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ABSTRACT 

Multistatic sonar networks generalize traditional sonar networks by allowing sources and receivers to 

occupy different physical locations. Although there are many advantages to a multistatic approach, there 

are also additional analytic challenges. One such challenge involves the direct blast effect, which can 

cause targets to go undetected even if they are within the nominal detection range of a sonar network.  

Previous work has considered the problem of optimally provisioning and deploying a multistatic 

sonar network while neglecting to consider the blind zone. In this paper, we conduct Monte Carlo 

simulations to evaluate the impact of the direct blast effect on the performance of such a network. We 

find that for large pulse lengths, the direct blast effect can significantly decrease the performance of a 

multistatic network. Moreover, the optimal deployment policy can differ substantially when the direct 

blast effect is taken into account. 

1 INTRODUCTION 

Maritime warfare and exploration have long utilized sonar devices to conduct active sensing, and interest 

in this idea has experienced a renaissance in recent years due to advances in submarine technology (Lilley 

2014). The basic operating principle behind sonar is that sound energy is emitted into the water, and the 

reflected echoes are used to detect, localize, and track targets of interest. In a traditional sonar system, 

sometimes called a monostatic system, a single device emits the initial sound burst (known as a “ping”) 

and listens for subsequent echoes. Recently, the idea has emerged of separating these two devices by 

emitting sound energy from a source and listening for echoes from a receiver at a different location. In 

most cases of interest, the distance between the source and receiver is large enough to be comparable to 

the distance to the potential target. The source of energy can be a ship with a hull-mounted sonar, a 

helicopter with a dipping sonar device, an explosive charge dropped by an aircraft, or an active sonobuoy. 

The receiver can be a passive ship-mounted device or a passive sonobuoy (Washburn 2010).  

Multistatic systems have several advantages over monostatic systems. As described in (Cox 1989), 

one advantage lies in the covertness of the receiver devices. Because these devices do not emit sound 

energy and present a small sonar profile themselves, it is difficult for an enemy to locate and conduct 

countermeasures against them. Multistatic systems also enable multi-angle observations, which improve 

tracking accuracy. Furthermore, a multistatic approach facilitates multi-platform operations; for example, 

an airplane may deploy receiver sonobuoys while a surface ship or a dipping helicopter carries a source. 

A final advantage is cost: although sources can be expensive to procure and operate, receivers are 

generally relatively inexpensive (Amanipour and Olfat 2011, Washburn and Karatas 2015). Thus, while a 

monostatic sonar system must by definition contain equal numbers of sources and receivers, a multistatic 
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system may contain more receivers than sources and thus achieve similar sensing goals at a fraction of the 

cost of a monostatic system. 

A multistatic system’s main disadvantage lies in its increased system complexity and the unusual 

coverage patterns determined by its transmission losses. For all sonar devices, both monostatic and 

multistatic, the probability of detecting a target via a direct return generally decreases as the target 

becomes more distant. For a single monostatic sensor, the detection probability is a simple function of the 

distance from the sonar device to the target. In a multistatic system, however, the probability of detecting 

a target with a particular source and receiver does not directly depend on the target’s distance from either 

one of these devices; rather, it depends on the product of the target’s distance from the source and its 

distance from the receiver (Cox 1989). As a result, for sensors and targets in the same 2-dimensional 

plane, the contours of constant detection probability take the form of Cassini ovals as shown in Figure 1. 

 

 

Figure 1: A family of Cassini ovals for various separation distances between the source and receiver. 

Receivers and sources are denoted by Ÿ and Ɣ, respectively. From Craparo and Karatas (2015). Under a 

definite range (“cookie cutter”) sensor model, a target is detected if it lies within the detection region 

(Cassini oval) for some source and receiver, and otherwise it is not detected. 

To complicate matters further, there also exists an ellipsoidal “blind zone” (also known as a “dead 

zone”) between the source and receiver in which detection probability plummets (Fewell and Ozols 

2011). This blind zone  exists because within this region, the reflected sound from the target arrives at the 

receiver at nearly the same time as the original ping. This phenomenon, known as the direct blast effect, 

causes the reflected signal to be obscured, drastically reducing detection probability (Cox 1989). 

Various recent studies consider multistatic sonar network performance in the context of a definite 

range (“cookie cutter”) sensor model in which a target is detected if it lies within the detection region for 

some source and receiver, and otherwise it is not detected (Craparo and Karatas 2015, Washburn and 

Karatas 2015). These works consider targets and sensors that exist in the same 2-dimensional plane, 

although most results generalize to three dimensions with little difficulty. Washburn (2010) and 
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Washburn and Karatas (2015) consider a field of randomly-placed sources and receivers and develop a 

simple analytic theory for predicting the coverage of the network, ignoring the direct blast effect. 

Although they do not directly account for the direct blast effect, the authors provide two theorems that 

offer lower bounds on the detection performance of multistatic systems, and Washburn (2010) confirms 

the bounds by simulation experiments. The analytical results in their work contribute the multistatic 

search theory by allowing average detection probability to be predicted for a particular sensor mix 

deployed randomly; this result can then be used as a foundation to study pattern optimization and 

cost/effectiveness (i.e. how many sensors to buy and how to deploy them). However, because these 

studies do not account for the direct blast effect, their applicability is limited. Thus, in this study, our 

main ambition is to analyze the impact of direct blast effect using simulation. We conduct Monte Carlo 

simulations to compare the predicted and actual performance of multistatic sonar networks in which 

sensors are placed randomly, as in Washburn and Karatas (2015), while accounting for the direct blast 

effect. Although our motivation comes primarily from underwater detection systems, many of our 

simulation results are generalizable to radar or geolocation systems. 

The organization of the paper is as follows: Section 2 provides the mathematical details involved in 

modeling multistatic sonar networks, including the direct blast effect. Section 3 provides the details of our 

simulation model and the numerical results it generates. Finally, Section 4 summarizes our results and 

provides our conclusions. 

2 MULTISTATIC THEORY 

2.1 Random Multistatic Networks 

Washburn and Karatas (2015) consider a multistatic network containing a set of sources, S, and receivers, 

R, randomly deployed in a square region of area A. They show that for large A, coverage can be 

maximized by concentrating the sensors in a square sub-region of area A' which is contained in A and 

whose center coincides with that of A. More specifically, the authors define an “effort density” parameter 
22 | || |S R

y
A

 , where ȡ is the equivalent monostatic detection range (i.e., the detection range when 

source and receiver are co-located) and compute the optimal A' /A ratio as:  

 

 
if  1.1

.1.1

1 if  1.1

y
yA

A
y

    
  (1) 

 

They also show that the resulting equivalent area covered will be: 

 

 
20.8 | || | .C S R   (2) 

 

These analytical formulas do not consider the direct blast effect, which we now describe in more detail.  

2.2 Direct Blast Effect 

The blind zone for a particular source and receiver is the set of locations from which the echo from a 

target would arrive at the receiver at nearly the same time as the original ping from the source. Thus, the 

size of the blind zone is affected by the duration of the original ping, with longer pings resulting in larger 

blind zones. In practice, an operator will choose a ping duration that is appropriate for the expected 

distance of the target, typically from among a finite set of possible ping durations available on a particular 

sonar device. 
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To understand the geometry of the blind zone, consider a monostatic sensor whose ping lasts   

seconds and travels at a speed of v m/s, and assume that a target is not detected if any portion of its echo 

reaches the receiver while the original ping is still being received. Suppose that a ping occurs during time 

interval  0, ,  and a target is located at distance d from the sonar device. The echo from the target will 

reach the device during time interval 
2 2

, ;
d d

v v
     thus, detection will not occur if 

2
;

d

v
  or, 

equivalently, if the target is located inside an open disk-shaped region with radius 
2

b

v
r

  centered at the 

sonar device, i.e., if 
2

v
d

 . The parameter rb is known as the pulse length, and it is the distance a ping 

travels during time .  For the multistatic case, the blind zone takes on an elliptical shape. To see this, 

consider a single source, receiver, and target, and let , ,s td , ,t rd and ,s rd denote the source-target, target-

receiver and source-receiver distances, respectively. If a ping begins at time 0, the receiver will receive 

the ping during time window 
, ,

, ,
s r s rd d

v v
    and it will receive the target echo during time window 

, , , ,
, .

s t t r s t t rd d d d

v v
      Thus, detection will not occur if 

, , ,
,

s t t r s rd d d

v v
   or, equivalently, if 

 

 , , , 2 .s t t r s r bd d d r     (3) 

 

To study the impact of the blind zone on detection contours, we define a dimensionless parameter 

brk   that reflects the relationship between the pulse length rb and the equivalent monostatic detection 

range ȡ. A long pulse length (and high value of k) reflects a ping of relatively long duration, which results 

in a larger loss of coverage due to the direct blast effect than a ping of short duration. A value of k=1 

reflects an extreme situation in which the ping duration is so long that all targets within the detection 

range of a monostatic sensor go undetected due to the direct blast effect. Figure 2 depicts the blind zones 

for various source-receiver pairs for k=0.01, 0.05, 0.1 and 0.2. Clearly, larger values of k result in larger 

blind zones. However, it is also interesting to note the impact of , :s rd  as ,s rd  increases, we see that the 

blind zone increases in size and thickness, even as the size of the nominal detection region decreases. This 

interaction between k and ,s rd  is quite difficult to model analytically, and this complexity is exacerbated 

when multiple sources and receivers are present. Thus, we now turn our attention to a simulation study of 

the direct blast effect. 
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Figure 2: Direct blast zones for k=0.01, 0.05, 0.1 and 0.2 when the Cassini oval is in the form of (a) a 

circle (reflecting a monostatic sensor) (b) a single oval, (c) a dented oval, (d) a lemniscate, and  

(e) two disjoint ovals.  

3 SIMULATION OF THE DIRECT BLAST EFFECT IN MULTISTATIC NETWORKS 

We first perform computational experiments to determine the sub-region area A' that maximizes the 

coverage when direct blast effect is considered for different values of k, and we compare it with the area 

predicted by Equation (1). Then we evaluate the performance of various multistatic networks in terms of 

coverage, and we compare the results with a situation in which the direct blast effect does not occur. The 

pseudocode for our simulations appears in Figure 3. 

We use MATLAB®2013a to randomly generate 103 BLINDZONE instances for each setup we 

consider. For our experiments, we generate 500 target locations uniformly at random in a 120x120 unit  

2-dimensional area A. We consider varying numbers of sources and receivers ranging from (|S|,|R|)=(5,5) 

to (|S|,|R|)=(25,25). For each sensor mix (i.e., each value of  |S| and |R|), we run the simulation for different 

sub-region areas A'. In particular, we consider A' = n2 for n=20, 24, 28,…,100 units, and we compute the 

coverage ratio for each A'. We perform these simulations for k=0, 0.01, 0.1, and 0.2, and we fix ȡ at 10 

units.  
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Algorithm BLINDZONE 

 

Input: 

  Source set S  Receiver set R  Target set T  Equivalent monostatic detection range ȡ   Pulse width rb  Direct blast effect parameter k = rb / ȡ  Target region with area A  Sensor sub-region with area A' 

 

Create entities: 

  Generate t target locations uniformly at random in target region.  

– Target locations:  xt  Place all sources and receivers uniformly at random in sensor sub-region.  

– Source locations: xs 

– Receiver locations:  xr 

  

 Compute distances: 

 

 Distances between targets and receivers: 
, ,t r t rd x x t T r R       

 Distances between sources and targets:  
, ,s t s td x x s S t T      

 Distances between sources and receivers: 
, ,s r s rd x x s S r R      

 

Determine the detected targets: 

  Initialize the set of targets detected as T    

 for all ,t T  ,s S  and r R do 

  if detection condition* for t is satisfied  

        T T t   

  end if 

 end for 

 

Compute coverage percentage  as T T   

(*) target t is detected if both conditions below are satisfied by at least one source-receiver pair.  

  

 Condition 1: 2

, ,s t t rd d   (target lies inside the Cassini oval where detection is possible) 

 Condition 2: , , , 2s t t r s r bd d d r    (target lies outside the blind zone) 

 

Figure 3: Pseudo-code for evaluating the performance of randomly-deployed multistatic networks while 

accounting for the blind zone. 

Figure 4 shows a sample replication of a simulation experiment. All targets that lie within the 

detection zone (i.e., inside the nominal detection region and outside the blind zone) of at least one source-

receiver pair are detected. Note that some targets that lie inside a blind zone (shaded area) of a certain 

source-receiver pair are detected since they lie inside the detection zone of some other source-receiver 

pair. 
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Figure 4: Example replication of our simulation experiment to measure coverage percentage. Receivers 

are denoted by Ÿ, sources are denoted by Ɣ, detected targets are denoted by   and undetected targets 

are denoted by  . 

 Table 1 summarizes the results of our first set of computational experiments, and Figures 5 and 6 

depict them graphically. As these results indicate, the qualitative behavior of Equation (1) is preserved 

when the blind zone is taken into account. In particular, larger values for |S| and |R| result in larger optimal 

(A'/A) ratios. However, we note that the blind zone can result in significantly different optimal (A'/A) 

ratios than are predicted by Equation (1). Indeed, for k=0.2, the optimal (A'/A) ratio is approximately half 

that predicted by Equation (1). Moreover, as Figure 6 indicates, a suboptimal (A'/A) ratio can result in 

substantially inferior coverage compared to an optimal (A'/A) ratio. Thus, the blind zone is an important 

practical consideration that should be taken into account by multistatic sonar operators. 

Table 1: Optimal (A'/A) ratio and respective coverage percentage as reported by algorithm BLINDZONE 

for different values of |S|, |R|, and k averaged over 10
3 randomly-generated problem instances for each 

sensor mix. Values for k=0 are computed using Equation (1). 

|S| 5 5 5 5 5 10 10 10 10 10 15 15 15 15 15 20 20 20 20 20 25 25 25 25 25 

|R| 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 

Optimal (A'/A) Ratio (A = 10,000 unit2) 

k=0 0.29 0.40 0.49 0.57 0.64 0.40 0.57 0.70 0.81 0.90 0.49 0.70 0.86 0.99 1.00 0.57 0.81 0.99 1.00 1.00 0.64 0.90 1.00 1.00 1.00

k=0.01 0.23 0.31 0.36 0.46 0.41 0.27 0.46 0.58 0.71 0.71 0.36 0.58 0.77 0.92 0.92 0.46 0.64 0.77 1.00 1.00 0.52 0.71 0.92 1.00 1.00

k=0.1 0.16 0.27 0.31 0.36 0.36 0.23 0.36 0.46 0.52 0.64 0.31 0.52 0.64 0.71 0.85 0.31 0.58 0.71 0.92 0.85 0.41 0.64 0.77 0.92 0.92

k=0.2 0.13 0.19 0.27 0.27 0.31 0.23 0.31 0.36 0.46 0.52 0.23 0.36 0.46 0.58 0.58 0.31 0.41 0.58 0.64 0.71 0.36 0.52 0.64 0.71 0.85

Coverage % for Optimal (A'/A) Ratio (A = 10,000 unit2) 

k=0 9% 12% 15% 17% 19% 12% 17% 21% 24% 27% 15% 21% 25% 29% 33% 17% 24% 29% 34% 38% 19% 27% 33% 38% 42%

k=0.01 8% 12% 14% 16% 18% 12% 17% 20% 23% 26% 14% 20% 25% 29% 32% 17% 23% 29% 33% 37% 18% 26% 32% 37% 41%

k=0.1 8% 11% 13% 15% 16% 11% 15% 18% 21% 24% 13% 18% 22% 26% 29% 15% 21% 26% 30% 34% 16% 24% 29% 34% 37%

k=0.2 7% 9% 11% 13% 14% 9% 13% 16% 19% 21% 11% 16% 20% 23% 26% 13% 19% 23% 27% 30% 14% 21% 26% 30% 33%
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Figure 5: Optimal (A'/A) ratios for various sensor mixes. Values for k=0 are computed using Equation (1). 

Values for k=0.01, 0.1 and 0.2 are those ratios that perform best, on average, over the 103 trials.  

 

 

Figure 6: Coverage percentages for various sensor mixes and A'/A ratios (higher coverage is better). 

Values for k=0, 0.01, 0.1 and 0.2 represent average quantities over the 103 trials. 
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In our second group of simulations, we study the coverage performance for a fixed target region of 

size A=6400 units and a fixed sensor sub-region of size A'=3600 units. Once again we consider sensor 

mixes of (|S|,|R|)=(5,5), (5,10),…,(25,25) as shown on the vertical axis of Figure 6, and we consider direct 

blast effect parameters k=0, 0.01, 0.1, and 0.2. We generate 103 replications for each sensor mix; in each 

replication we generate 500 target locations uniformly at random in the target region and generate source 

and receiver locations uniformly at random in the sensor sub-region. We compute the coverage 

percentages for each instance, where ȡ is fixed at 10 units. These performance results are shown 

graphically in Figures 7 and 8. Figure 7 depicts the average coverage percentage for the 10^3 replications 

for each sensor mix; note that the upper left portion of Figure 7 corresponds to a situation in which k=0, 

i.e., the direct blast effect does not occur. Comparing the coverage achieved for various values of k, we 

see a marked decrease in coverage as k increases. This loss is highlighted in Figure 8, which shows the 

loss in nominal coverage percentage for various values of k. That is, if a particular sensor mix achieves 

expected coverage c0 when k=0 and ck for some k>0, we compute the loss in nominal coverage percentage 

as 0

0

kc c

c


 and present this in Figure 8. 

 

Figure 7: Average coverage percentages over the 103 trials for various sensor mixes and for k=0, 0.01, 0.1 

and 0.2 (higher coverage is better).  
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Figure 8: Average coverage loss percentages over the 103 trials for various sensor mixes and for k=0.01, 

0.05, 0.1 and 0.2 (lower coverage loss is better). Note that large values for k can result in significant 

coverage loss, particularly when only a small number of sources or receivers is available. 

As expected, more generous sensor mixes (i.e., large |S| and |R|) result in greater coverage. However, 

we also see that more impoverished sensor mixes (i.e., small |S| and |R|) not only have lower nominal 

coverage, but also greater loss of coverage as k increases. This phenomenon occurs because a larger 

number of sensors provides more opportunities for a target to be covered by the nominal detection region 

of more than one source and receiver. Thus, if the target happens to be in the blind zone for one source 

and receiver pair, it may be detected by a different source and receiver whose blind zone lies elsewhere. 

There is less opportunity for this compensation mechanism to occur when |S| and |R| are low. Thus, we 

conclude that the direct blast effect is a particularly important consideration when deploying a small 

number of sensors. 

4 CONCLUSIONS AND FUTURE WORK 

Our computational experiments indicate that the blind zone is an important consideration when deploying 

multistatic sonar networks. In particular, the blind zone impacts both the optimal area over which a 

randomly-deployed sonar network should be fielded, as well as the coverage that should be expected 

given such a deployment. 

Although we have only considered randomly-deployed multistatic networks in this paper, there also 

exist algorithms for optimally placing multistatic sensors, neglecting the blind zone (Craparo and Karatas 

2015, Kuhn 2014, Hof 2015). One area for further research is on modification of these algorithms to 

account for the blind zone. Additionally, although we only considered stationary targets, many interesting 

targets are, in fact, mobile. A future simulation study may consider mobile targets that traverse the target 

region; it is possible that detection of such targets might be less susceptible to the effects of the blind 

zone, since it is often necessary to pass through some part of the detection zone before reaching the blind 

zone. Finally, although we have varied k and ȡ separately, in practice they are related. Future work may 

relate k and ȡ to the ping duration, and study the problem of determining an optimal ping duration. 
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