∈ R
d and λ = (λ1, . . . ,λr) ∈ R

r
+. We observe that the solution to the following maximin problem:

max
λ∈Rr

+

min
x∈Rd

−L(x,λ ) (2)

is always a solution to (1); see Theorem 2.18 on page 48 of (Zangwill 1969) for details. Inspired by this,
we search for the solution to (2) by using the following iterative procedure. We start from an initial solution
(x1,λ 1) ∈ R

d ×R
r
+ and recursively generate (xn,λ n) for n ≥ 1 using the equations

xn+1 = xn + cLx(x
n,λ n) (3)

λ n+1 = max(θ ,λ n − cLλ (x
n,λ n)) (4)

for some positive real number c, where θ = (0, . . . ,0) ∈R
r, max(a,b) = (max(a1,b1), . . . ,max(ar,br)) for

a = (a1, . . . ,ar) and b = (b1, . . . ,br) ∈R
r, Lx(x,λ ) = ∇ f (x)+λ1∇g1(x)+ · · ·+λr∇gr(x) is the gradient of

L with respect to x and Lλ = (g1(x), . . . ,gr(x)) is the gradient of L with respect to λ . Equations (3) and
(4) can be rewritten as follows:

xn+1 = xn + c(∇ f (xn)+λ n
1 ∇g1(x

n)+ · · ·+λ n
r ∇gr(x

n)) (5)

λ n+1
i = max(0,λ n

i − cgi(x
n)) for 1 ≤ i ≤ r, (6)

where λ n = (λ n
1 , . . . ,λ

n
r ). Because there are no closed-form formulas for f and the gis, we can only evaluate

them through a circuit simulation program, such as SPICE. Thus, we estimate ∇ f and ∇gi numerically
using finite differences, as follows. We call a circuit simulation program and evaluate f and gi at xn and
xn + δ nei for 1 ≤ i ≤ d, where (δ n : n ≥ 1) is a sequence of positive real numbers converging to zero as
n → ∞ and ei ∈R

d is a vector of zeros except for 1 in the ith entry for 1 ≤ i ≤ d. The ith entry of ∇ f (xn)
is estimated by

f (xn +δ nei)− f (xn)

δ n

for 1 ≤ i ≤ d. For 1 ≤ k ≤ r, the ith entry of ∇gk(x
n) is estimated by

gk(x
n +δ nei)−gk(x

n)

δ n

for 1 ≤ i ≤ d. Thus, the following recursions are used

xn+1
i = xn

i + c

(

f (xn +δ nei)− f (xn)

δ n
+λ n

1

g1(x
n +δ nei)−g1(x

n)

δ n
+ · · ·+λ n

r

gr(x
n +δ nei)−gr(x

n)

δ n

)

(7)

λ n+1
i = max(0,λ n

i − cgi(x
n)) (8)

for 1 ≤ i ≤ d instead of equations (5) and (6).
The proposed method can be summarized as follows:
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Proposed Algorithm

Step 1. Set n = 1 and select an initial solution (x1,λ 1) from R
d ×R

r
+.

Step 2. Call a circuit simulation program, such as SPICE, and evaluate f and gi at xn and at
xn +δ nei for 1 ≤ i ≤ d.
Step 3. Update (xn+1,λ n+1) using equations (7) and (8).
Step 4. Increase n by 1 and repeat Steps 2 and 3 until some stopping criterion is satisfied.

3 NUMERICAL EXPERIMENTS WITH A ONE-STAGE OP-AMP

In this section, we investigate the performance of the proposed method in a one-stage op-amp. To compare
the performance of the proposed method to other algorithms, we implement a GP-based method and compare
the performance of the proposed method with that of the GP-based method.

The proposed algorithm is implemented in version 5.8.8 of the Perl programming language (Perl 5.8.8,
available at http://www.perl.org/) with the help of HSPICE (HSPICE ver H-2013.03-SP1, available at
http://www.synopsys.com/), a commercial circuit and device-level simulator. New values of the decision
variables are computed from the algorithm in the perl script and a circuit netlist is generated based on the
new values. HSPICE is then called to simulate the circuit, it returns the measured results, and the algorithm
uses the results to update the decision variables for the next iteration in the optimization procedure. All
of the simulations are conducted on a 64-bit Linux machine with an Intel XEON 2.66 GHz, Qua-Core
system, and a 12 GB main memory.

In the GP-based method, equations are derived for f and gi in the Appendix. The equations for f and
the gis are used to solve (1) with CVX, a package for specifying and solving convex programs (Grant and
Boyd 2008, Grant and Boyd 2014).

We consider the one-stage op–amp in Fig. 2. Our goal is to determine the width of transistors one and
two (M1 and M2) and the width of transistors three and four (M3 and M4) that maximize the open-loop gain
while achieving a satisfactory level of the 3-dB bandwidth and an acceptable range of the phase margin.
We set the decision variables as follows:

x1 = width of transistors one and two,

x2 = width of transistors three and four,

and denote the open-loop gain, the 3-dB bandwidth, and the phase margin by g(x1,x2), b(x1,x2), and
m(x1,x2), respectively. The problem is then formulated as follows:

maximize g(x1,x2) (9)

subject to b(x1,x2)≥ bl

m(x1,x2)≥ ml

for some lower limit bl on the 3–dB bandwidth and a lower limit ml on the phase margin. In the op-amps,
the 3-dB bandwidth or the cutoff frequency is defined as the frequency range over which the gain is above
70.7% or −3 dB of its maximum value. The phase margin is a widely used parameter to validate the
stability of feedback systems. A phase margin greater than or equal to 45◦ is required for stable responses.
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Figure 2: One-stage op-amp

Proposed Approach By changing variables through v1 = logx1 and v2 = logx2, we obtain the
following formulation equivalent to (9):

max
v1,v2∈R

logg(ev1 ,ev2) (10)

subject to logb(ev1 ,ev2)≥ logbl

logm(ev1 ,ev2)≥ logml.

We apply the proposed method to solve (10) as follows: We start from an initial solution (v1
1,v

1
2,λ

1
1 ,λ

1
2 )

and recursively generate (vn
1,v

n
2,λ

n
1 ,λ

n
2 ) for n ≥ 1 using the equations

vn+1
1 = vn

1 + c

(

logg(evn
1+δ n

,evn
2)− logg(evn

1 ,evn
2)

δ n
+λ n

1

logb(evn
1+δ n

,evn
2)− logb(evn

1 ,evn
2)

δ n

+λ n
2

logm(evn
1+δ n

,evn
2)− logm(evn

1 ,evn
2)

δ n

)

vn+1
2 = vn

2 + c

(

logg(evn
1 ,evn

2+δ n

)− logg(evn
1 ,evn

2)

δ n
+λ n

1

logb(evn
1 ,evn

2+δ n

)− logb(evn
1 ,evn

2)

δ n

+λ n
2

logm(evn
1 ,evn

2+δ n

)− logm(evn
1 ,evn

2)

δ n

)

λ n+1
1 = max(0,λ n

1 − c(logb(evn
1 ,evn

2)− logbl))

λ n+1
2 = max(0,λ n

2 − c(logm(evn
1 ,evn

2)− logml))

for some positive constant c and a sequence of positive real numbers (δ n : n ≥ 1), where the values of g,
b, and m are obtained from HSPICE using a commercial 65-nm technology and open-loop AC simulation.

Fig. 3 shows xn
1, xn

2, g(xn
1,x

n
2), b(xn

1,x
n
2), and m(xn

1,x
n
2) for 1 ≤ n ≤ 300. The parameters we used in this

experiment are: VDD = 1.2V , Ib = 80 µA, CL = 0.1 pF , the lengths of transistors 1, 2, 3, and 4 are 0.1 µm,
the lengths of transistors 5 and 6 (M5 and M6) are 1 µm, the width of transistor 5 is 150 µm, and the width
of transistor 6 is 15 µm. The parameters we used in the algorithm are: c = 0.4, δ n = 0.01/⌈n/100⌉ (⌈x⌉
is the smallest integer greater than or equal to x ∈ R), bl = 700 MHz, and ml = 45◦. The initial values are
x1

1 = 10 µm, x1
2 = 10 µm, λ 1

1 = 1, and λ 1
2 = 1. The algorithm shows convergence to the optimal point of (9)

by increasing the open-loop gain while forcing the constraints into satisfaction as the iteration progresses.
The optimal solution is estimated by averaging the last 100 iterates that the proposed method produces. The
optimal solution estimated from the first 1,000 iterations is (x∗1,x

∗
2) = (52.5 µm,13.3 µm). At this solution,
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Figure 3: In the first graph, the solid line is xn
1 (µm) and the dashed line is xn

2 (µm). In the second graph,

the solid line is the gain (dB). In the third graph, the solid line is the 3-dB bandwidth (MHz). In the fourth

graph, the solid line is the phase margin (◦). In all graphs, the horizontal axis is the number of iterations.

the gain, the 3–dB bandwidth, the phase margin, and the power consumption are 18.4 dB, 700 MHz, 72.7◦,
and 965 µW , respectively. The results are summarized in Table 1. The time required to run 200 iterations
is 4.2 minutes.

Comparison to GP Following the detailed derivation given in the Appendix, problem (9) can be
approximately formulated as the following GP:

max
x1,x2

3.1x0.5
1

subject to 790MHz ≥ 700MHz

π −π/2

−0.00553x0.5
1 x−0.5

2 (0.41x1 +2.13x2

+(1+1/(3.1x0.5
1 ))0.072x1

+(1+2.7x0.5
2 )0.08x2

)

≥ π/4.

We solve the above GP using CVX in the geometric programming mode, and compute the following
solution: (x∗1,x

∗
2) = (60.2 µm,8.4 µm). At this solution, the open-loop gain, the 3–dB bandwidth, the phase

margin, and the power consumption computed from HSPICE are 16.6 dB, 818 MHz, 74.9◦, and 957 µW ,
respectively. The results are summarized in Table 1.

Table 1 summarizes the results obtained from the proposed method and the GP method. The proposed
method achieves a 1.8 dB higher open-loop gain. While the GP method cannot not fully spend the margin
of the 3–dB bandwidth to obtain a higher open-loop gain, the proposed method efficiently maximizes the
open-loop gain by exactly meeting the boundary condition of the 3–dB bandwidth, 700 MHz. Also, the
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proposed method achieves an approximately 5% higher gain-bandwidth product (GBP), a major figure of
merit of op-amps, than the GP method.

Table 1: Optimal values obtained from the proposed method and GP for the one-stage op-amp in Fig. 2

Description Proposed GP

Method

Open-loop gain (dB) 18.4 16.6

3–dB bandwidth (MHz) 700 818

Phase margin (◦) 72.7 74.9

Power consumption (µW ) 965 957

Width of transistors 1 and 2 (µm) 52.5 60.2

Width of transistors 3 and 4 (µm) 13.3 8.4

4 CONCLUSIONS

In this paper, we proposed to use a Lagrangian-type method to determine the sizes of components in analog
circuits. We applied the proposed method to a one-stage op-amp and observed that our method outperforms
a GP method. Future work includes exploring the performance of the proposed method in a variety of
analog circuits.

A DERIVATION OF A GP FORMULATION FOR ONE-STAGE OP-AMP

In this section, we derive a GP formulation for (9) in Section IV, A. We need to express the gain, the 3-dB
bandwidth, and the phase margin in terms of x1 and x2. We use the following parameters in Appendices
A and B:

µn (electron mobility) = 0.022m2/(V · s),
µp (hole mobility) = 0.018m2/(V · s),
Cox (oxide capacitance per unit area)

=

{

Coxn = 13.3 f F/(µm)2 for NMOS,

Coxp = 12.3 f F/(µm)2 for PMOS,

λn (NMOS channel-length modulation parameter)

= 0.76V−1,

λp (PMOS channel-length modulation parameter)

= 0.48V−1,

|VGS −VT H | (overdrive voltage)

= 0.13 V for both NMOS and PMOS,

LD (source/drain lateral diffusion length)

=

{

LDn = 5.4nm for NMOS,

LDp = 6.55nm for PMOS,

Cdb =

{

Cdbn = 0.41 f F/µm for NMOS,

Cdbp = 0.31 f F/µm for PMOS.
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We use Wi and Li to denote the width and the length of transistor i, respectively, for 1 ≤ i ≤ 6. The following
quantities are fixed for the rest of the computation:

L1 = L2 = L3 = L4 = 0.1 µm,

L5 = L6 = 1 µm, W5 = 150 µm, W6 = 15 µm, Ib = 80 µA, CL = 100 f F.

Also, I2 can be computed as follows.

I1 = I2 =
W5L6

2L5W6
Ib =

(150)(1)

(2)(1)(15)
80 µA = 400 µA.

The open-loop voltage gain is given by

Av =
1

(λn +λp)

√

2µnCoxnW2

L2I2
≈ 3.1x0.5

1 . (11)

The 3–dB bandwidth is given by

f3dB =
gm1

2πAvCL

, (12)

where

gm1 =

√

2µnCoxn

W1

L1
I1. (13)

From (11), (12), and (13), the 3–dB bandwidth can be computed as
√

I1I2

2πCL

(λn +λp)

√

W1L2

L1W2
= 790 MHz. (14)

On the other hand, the phase margin is given by

π + arctan

(

CM

2CL

√

µnL3W1

µpL1W3

)

(15)

−arctan

(

1

(λn +λp)

√

2µnCoxnW2

L2I2

)

−arctan

(

CM

CL

√

µnL3W1

µpL1W3

)

,

where

CM =Cdb1 +Cdb3 +Cgs3 +Cgs4+

(1+1/Av1)Cgd1 +(1+Av2)Cgd4, (16)

Cgsi = (2/3)WiLiCox +WiLDCox

for transistor i,1 ≤ i ≤ 6, (17)

Cgdi =WiLDCox for transistor i,1 ≤ i ≤ 6, (18)

Cdbi =CdbWi for transistor i,1 ≤ i ≤ 6, (19)

Av1 =
1

(λn +λp)

√

2µnCoxnW2

L2I2
, (20)

Av2 =
1

(λn +λp)

√

2µpCoxpW4

L4I2
. (21)
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In equations (17), (18), and (19), we use the following values:

Cox =

{

Coxn if transistor i is NMOS,
Coxp if transistor i is PMOS,

LD =

{

LDn if transistor i is NMOS,
LDp if transistor i is PMOS,

Cdb =

{

Cdbn if transistor i is NMOS,
Cdbp if transistor i is PMOS

for 1 ≤ i ≤ 6. Since

arctan

(

1

(λn +λp)

√

2µnCoxnW2

L2I2

)

= arctan(Av),

when the open-loop voltage gain Av is high, we can use the following approximation:

arctan

(

1

(λn +λp)

√

2µnCoxnW2

L2I2

)

= arctan(Av)≈ π/2. (22)

Approximating arctan(x) by x and using equations (15) through (22), the phase margin can be approximated
by

π −π/2−0.00553x0.5
1 x−0.5

2 (0.41x1 +2.13x2 (23)

+(1+1/(3.1x0.5
1 ))0.072x1 +(1+2.7x0.5

2 )0.08x2

)

.

From equations (11), (14), and (23), problem (9) can be approximately formulated as the following GP:

max
x1,x2

3.1x0.5
1

subject to 790MHz ≥ 700MHz

π −π/2

−0.00553x0.5
1 x−0.5

2 (0.41x1 +2.13x2

+(1+1/(3.1x0.5
1 ))0.072x1

+(1+2.7x0.5
2 )0.08x2

)

≥ π/4.
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