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ABSTRACT

The Bourgoyne and Young Model (BYM) is used to determine the rate of penetration in oil well drilling

processes. To achieve this the model must be parameterized with coefficients that are estimated on the

basis of prior experience. Since drilling is a physical process, measurement data may include noise and

the model may naturally fail to represent it correctly. In this study the BYM coefficients are determined

in the form of probability distributions, rather than fixed values, propagating the uncertainties present in

the data and the model itself. This paper therefore describes a probabilistic model and Bayesian inference

conducted using Markov Chain Monte Carlo. The results were satisfactory and the probability distributions

obtained offer improved insight into the influence of different coefficients on the simulation results.

1 INTRODUCTION

Drilling oil wells involves a large number of risks. Optimization of the drilling process is normally achieved

by increasing the rate of penetration (ROP) in an environment that is bounded by financial costs and physical

limits. Achieving the optimum ROP involves understanding a series of operational parameters such as, for

example, flow rate and pressure at the bottom of the well (which are related to well cleanliness and safety),

the weight exerted on the drill bit (WOB) and the rotational speed of the bit. The greater the weight and

the higher the rotation of the bit, the faster the ROP will be. However, increasing these parameters can also

lead to excessive wear to the bit. Considering that the greatest costs are related to expenditure on rental

of operational equipment, a bit change operation can be a very expensive procedure (Gandelman 2012).

In view of this, well drilling operations must be very carefully planned and executed to ensure that they

run safely and within the time-frame predicted. Several data-driven models have been developed recently

in attempts to deal with the current complexity of this problem and in response to advances in monitoring

technologies. Some of these approaches employ neural networks as a black-box model of ROP and the

operational variables (Edalatkhah et al. 2010; Rodrigues et al. 2014); while others employ Bayesian

networks for decision support (Al-yami et al. 2012) or for prediction (Lima et al. 2014). However, there

are also older mathematical models that are used for analytical support in parallel with the more modern

models, primarily during the well planning phase. Of these, the model that has gained greatest acceptance

is the Bourgoyne and Young Model (BYM) (Bourgoyne et al. 1986) because it takes the largest number of

operational parameters into account (Edalatkhah et al. 2010) and still is widely employed (Moradi et al.

2010). The BYM is a system of ordinary differential equations (ODE) that models ROP as change in depth

as a function of time, dD/dt, and includes a variable h ∈ [0,1] that represents proportional bit wear:
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where the term fi represents an influence on the determination of ROP weighted by ai. Originally the

coefficients a1 through a4 are multiplied by 2.303 to convert their functions into powers of base 10. In

these equations,

a1 to a8 = coefficients that must be chosen on the basis of previous drilling experience;

D = true vertical well depth (ft);

gp = pore pressure gradient (lbm/gal);

ρc = equivalent mud density (lbm/gal);

W = weight on bit (1000 lbf);

db = bit diameter (in);

(W/db)t = threshold of weight on bit at which the bit begins to drill;

N = rotary speed (rpm);

h = fractional tooth wear of the bit, for which h = 0 at zero wear;

Fj = jet impact force (lbf),

and,

H1, H2,

(W/db)m
= constants for physical specifications of bit;

τH = formation abrasiveness constant (hr).

In possession of the values for the constants relative to the bit, the operational parameters and those

variables that can be observed during drilling, the values of the coefficients remain to be determined.

When Bourgoyne and Young (1974) published their model, they suggested that the coefficients should be

determined by multivariate regression of data from drilling of similar wells. However, it has been shown that

this method can produce coefficient values that are negative or zero and, as such, physically meaningless

(Moradi et al. 2010). For example, if a certain coefficient is zero, it would mean that increasing the weight

on the bit would not affect ROP and if the coefficient were negative, increasing weight would reduce ROP.

Bahari et al. (2008) and Hasan et al. (2011) attempted to determine coefficients that respect physical limits

by estimating them with genetic algorithms.

It is common among the studies cited so far for the data employed to be acquired from observations

of the drilling process dispersed in time. Such observations do not take the dynamics inherent in the
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system into consideration, restricting these studies to employing data for scenarios in which the bit is still

considered new, at the start of drilling (h = 0), or when it is found to be completely worn (h = 1) when it

is removed from the well. Additionally, it is sensible to allow for drilling scenarios in which the sensors

provide data that is potentially noisy. As a result, the values for the system’s informative variables can

only be the result of approximate calculations. As such, observed ROP values include uncertainties that

are unlikely to be identified through the variables.

Since drilling is a physical process, it can include elements that are inherently not predictable by the

model. This imperfection generates a residual variability (Kennedy and O’Hagan 2001) that opens the

way to an equifinality of models and variables (Beven and Binley 1992). This means that a range of

parameterizations should be considered, rather than a single solution.

One method of dealing with this uncertainty is to treat the coefficients as probability distributions rather

than fixed values (Vyshemirsky and Girolami 2008), with the result that determination of these coefficients

becomes a process of inference of their distribution functions. This can be achieved by specifications within

a Bayesian framework, which will be described in detail in Section 2. Section 3 will describe experiments

conducted to determine the coefficients in this manner with an analysis of the results, and Section 4 closes

with a summary of what has been achieved and reflections on how treatment of uncertainty allows for

improved understanding of the values of these parameters.

2 BAYESIAN INFERENCE

The BYM is a system comprising two ODEs which, given the initial values y0 = [D0,h0] and the parameters

θ = [a1, . . . ,a8], can be solved numerically (simulated) with the solution yt =S (y0,θ , t) in a discrete-time

vector t = [t1, . . . , tn]. Here the initial value of h will always be zero, h0 = 0, because only new bits are

used, which reduces the observed state space to yt = Dt .

When the depth observations are provided, ỹ = {D̃t | t = 1, . . . ,n}, interest moves on to inference of

the posterior probability distribution f (θ | ỹ). According to Bayes’ theorem (Gelman et al. 2009),

f (θ | ỹ) ∝ L(ỹ | θ)π(θ)

where the prior probability distribution π(θ), represents the initial knowledge available on parameters θ ,

and where L(ỹ | θ) is the likelihood function for the parameters, that represents how likely is the observed

data given the outputs of the model parameterized by θ . One way of making inferences about f is with

Markov Chain Monte Carlo (MCMC) simulations, using an algorithm such as the Metropolis-Hastings

(MH) method (Hastings 1970; Metropolis et al. 1953):

MH Given the current state with θ , propose a move to θ ∗, according to a transition function q(· | θ).
MH Calculate

α = min

(

1,
L(ỹ | θ ∗)π(θ ∗)q(θ ∗ | θ)

L(ỹ | θ)π(θ)q(θ | θ ∗)

)

(2)

MH Go to state of θ ∗ with probability α , else remain at θ ; go to MH.

This algorithm generates a Markov chain which will begin to provide observations of f (θ | ỹ) as its

stationary distribution after an uncertain number of iterations.

Estimation of the parameters for differential equation models using Bayesian inference is not an

innovation in the literature (Kulhavý 2007, Girolami 2008, Golightly and Wilkinson 2011). However, one

difficulty lies in defining the likelihood function that best describes the proximity between the simulated

values and the corresponding real data (Vrugt and Sadegh 2013).

With Approximate Bayesian Computation (ABC) methods (Pritchard et al. 1999; Beaumont et al. 2002;

Marjoram et al. 2003; Sisson et al. 2007) the likelihood function is ignored and proximity is formalized

as a distance ρ between summary statistics, S, for the values. Inference are generally performed using
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methods based on sequential sampling (Beaumont et al. 2009; Del Moral et al. 2012; Lee 2012) and

acceptable values of θ satisfy

ρ(S(y),S(ỹ))< ε, (3)

with ε → 0. In this case, the posterior distribution inferred is f (θ | ρ(S(y),S(ỹ))< ε).
Some ABC methods conduct sampling using an MCMC (Marjoram et al. 2003) in which a test of

condition (3) is applied to the values of y simulated by the model parameterized by θ ∗, before step MH.

Additionally, in these models the proportion at MH depends only on prior, π(·), and the transition function

q(· | ·). In special cases, in which the transition function is symmetrical, q(θ ∗ | θ) = q(θ | θ ∗), and the

prior is uniform, π(θ) = π(θ ∗), so α = 1 in (2) and the condition for acceptance of samples is entirely

determined by (3).

In order to take full advantage of an MCMC sampler, it is necessary to define a likelihood function.

Using the generalized likelihood uncertainty estimation (GLUE) methodology (Beven 2006), a synthetic

likelihood function (Wood 2010) is defined to determine the extent to which the simulated values fit the

observed data, taking into account possible modeling or measurement errors. Subject to the condition that

errors are not correlated, normally distributed and with constant variance, σ2
p , the likelihood function can

be written as

L(ỹ | θ) =
n

∏
t=1

1
√

2πσ̂2
p

exp

[

−
1

2σ̂2
p

(ỹt − yt)
2

]

, (4)

where σ̂p is an estimate of the standard deviation of error, which can be predetermined or inferred together

with the values of θ (Vrugt et al. 2009). This measure of likelihood in the GLUE framework is similar to

the use of squared errors in (3), ρ(S(ỹ),S(y)) = ∑
n
t=1(ỹt −yt)

2, using ABC (Toni et al. 2009). Additionally,

adding σ̂p to the values to be inferred is similar to adding ε to the state space of the sampler, as proposed

by Bortot et al. (2007).

Formal descriptions of the similarities between GLUE and ABC can be found in work by Nott et al.

(2012), Sadegh and Vrugt (2013) and Vrugt and Sadegh (2013). Approximate Bayesian Computation

methods have been used to calibrate models in the fields of genetics (Siegmund et al. 2008), epidemiology

(Blum and François 2010) and population biology (Ratmann et al. 2007), among others; and GLUE has

been applied to environmental problems (Delsman et al. 2013; Alazzy et al. 2015; Zhang and Li 2015).

2.1 The specific probabilistic model

The first element of note is that function f1 in (1a) is a constant known as drillability. Its value will be

numerically equal to the ROP when the system is operated and observed under conditions that result in

all other terms, f2 through f8, being equal to 1 and, as a consequence, independent of the values of their

coefficients. Its value is calculated by always using standard values (or values from similar wells) for all

of the other coefficients, and isolating it in (1a), f1 =
dD
dt
/ f2 × f3 × . . .× f8, populated with real data.

The physical constants relative to the bit, H1, H2 and (W/db)m, are taken from a table of values

suggested by Bourgoyne et al. (1986), p. 218. The value of τH is calculated by integrating (1b) with

respect to t:
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where h f is the final tooth wear observed for the bit and tb is the time taken to reach that state. Each

inference run is conducted using the data for one full bit run, in which the bit was subject to normal wear

and no defects occurred.

For the remaining variables (N, W , Fj, . . . ) mean values are used if there is little or no variation, but when

a variable, v, exhibits potentially non-negligible variability over time, a polynomial P∗
v (t) = (cn, . . . ,c1,c0)
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of n degree is defined with ci coefficients, determined by least squares, to describe its tendency. While

there are more sophisticated methods for fitting and selecting polynomials (Girolami 2008), in this study

the degree of the polynomial was adjusted in such a way as to prevent overfitting. The first derivative is

obtained from the polynomial P∗
v , defined for simplicity as dP∗

v /dt = Pv, with degree n−1, and added to

the BYM state space with its respective initial value c0.

The probabilistic model described here also allows for possible variation in the initial value of depth,

D0, since the observed values do not contain information at t = 0. The likelihood function described in (4)

is used and its standard deviation is also added to the values to be inferred. A high standard deviation for

the likelihood function will allow sub-optimum parametrization configurations to be considered in cases

in which the BYM is unable to perfectly simulate the real data. However, this could introduce bias to the

estimation since the models are compared with different levels of variance (Fearnhead and Prangle 2012;

Andrieu et al. 2012). In order to minimize this bias it is necessary to verify the values of σp sampled and

possibly only accept samples {θi | σp < σT} for a certain threshold, σT (Bortot et al. 2007).

As such, the parameter space is θ = (D0,a2, . . . ,a8,σp), where all of the priors are non-informative,

π(·)∼Uni f orm, with the limits shown in Table 1.

Table 1: Bounds of priors. The interval for initial value, D0, is determined to a limit of 0.7% of the true

value of initial depth, D̃1. The maximum value of the likelihood function standard deviation is set at 1%

of D̃0.

Parameter Bounds of the priors ([a,b])

D0

[

D̃1 ± 0.007D̃1

]

a2

[

2.303×10−6, 0.012
]

a3

[

2.303×10−8, 0.021
]

a4

[

2.303×10−6, 2.303×10−3
]

a5 [0.3, 2.5]

a6 [0.2, 1.5]

a7 [0.1, 2.5]

a8 [0.1, 0.9]
σp

[

10−4, 0.01D̃1

]

A graphical representation of the probabilistic model constructed is shown in Figure 1.

The inference of the posterior probability distribution, f (θ | ỹ), was performed by using the Metropolis

random walk algorithm (Andrieu et al. 2003; Tierney 1994), which is a specific case of the MH algorithm

in which the transition function, q(· | θ)∼ Normal(θ ,σv), is symmetrical, so that q(θ ∗ | θ)/q(θ | θ ∗) = 1.

Additionally, since in this case the priors have constant probability values within the interval limits, the

ratio π(θ ∗)/π(θ) becomes an indicative function: when q proposes a value within the limits, priors will

be constant, otherwise the sample is rejected. Samples of q are independent for each variable v in Table 1,

with standard deviation σv = 1/6(bv − av) and initial value (bv − av)/2. Therefore, for the case starting

from the centre of the interval ([av,bv]), the transition function will cover 99.73% of possible values.

3 EXPERIMENTS AND RESULTS

Data were acquired for three drill runs from the drilling of three deepwater wells, A, B and C. Analysis

of these data showed that all but one of the operational variables remained constant. The exception was

W , for which a polynomial was fitted in the hope that it would increase the model’s information content.

The values of the variables used in the BYM and the polynomials constructed for each well are shown in

Table 2.
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Figure 1: Graphical representation of the probabilistic model. The parameters θ to be inferred are represented

by ellipses. The shaded ellipse is the likelihood, and the inverted triangles are components of the BYM.

Table 2: Parametrization of operational and observed variables for wells A, B and C. The variable W was

represented by 4th degree polynomials for wells A and B, and by a 7th degree polynomial for the well C.

For all wells, a1 = 2.4.

Well H1 H2 (W/db)m τH db D̃1 gp ρc W N Fj

A

1.5 2.0 10.0

581.87 12.25 16510 8.314 10.014 P4
(A) 144.98 3431.82

B 256.79 8.5 16831 9.813 10.895 P4
(B) 191.91 3491.19

C 129.57 9.0 16274 10.21 10.005 P7
(C) 81.69 4161.76

P4
(A) =

[

1.48×10−7,1.1×10−4,−0.022,1.239,21.53
]

P4
(B) =

[

1.68×10−6,2.5×10−4,−0.045,1.839,11.4
]

P7
(C) =

[

2.4×10−9,−6.4×10−7,6.9×10−5,−0.0038,0.1182,−1.891,13.98,4.873
]

For each well, a total of 80000 iterations of the RWM algorithm were run for parameter inference. In all

cases, the initial behavior observed was as illustrated in Figure 2. The initial value of σp is relatively high,

allowing a variety of different parameterizations to be accepted. When the value of σp drops, condensing

the scope off the likelihood function (4), parameterizations that previously had been accepted are more

severely penalized. From this point, the values of θ migrate to the high probability areas that will be used

for the analysis.

The first 1000 iterations were therefore discarded as burn-in and the resulting statistics for each parameter

inferred are shown in Table 3.

The values chosen to illustrate the results are the median and the 25th and 75th quantiles. A graphical

illustration of the posterior distribution values for well B is shown in Figure 3.

It can be observed that some of the parameters have multimodal distributions, as is the case of a4 and

a2. This is because it is possible for them to be correlated in the BYM equation. The exponential nature of

the system of equations (1) allows one term to compensate for another in the final result if its constituent

variables are constants. Since the only variable term used in these examples was W , there is a greater

chance that other coefficients, with constant bases, will be correlated.

In compensation, as shown in Figure 2, the values that remain after exclusion of the burn-in period are

restricted to a relatively narrow band, in comparison with the interval occupied by the priors. This allows
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Table 3: Belief intervals inferred for the BYM coefficients, [a2, . . . ,a8], for the standard deviation of the

likelihood function, σp, and for the initial value, D0, for the three wells.

Variable Quantil
Well

A B C

a2

25th 5.17e−05 5.76e−05 0.00103

50th 5.28e−05 6.32e−05 0.00103

75th 6.02e−05 7.29e−05 0.00103

a3

25th 2.11e−06 0.00202 0.00162

50th 5.09e−06 0.00206 0.00172

75th 1.02e−05 0.00208 0.00193

a4

25th 8.65e−05 0.000195 0.000834

50th 8.71e−05 0.000196 0.000838

75th 8.83e−05 0.000199 0.000845

a5

25th 0.30 0.31 0.40

50th 0.31 0.32 0.51

75th 0.31 0.34 0.65

a6

25th 1.49 1.45 0.40

50th 1.50 1.48 0.73

75th 1.50 1.49 1.36

a7

25th 0.39 1.01 0.11

50th 0.63 1.18 0.11

75th 0.71 1.28 0.13

a8

25th 0.89 0.85 0.49

50th 0.90 0.88 0.53

75th 0.90 0.89 0.56

σp

25th 9.24 16.82 6.44

50th 9.82 17.74 6.78

75th 11.03 18.77 7.18

D0

25th 16527.4 16858.4 16270.4
50th 16529.5 16861.5 16271.7
75th 16536.8 16866.1 16273.0
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Figure 2: First 1500 iterations for well B. This figure illustrates an example of how the chain mixes when

σp attains “lower” values (≈ 20): all variables migrate to their high probability areas.
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Figure 3: Violin plots of the posterior distributions for well B. The dashed line illustrates the median and

the dotted lines represent the 25th and 75th quantiles.

the medians of potentially multimodal parameter distributions to be inferred, obtaining BYM simulation

results with little variation. The root mean squared error and the mean absolute percentage between the

median parameterized simulation results and the drilling data, as illustrated in Figure 4, are shown in

Table 4.

The RMSE values correspond to standard deviations between observed and simulated data and as such,

because of the likelihood function employed in this case, they are the same as the values for the posterior

probability distributions of σp. This value illustrates the extent to which the BYM simulations for each

well approach the true values.
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Table 4: Errors between the median parameterized simulation results and the drilling data.

Well RMSE MAPE

A 9.73661 0.0454%

B 17.2434 0.0881%

C 6.6368 0.0325%
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Figure 4: Results of BYM simulations. The blue lines illustrate the real drilling data. The dashed line

illustrates the median simulation posteriors and the dotted lines represent quantiles 2.5 and 97.5. The

shaded area is the 95% Highest Posterior Density (HPD) interval.

4 CONCLUSION

This study estimated the BYM coefficients using Bayesian inference by MCMC. Simulations were run to

provide estimates for three drill runs from three different wells in deep water regions.

It can be observed that the true values shown in Figure 4 do not strictly adhere to the curve plotted by

the BYM. This could indicate measurement limitations or a range of different types of errors linked to the

model itself (Kennedy and O’Hagan 2001). These errors signal the uncertainties that must be considered in

the process of determination of the model’s coefficients. Analysis of the parameters’ posterior probability

distributions enabled inference of an interval of values that produced acceptable simulation results. This

means that the BYM is capable of predicting, for a given interval of time, a range of depths that the bit

could possibly reach, within which the observed depth data is included.

As such, the treatment of uncertainty used to determine the BYM coefficients in this study offers a

better understanding of the model than earlier research that resulted in fixed values for these parameters.
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