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ABSTRACT

Variable annuities are long-term investment vehicles that have grown rapidly in popularity recently. One

major feature of variable annuities is that they contain guarantees. The guarantees embedded in variable

annuities are complex and the values of the guarantees cannot be obtained from closed-form formulas.

Insurance companies rely heavily on Monte Carlo simulation to calculate the fair market values of the

guarantees. Valuation and risk management of a large portfolio of variable annuities are a big challenge

to insurance companies because the Monte Carlo simulation model is very time consuming. In this paper,

we propose to use a metamodeling approach to speed up the valuation of large portfolios of variable

annuities. Our numerical results show that the metamodeling approach can reduce the runtime significantly

and produce accurate approximations.

1 INTRODUCTION

A variable annuity (VA) refers to an attractive life insurance product that provides upside participation and

downside protection in both bull and bear markets. Once an investor enters into a variable annuity contract

with an insurance company, the investor agrees to make one lump-sum or a series of purchase payments

to the insurance company and the insurance company agrees to make benefit payments to the investor

beginning immediately or at some future date. In a variable annuity contract, the investor’s money is

invested in a basket of mutual funds, which include bond funds and equity funds. When a variable annuity

matures, the benefit of the contract is equal to the market value of the accumulated purchase payments.

Variable annuity has other names such as segregated fund, guaranteed investment fund, unit-linked life

insurance, equity-linked life insurance, or participating life insurance (Armstrong 2001)

A main feature of variable annuities is that they contain guarantees. For example, almost every VA

contract contains the guaranteed minimum death benefit (GMDB) (Gerber, Shiu, and Yang 2013). VA

contracts also include the guaranteed minimum withdrawal benefit (GMWB) (Yang and Dai 2013), the

guaranteed minimum maturity benefit (GMAB) (Jiang and Chang 2010), and the guaranteed minimum

income benefit (GMIB) (Bacinello, Millossovich, Olivieri, and Pitacco 2011). These guarantees are optional

in that a policyholder can purchase these guarantees for additional fees. Due to the attractive guarantee

features, variable annuities have grown rapidly in popularity recently. Figure 1 shows the annual sales of

variable annuities from 2010 to 2013 in the US. From the figure we see that the annual sale of variable

annuities was more than 140 billion dollars in the past few years.

The guarantees embedded in variable annuities are financial guarantees that cannot be adequately

addressed by traditional actuarial approaches (Hardy 2000), which rely on diversification. Table 1 shows

the cash flows of a variable annuity policy with a GMWB rider under a specific economic scenario.

Because of the guarantee, the policyholder can withdrawal the guaranteed amount every year even when
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Figure 1: Variable annuity sales in the US. The numbers are in billions of dollars. (Source: LIMRA)

the investment fund goes to zero. The last column shows the guarantee cash flows, which are claims paid

to the policyholder by the insurance company. From the example we see that the insurance company will

loss money on all policies when market goes down. Dynamic hedging (Hardy 2003) is a popular risk

management approach for variable annuities and is adopted by many insurance companies.

Since VA contracts embedding guarantees are relatively complex, the calculation of their fair market

values cannot be done in closed form except for special cases (Gerber and Shiu 2003, Feng and Volkmer

2012). In practice, insurance companies rely on the Monte Carlo simulation method to determine the fair

market values of VA contracts. However, using the Monte Carlo simulation method to value a large portfolio

of VA contract is time consuming because every VA contract needs to be projected over many scenarios

for a long time horizon. For example, using a Monte Carlo simulation method with 1,000 scenarios and

360 monthly time steps to calculate the fair market value of a portfolio consisting of 100,000 VA policies

involves the following number of cash flow projections:

100,000×1,000×360 = 3.6×1010
.

If a computer can process 200,000 projections per second, then it would take this computer 50 hours to

finish the calculation. That is only the runtime for calculating the fair market value under a single market

condition. To calculate the fair market values under 100 different market conditions, it would take this

computer 5,000 hours to complete the calculation.

To make dynamic hedging work for a large portfolio of VA policies, an insurance company needs to

calculate the Greeks (e.g., dollar Delta and dollar Rho) of the big portfolio on a daily basis in order to

incorporate the changes in the portfolio and the market. In particular, the insurance company needs to

complete the calculation of the Greeks over night between today’s market close and tomorrow’s market

open. In order to complete the computationally intensive calculation, insurance companies employ many

computers to do the calculation. For example, GPUs (Graphics Processing Unit) have been used to value

VA contracts (Phillips 2012, NVIDIA 2012).

Although using many computers or GPUs can speed up the calculation, this approach is not scalable.

In other words, if the number of VA policies in a portfolio doubles, then the insurance company needs

to double the number of computers or GPUs in order to complete the calculation within the same time

interval. In addition, buying or renting many computers or GPUs is expensive and can cost the insurance

company a lot of money annually.
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Table 1: Cash flows of a variable annuity policy with a GMWB rider under a specific economic scenario.

In this sample variable annuity policy, the initial investment is 100,000 dollars, the GMWB amount is equal

to the initial investment, and the policyholder is allowed to withdrawal 8% of the initial investment until

the initial investment is recovered.

Policy

Year

Investment

Return

Fund

Before

Withdrawal

Annual

Withdrawal

Fund

After

Withdrawal

Remaining

Benefit

Guarantee

Cash Flow

1 -10% 90,000 8,000 82,000 92,000 0

1 -10% 90,000 8,000 82,000 92,000 0

2 10% 90,200 8,000 82,200 84,000 0

3 -30% 57,540 8,000 49,540 76,000 0

4 -30% 34,678 8,000 26,678 68,000 0

5 -10% 24,010 8,000 16,010 60,000 0

6 -10% 14,409 8,000 6,409 52,000 0

7 10% 7,050 8,000 0 44,000 950

8 - 0 8,000 0 36,000 8,000

9 - 0 8,000 0 28,000 8,000

10 - 0 8,000 0 20,000 8,000

11 - 0 8,000 0 12,000 8,000

12 - 0 8,000 0 4,000 8,000

13 - 0 4,000 0 0 4,000

In this paper, we apply a metamodeling approach to address the computational problem mentioned

above. In particular, we adopt a metamodel by using a Latin hypercube sampling method (McKay, Beckman,

and Conover 1979, Pistone and Vicario 2010, Petelet, Iooss, Asserin, and Loredo 2010, Viana 2013) and

the ordinary kriging model (Isaaks and Srivastava 1990).

The remaining of the paper is structured as follows. Section 2 gives a brief review of simulation

metamodeling and its application in finance. Section 3 introduces a Latin hypercube sampling method

used to select representative VA contracts and the ordinary kriging model. Section 3 also presents some

numerical results of the proposed metamodel. Section 4 concludes the paper and gives a survey of future

work.

2 METAMODELING

In simulation modeling, a metamodel refers to a model of a simulation model (Friedman 1996). One

main reason for building a model of a simulation model is that the simulation model is complicate and

computationally intensive. Metamodels of a simulation model are much simpler and more computationally

efficient than the simulation model. Metamodels are sometimes called response surface models or surrogate

models.

Building a metamodel of a simulation model involves three steps: first, we use an experimental design

method to select a small set of sample points from the input domain; second, we run the simulation

model to generate outputs at these selected sample points; third, we choose an appropriate metamodel

form and estimate the parameters of the metamodel using the selected sample points and the outputs of

the simulation model at the selected sample points. The experimental design method and the metamodel

are two interrelated components of metamodeling.

During the past six decades, many papers on metamodelling and its applications have been published.

Early works in this area include (Kleijnen 1975), (Franke 1982), (Hoerl 1985), (Barton 1992), (Laslett

1994), (Barton 1994), (Madu and Kuei 1994), (Barton 1998), to name just a few. Kleijnen (1975) introduced
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the concept of metamodels for simulation models. Barton (1994) presented a review of metamodels for

studying the behavior of computer simulations during that time. In particular, Barton reviewed several

modeling approaches such as spline models, radial basis functions, kernel methods, and spatial correlation

models. Barton (1998) discussed other metamodel types such as neural network metamodels.

Recent works in this area include (Kleijnen and Deflandre 2006), (Wu, Chen, Hu, Zhang, and Liang

2008), (Kleijnen 2009), (Ankenman, Nelson, and Staum 2010), (Khuri and Mukhopadhyay 2010), (Yin, Ng,

and Ng 2011), (Razavi, Tolson, and Burn 2012), (Wei, Wu, and Chen 2012), and (Zhao, Yue, Liu, Gao, and

Zhang 2014), to name just a few. Kleijnen (2009) presented a review of the Kriging metamodel. Ankenman,

Nelson, and Staum (2010) extended the basic theory of Kriging to the stochastic simulation setting. Khuri

and Mukhopadhyay (2010) provided a survey of the development of response surface methodology since its

introduction in the early 1950s. Razavi, Tolson, and Burn (2012) presented a wide variety of metamodeling

methods with an emphasis on the water resources field.

A number of books have been devoted to metamodels, response surface methodologies, and surrogate

models: (Box and Draper 1987), (Khuri and Cornell 1987), (Friedman 1996), (Shore 2005), (Khuri 2006),

(Box and Draper 2007), (Forrester, Sobester, and Keane 2008), (Myers, Montgomery, and Anderson-Cook

2009), and (Das 2014). Friedman (1996) presented a diverse set of scholarly materials relevant to the

study of simulation metamodels, including usage, applications, and methodology of metamodels. Box and

Draper (2007) is a successor volume to Box and Draper (1987) and covers many topics on response surface

models. Das (2014) is an introductory book devoted to robust response surface methodology and contains

a review of the existing literature on response surface methodology.

The concept of metamodeling has been applied to financial engineering recently. In (Baysal, Nelson,

and Staum 2008), the authors used Latin hypercube designs and kriging to simulate hedging and trading

strategies under nested simulation. Liu and Staum (2009) and Liu and Staum (2010) used stochastic kriging

to estimate expected shortfall of a portfolio. Gan (2013) used a data clustering method (Gan 2011) and the

ordinary kriging method to estimate the fair market values of a portfolio of variable annuities. Salle and

Yildizoglu (2014) applied the kriging model to approximate two well known economic models. Gan and

Lin (2015) used a data clustering method and a universal kriging method developed for functional data to

estimate the fair market values of a portfolio of variable annuities under nested simulation.

3 AN APPLICATION OF METAMODELING TO VARIABLE ANNUITY

In this section, we apply a metamodeling method to attack the computational problem arising from the

variable annuity area. In this example, we use Latin hypercube sampling and kriging. The kriging method

is a popular metamodeling method and the Latin hypercube sampling method works well with the kriging

method (Baysal, Nelson, and Staum 2008).

3.1 Latin Hypercube Sampling

Latin hypercube sampling (LHS) is a statistical method for generating plausible design points from multiple

dimensional spaces that are used to conduct computer experiments. Figure 2 gives two examples of Latin

hypercube designs with 4 points on a 2-dimensional area. From the figure we see that there is only one

sample point in each row and each column. For more information about LHS, readers are referred to

(McKay, Beckman, and Conover 1979), (Liefvendahl and Stocki 2006), (Minasny and McBratney 2006),

(Pistone and Vicario 2010), (Petelet, Iooss, Asserin, and Loredo 2010), and (Viana 2013).

When the number of divisions and the number of variables increase, the number of Latin hypercubes

increases exponentially (McKay and Wanless 2008). For example, there are

64×4!× (3!)3 = 331,776

Latin hypercubes with 4 divisions and 3 variables. As a result, one way to find a good Latin hypercube

design is to generate Latin hypercube samples randomly and select the best one from the samples.
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(a) (b)

Figure 2: Two examples of Latin hypercube designs with 4 divisions and 2 variables.

Now let us introduce a LHS method for selecting representative VA policies, which are described

by both categorical and numerical variables. The LHS method introduced here is able to handle both

numerical and categorical variables. There are several ways to select an optimal Latin hypercube design

(Liefvendahl and Stocki 2006). Here we select an optimal Latin hypercube design by maximizing the

minimum distances.

To describe the LHS method, we assume that a VA contract is characterized by d attributes (e.g.,

gender, age, account value, etc.) and that the first d1 attributes are numerical and the remaining d2 = d−d1

attributes are categorical. For j = 1,2, . . . ,d1, let L j and Hj denote the minimum and maximum values that

the jth numerical variable can take. That is,

L j = min{x j : x ∈ X}, Hj = max{x j : x ∈ X}, (1)

where x j denotes the jth component of x and X = {x1,x2, · · · ,xn} denote the portfolio of VA contracts.

For j = d1 +1, d1 +2, . . ., d, let Nj denote the number of distinct values that the jth categorical variable

can take, i.e.,

Nj =
∣

∣{x j : x ∈ X}
∣

∣ , (2)

where | · | denote the number of elements in a set.

Suppose that we want to generate a Latin hypercube design with k design points, where k ≥ 2. To do

that, we first divide the range of each of the d1 numerical variable into k divisions. For each l = 1,2, . . . ,k,

the lth division of the jth dimension is given by

Il =

(

L j +

(

l −
3

2

)

Hj −L j

k−1
,L j +

(

l −
1

2

)

Hj −L j

k−1

]

.

Since
k
⋃

l=1

Il =

(

L j −
Hj −L j

2(k−1)
,Hj +

Hj −L j

2(k−1)

]

⊂ [L j,Hj],

the union of the k divisions covers the whole range of the jth variable. For each of the remaining categorical

variables, we just treat each category as a division.

Let H be a set of d-dimensional points defined to be

H = {(a1,a2, . . . ,ad)} (3)

such that for j = 1,2, . . . ,d1,

a j ∈

{

L j +(l −1)
Hj −L j

k−1
, l = 1,2, . . . ,k

}

,
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and for j = d1 +1,d1 +2, . . . ,d,

a j ∈
{

A jl, l = 1,2, . . . ,Nj

}

,

where A j1, A j2, . . ., A jNj
are the distinct categories of the jth variable and L j, Hj, and Nj are defined in

Equations (1) and (2). There are many points in the set H . In fact, we have

|H |= kd1

d

∏
j=d1+1

Nj.

The first step of the LHS method is to select k points from the set H with the best score, which is to

be defined. Let H be a subset of H with k elements. The score of the set H is defined to be the minimum

distance between any pairs of distinct points in H. That is,

S(H) = min{M(a,b) : a ∈ H,b ∈ H,a 6= b} , (4)

where M(a,b) is the distance between a and b given by

M(a,b) =
d1

∑
j=1

(k−1)|a j −b j|

Hj −L j

+
d

∑
j=d1+1

δ (a j,b j), (5)

where a j and b j are the jth components of a and b, respectively, and δ (·, ·) is defined in Equation (10).

The larger the score, the better the Latin hypercube design. An optimal Latin hypercube design with k

points is defined as

H∗ = argmax
H⊂H ,|H|=k

S(H). (6)

Since the set H contains huge number of points, finding an optimal Latin hypercube design with k

points from H is not easy. To find such an optimal Latin hypercube design, we randomly generate many

(e.g., 500) Latin hypercube designs and select the one with the largest score. To generate a random Latin

hypercube design H = {a1,a2, . . . ,ak} with k points, we proceed as follows:

1. For each j = 1,2, . . . ,d1, we randomly generate k uniform real numbers from the interval [0,1].
Suppose that these random numbers are r j1, r j2, . . ., r jk. Since these numbers are random real

numbers, they are mutually distinct in general. We sort the k real numbers in an ascending order

such that

r ji1 < r jr2
< · · ·< r jrk

,

where (i1, i2, . . . , ik) is a permutation of (1,2, . . . ,k). Then we define the first d1 coordinates of the

k design points as

a jl = L j +(il −1)
Hj −L j

k−1
, j = 1, . . . ,d1, l = 1, . . . ,k.

For each j = 1,2, . . . ,d1, the coordinates of the k design points at the jth dimension are mutually

distinct.

2. For each j = d1+1,d1+2, . . . ,d, we randomly generate k uniform integers from {1,2, . . . ,Nj}. For

portfolios of variable annuity policies, we usually have k > Nj, that is, the number of design points

is larger than the number of values that a categorical variable can take. Suppose that these random

integers are i1, i2, . . . , ik. Then we define the remaining d2 coordinates of the k design points as

a jl = A jil , j = d1 +1, . . . ,d, l = 1, . . . ,k,

where A j1, A j2, . . ., A jNj
are the distinct categories of the jth variable.
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Once we find a Latin hypercube design H∗ = {a∗1,a
∗
2, . . . ,a

∗
k} using the above procedure. The second

step of the LHS method is to find k representative VA policies that are close to the k design points in H∗.

In particular, the VA policy that is close to a∗i is determined by

zi = argmin
x∈X

M(a∗i ,x), i = 1,2, . . . ,k,

where M(·, ·) is defined in Equation (5).

3.2 Ordinary Kriging

We use the ordinary kriging method (Isaaks and Srivastava 1990) to estimate the fair market value and

the Greeks (e.g., sensitivities of the fair market values) of the whole portfolio from the representative VA

policies.

Let z1, z2, . . ., zk be the representative VA contracts obtained from the clustering algorithm. For every

j = 1,2, . . . ,k, let y j be the fair value of z j that is calculated by the Monte Carlo method. Then we use the

Kriging method to estimate the fair value of the VA contract xi as

ŷi =
k

∑
j=1

wi j · y j, (7)

where wi1,wi2, . . . ,wik are the Kriging weights.

The Kriging weights wi1,wi2, . . . ,wik are obtained by solving the following linear equation system











V11 · · · V1k 1
...

. . .
...

...

Vk1 · · · Vkk 1

1 · · · 1 0











·











wi1

...

wik

θi











=











Di1

...

Dik

1











, (8)

where θi is a control variable used to make sure the sum of the Kriging weights is equal to one,

Vrs = α + exp

(

−
3

β
D(zr,zs)

)

, r,s = 1,2, . . . ,k,

and

Di j = α + exp

(

−
3

β
D(xi,z j)

)

, j = 1,2, . . . ,k.

Here α ≥ 0 and β > 0 are two parameters, and the distance function D(·, ·) is defined as

D(x,y) =

√

√

√

√

d1

∑
h=1

(xh − yh)2 +
d

∑
h=d1+1

δ (xh,yh), (9)

where xh and yh are the hth component of x and y, respectively, and δ (·, ·) is the simple matching distance

defined as

δ (xh,yh) =

{

0, if xh = yh,

1, if xh 6= yh.
(10)

Since D(zr,zs)> 0 for all 1 ≤ r < s ≤ k, the above linear equation system has a unique solution (Isaaks

and Srivastava 1990).
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The fair value of the portfolio X is equal to the sum of the fair values of all VA contracts in X , i.e.,

Ŷ =
n

∑
i=1

ŷi =
n

∑
i=1

k

∑
j=1

wi j · y j =
k

∑
j=1

w j · y j, (11)

where

w j =
n

∑
i=1

wi j.

The fair value Ŷ of the portfolio can be calculated efficiently by solving w1, w2, . . ., wk from the

following linear equation system











V11 · · · V1k 1
...

. . .
...

...

Vk1 · · · Vkk 1

1 · · · 1 0











·











w1

...

wk

θ











=











D1

...

Dk

n











, (12)

where

D j =
n

∑
i=1

Di j, j = 1,2, . . . ,k.

In fact, Equation (12) is obtained by summing both sides of Equation (8) from i = 1 to n.

3.3 Numerical Results

In this subsection, we present some numerical results of using the metamodel for VA portfolio valuation.

To do the test, we follow the setup used in (Gan 2013). We generate a portfolio of 200,000 synthetic VA

contracts. The attributes and their ranges of values are shown in Table 2. For each synthetic VA contract,

the value of an attribute is generated from a uniform distribution with the corresponding range given in

Table 2.

Table 2: Variable annuity attributes and their ranges of values. Here GMDB and GMWB refer to guaranteed

minimum death benefit and guaranteed minimum withdrawal benefit, which are two major features of variable

annuities.

Attribute Values

Guarantee type {GMDB only, GMDB + GMWB}
Gender {Male, Female}
Age {20, 21, 22, . . ., 60}
Account value [10000,500000]
GMWB withdrawal rate {0.04, 0.05, 0.06, 0.07, 0.08}
Maturity {10, 11, 12, . . ., 25}

We use the metamodel to estimate the fair market value, dollar Delta, and dollar Rho of the whole

portfolio. In all the test cases, we used 500 iterations in the LHS method. In other words, 500 Latin

hypercube designs are randomly generated and the one with the largest score is selected.

In our test, we used the LHS method to select a set of representative VA policies. Then we used

the ordinary kriging method to estimate the fair market value, dollar Delta, and dollar Rho of the whole

portfolio. In the ordinary kriging method, we set α = 0 and β to be the 95th percentile of all distances

between pairs of the representative VA policies as suggested in (Isaaks and Srivastava 1990). The accuracy

of the metamodel is summarized in Table 3. The first row (MC) shows the fair market value, dollar Delta,
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and dollar Rho of the portfolio calculated by the Monte Carlo simulation model. The second row and the

third row shows the numbers estimated by the metamodel. The last four rows show the dollar difference

and the percentage difference. From the tables we see than most of the percentage differences are less than

0.5%.

Table 3: The fair market values, dollar Deltas, and dollar Rhos calculated by the Monte Carlo simulation

model and those estimated by the metamodel with different number of representative VA policies. Numbers

in the first five rows are in dollars. Numbers in brackets are negative numbers.

Fair Market Value Dollar Delta Dollar Rho

MC 3,003,947,180 (8,150,275,955) (9,736,358)

LHS100 3,016,679,402 (8,180,679,337) (9,789,810)

LHS500 3,008,948,423 (8,181,891,156) (9,751,202)

LHS100-MC 12,732,222 (30,403,381) (53,451)

LHS500-MC 5,001,243 (31,615,200) (14,844)

(LHS100-MC)/MC 0.42% 0.37% 0.55%

(LHS500-MC)/MC 0.17% 0.39% 0.15%

Table 4: Runtime used by the Monte Carlo simulation model and the metamodel with different number of

representative VA policies. The numbers are in seconds. The LHS, MC, Kriging rows denote the runtime

used by the Latin hypercube sampling method, the Monte Carlo simulation model, and the ordinary kriging

method, respectively.

Number of Rep. Policies Entire Portfolio

100 500 200,000

LHS 5.05 20.47 NA

MC 1.63 5.38 1942.22

Kriging 5.83 26.8 NA

Total 12.51 52.65 1942.22

Table 4 shows the runtime used by the Monte Carlo simulation model and that used by the metamodel.

From the table we see that the metamodel is much faster than the Monte Carlo simulation model for valuing

the portfolio. It took the Monte Carlo simulation model more than 30 minutes to calculate the fair market

value, dollar Delta, and dollar Rho of the portfolio. In contrast, it took the metamodel less than one minute

to produce accurate estimates of these numbers.

Although the VA policies considered in the numerical experiments are much simpler than the real VA

policies, the numerical results show that metamodeling is a promising approach to address the computational

problem arising from the VA area.

4 CONCLUSIONS

For an insurance company that has a big VA portfolio, a major challenge in risk management of the VA

business is to calculate the fair market value and the Greeks of the VA portfolio in an efficient way. In this

paper, we proposed a metamodeling approach to address the computational problem from the perspective

of mathematical modeling instead of hardware. The idea of the metamodeling approach is to first select a

small set of representative policies, then price the representative policies, and finally estimate the value of
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the whole portfolio. The method is efficient in that only a small set of representative policies is required

to be priced by the time-consuming Monte Carlo simulation model.

To test the usefulness of the metamodeling method, we created a synthetic portfolio of VA policies

and compared the accuracy and speed of the metamodel and the Monte Carlo simulation model using

the synthetic portfolio. Our numerical results indicate that the metamodeling method is computationally

efficient and is able to produce accurate approximations.

The metamodeling approach can be useful for insurance companies that have a VA business. Our

simple numerical experiments show that the metamodeling approach has the potential to reduce the runtime

significantly. In practice, the simulation model used by insurance companies is much more complex than

the one used in this paper. For example, monthly time steps are usually used in practice and the cash

flow projection is often complex for real variable annuity policies. The metamodeling approach can reduce

the runtime even more in real applications than in the toy example presented in the paper. In addition,

the metamodeling approach can also be used to address other computationally intensive issues such as

calculating the economic capitals of a portfolio of variable annuities.

In future, we would like to test other experimental design methods and metamodeling techniques. In

particular, we would like to conduct a comprehensive comparison of various experimental design methods,

such as factorial design (Alam, McNaught, and Ringrose 2004), and metamodeling techniques, such as

response surface methodology (Myers, Montgomery, and Anderson-Cook 2009).

REFERENCES

Alam, F. M., K. R. McNaught, and T. J. Ringrose. 2004. “A comparison of experimental designs in the

development of a neural network simulation metamodel”. Simulation Modelling Practice and Theory 12

(78): 559 – 578. Simulation in Operational Research.

Ankenman, B., B. L. Nelson, and J. Staum. 2010. “Stochastic Kriging for Simulation Metamodeling”.

Operations Research 58 (2): 371–382.

Armstrong, M. 2001. “The reset decision for segregated fund maturity guarantees”. Insurance: Mathematics

and Economics 29:257–269.

Bacinello, A., P. Millossovich, A. Olivieri, and E. Pitacco. 2011. “Variable annuities: A unifying valuation

approach”. Insurance: Mathematics and Economics 49 (3): 285–297.

Barton, R. 1994, Dec. “Metamodeling: a state of the art review”. In Winter Simulation Conference

Proceedings, 237–244.

Barton, R. R. 1992. “Metamodels for Simulation Input-output Relations”. In Proceedings of the 24th

Conference on Winter Simulation, WSC ’92, 289–299: ACM.

Barton, R. R. 1998. “Simulation Metamodels”. In Proceedings of the 30th Conference on Winter Simulation,

WSC ’98, 167–176. Los Alamitos, CA, USA: IEEE Computer Society Press.

Baysal, R., B. Nelson, and J. Staum. 2008, Dec. “Response surface methodology for simulating hedging

and trading strategies”. In Simulation Conference, 2008. WSC 2008. Winter, 629–637.

Box, G. E. P., and N. R. Draper. 1987. Empirical Model-Building and Response Surfaces. Hoboken, NJ:

Wiley.

Box, G. E. P., and N. R. Draper. 2007. Response Surfaces, Mixtures, and Ridge Analyses. 2nd ed. Hoboken,

NJ: Wiley.

Das, R. N. 2014. Robust Response Surfaces, Regression, and Positive Data Analyses. Boca Raton, FL:

CRC Press.

Feng, R., and H. Volkmer. 2012. “Analytical calculation of risk measures for variable annuity guaranteed

benefits”. Insurance: Mathematics and Economics 51 (3): 636–648.

Forrester, A., A. Sobester, and A. Keane. 2008. Engineering Design via Surrogate Modelling: A Practical

Guide. West Sussex, UK: Wiley.

Franke, R. 1982. “Scattered Data Interpolation: Tests of Some Method”. Mathematics of Computation 38

(157): 181–200.

1112



Gan

Friedman, L. W. 1996. The Simulation Metamodel. Norwell, MA, USA: Kluwer Academic Publishers.

Gan, G. 2011. Data Clustering in C++: An Object-Oriented Approach. Data Mining and Knowledge

Discovery Series. Boca Raton, FL, USA: Chapman & Hall/CRC Press.

Gan, G. 2013. “Application of data clustering and machine learning in variable annuity valuation”. Insurance:

Mathematics and Economics 53 (3): 795–801.

Gan, G., and X. S. Lin. 2015. “Valuation of large variable annuity portfolios under nested simulation: A

functional data approach”. Insurance: Mathematics and Economics 62:138–150.

Gerber, H., and E. Shiu. 2003. “Pricing Lookback Options and Dynamic Guarantees”. North American

Actuarial Journal 7 (1): 48–67.

Gerber, H., E. Shiu, and H. Yang. 2013. “Valuing equity-linked death benefits in jump diffusion models”.

Insurance: Mathematics and Economics 53 (3): 615–623.

Hardy, M. 2000. “Hedging and reserving for single premium segregated fund contracts”. North American

Actuarial Journal 4 (2): 63–74.

Hardy, M. 2003. Investment Guarantees: Modeling and Risk Management for Equity-Linked Life Insurance.

Hoboken, New Jersey: John Wiley & Sons, Inc.

Hoerl, R. W. 1985. “Ridge Analysis 25 Years Later”. The American Statistician 39 (3): 186–192.

Isaaks, E., and R. Srivastava. 1990. An Introduction to Applied Geostatistics. Oxford, UK: Oxford University

Press.

Jiang, S., and M. Chang. 2010. “Variable Annuity with Guarantees: Valuation and Simulation”. Journal of

Money, Investment and Banking 14:74–83.

Khuri, A. I. (Ed.) 2006. Response Surface Methodology And Related Topics. Singapore: World Scientific.

Khuri, A. I., and J. A. Cornell. 1987. Response Surfaces: Designs and Analyses. New York, NY, USA:

Marcel Dekker, Inc.

Khuri, A. I., and S. Mukhopadhyay. 2010. “Response surface methodology”. Wiley Interdisciplinary Reviews:

Computational Statistics 2 (2): 128–149.

Kleijnen, J. P. 2009. “Kriging metamodeling in simulation: A review”. European Journal of Operational

Research 192 (3): 707 – 716.

Kleijnen, J. P., and D. Deflandre. 2006. “Validation of regression metamodels in simulation: Bootstrap

approach”. European Journal of Operational Research 170 (1): 120 – 131.

Kleijnen, J. P. C. 1975. “A Comment on Blanning’s “Metamodel for Sensitivity Analysis: The Regression

Metamodel in Simulation””. Interfaces 5 (3): 21–23.

Laslett, G. M. 1994. “Kriging and Splines: An Empirical Comparison of Their Predictive Performance in

Some Applications”. Journal of the American Statistical Association 89 (426): 391–400.

Liefvendahl, M., and R. Stocki. 2006. “A study on algorithms for optimization of Latin hypercubes”.

Journal of Statistical Planning and Inference 136 (9): 3231 – 3247.

Liu, M., and J. Staum. 2009, Dec. “Estimating expected shortfall with stochastic kriging”. In Proceedings

of the 2009 Winter Simulation Conference (WSC), 1249–1260.

Liu, M., and J. Staum. 2010. “Stochastic kriging for efficient nested simulation of expected shortfall”. The

Journal of Risk 12 (3): 3–27.

Madu, C. N., and C.-H. Kuei. 1994. “Regression metamodeling in computer simulation - the state of the

art”. Simulation Practice and Theory 2 (1): 27 – 41.

McKay, B., and I. Wanless. 2008. “A Census of Small Latin Hypercubes”. SIAM Journal on Discrete

Mathematics 22 (2): 719–736.

McKay, M., R. Beckman, and W. J. Conover. 1979. “A Comparison of Three Methods for Selecting Values

of Input Variables in the Analysis of Output from a Computer Code”. Technometrics 21 (2): 239–245.

Minasny, B., and A. B. McBratney. 2006. “A conditioned Latin hypercube method for sampling in the

presence of ancillary information”. Computers & Geosciences 32 (9): 1378 – 1388.

Myers, R. H., D. C. Montgomery, and C. M. Anderson-Cook. 2009. Response Surface Methodology:

Process and Product Optimization Using Designed Experiments. 3rd ed. Hoboken, NJ: Wiley.

1113



Gan

NVIDIA 2012. “People Like VAs Like GPUs”. Wilmott magazine 2012 (60): 10–13.

Petelet, M., B. Iooss, O. Asserin, and A. Loredo. 2010. “Latin hypercube sampling with inequality

constraints”. AStA Advances in Statistical Analysis 94 (4): 325–339.

Phillips, P. 2012. “Lessons Learned About Leveraging High Performance Computing for Variable Annuities”.

In Equity-Based Insurance Guarantees Conference. Chicago, IL.

Pistone, G., and G. Vicario. 2010. “Comparing and generating Latin Hypercube designs in Kriging models”.

AStA Advances in Statistical Analysis 94 (4): 353–366.

Razavi, S., B. A. Tolson, and D. H. Burn. 2012. “Review of surrogate modeling in water resources”. Water

Resources Research 48 (7): 1–32.

Salle, I., and M. Yildizoglu. 2014. “Efficient Sampling and Meta-Modeling for Computational Economic

Models”. Computational Economics 44 (4): 507–536.

Shore, H. 2005. Response Modeling Methodology: Empirical Modeling for Engineering and Science.

Singapore: World Scientific.

Viana, F. 2013. “Things you wanted to know about the Latin hypercube design and were afraid to ask”.

In 10th World Congress on Structural and Multidisciplinary Optimization. Orlando, FL.

Wei, X., Y.-Z. Wu, and L.-P. Chen. 2012. “A new sequential optimal sampling method for radial basis

functions”. Applied Mathematics and Computation 218 (19): 9635 – 9646.

Wu, B., L. Chen, Z. Hu, W. Zhang, and J. Liang. 2008, Oct. “A relevance vector regression based

metamodeling approach for complex system analysis”. In 7th International Conference on System

Simulation and Scientific Computing, 612–619.

Yang, S., and T.-S. Dai. 2013. “A flexible tree for evaluating guaranteed minimum withdrawal benefits under

deferred life annuity contracts with various provisions”. Insurance: Mathematics and Economics 52

(2): 231–242.

Yin, J., S. Ng, and K. Ng. 2011. “Kriging metamodel with modified nugget-effect: The heteroscedastic

variance case”. Computers & Industrial Engineering 61 (3): 760 – 777.

Zhao, H., Z. Yue, Y. Liu, Z. Gao, and Y. Zhang. 2014. “An efficient reliability method combining adaptive

importance sampling and Kriging metamodel”. Applied Mathematical Modelling.

AUTHOR BIOGRAPHIES

GUOJUN GAN is an assistant professor in the Department of Mathematics at the University of Connecticut,

where he has been since August 2014. Prior to that, he worked at a large life insurance companies in

Toronto, Canada for six years. He received a BS from Jilin University, China, in 2001 and MS and PhD

degrees from York University, Canada, in 2003 and 2007, respectively.

1114


