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ABSTRACT

Accurately modeling the interarrival times (IAT§ important when constructing a business process
simulation model given its influence on process pemtorce metrics such as theerage flow time. To

this end, the use of real data from informatiostegns is highly relevant as it becomes more readily
available. This paper considers event logs, a particular type of file containing process execution
information, as a data source. To retrieve an IAJut model from event logs, the recently developed
ARPRA framework is used, which is the first algom that explicitly integrates the notion of queues.
This paper investigates ARPRA'’s sensitivity to ihéial parameter set estimate and the size of the
original event log. Experimental results show tfipARPRA is fairly robust for the specification of the
initial parameter estimate and (i) ARPRA’s output represents reality more closely for larger event logs
than for smaller logs.

1 INTRODUCTION

Business process simulation (BPS) refers to the timitaof business process behavior through the use of
a simulation model (Meldo and Pidd 2003). By naikimg the real system, simulation can identify the
effects of operational changes prior to implementadiot contribute to the analysis and improvement of
business processes (Melao and Pidd 2003).

A BPS model consists of severalilding blocks such as activities and entities, where the latter refers
to dynamic objects that flow through the systend on which activities are executed (Kelton Sadowski
and Zupick 2015), e.g. customers of a car rental company. As with all BPS model components, modelling
tasks are associatéa entities (Martin Depaire and Caris 2014). Tiagoer is related to entity arrival rate
modeling, i.e. defining the pattern accordtogvhich entities arrive at the process.

Given its influence on process performance metrics asdfe average flow time, i.e. the total time
in the system, accurately modeling the entity arrival process is crucial. To identify an interarrival time
(IAT) input model, i.e. a parameterized probapilitistribution (Henderson 2003) for the time between
the arrivals of consecutive entities, inputs can beegathby e.g. observing the process. However, as
process observations are time-consuming, using neadily available information sources is useful. In
this respect, process execution information whicdui®matically recorded byrocess-aware information
systems (PAIS), such as ERP systems, can be u3géiisl.information is recorded as events, e.g. the
registration of a customer, in files called event Idgese minimally contain an ordered set of events for
each case, where a caseths event log equivalent for an entity. However, additional information is
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typically recorded for each event such as a timestamp expressing its time of occurrence and the associated
resource. Information extraction from event logs bgtoto the process mining field (van der Aalst 2011).

The limited work on the use of process miningrétrieve an IAT input model from an event log
assumes that entities arrive at thi@ist recorded timestamp. Hence, IAT observations can be directly
calculated from the log and a probability distribution can be fitted. However, as event logs typically only
record activity execution information, the aforementioned assumption is not appropriate when queues can
be formed for the first activity. The latter is the case when the first activity of the process has a non-zero
duration and limited resources. Queue formation edlise entities to arrive soarthan the time related
to the first recorded event, e.g. the start @f finst activity’s executionWhen correspondence between
entity arrival and the first recorded timestamp i®ngfully assumed, an inaccurate IAT input model is
obtained (Martin Depaire and Caris 2015).

To retrieve an IAT input model from an event l@bile taking into account queue formation, a novel
algorithm called ARPRA is developed. The algorithas been shown to proed significantly more
accurate IAT input model than a benchmark apphoignoring queue formation (Martin Depaire and
Caris 2015). To render an executable algorithm, several parameters need to be specified. To evaluate the
influence of those settings on ARPRA'’s performartbés paper presents ansdtivity analysis. More
specifically, ARPRA’s sensitivity isnvestigated for (i) the initial estimate for the IAT input model
parameters and (ii) the event log size.

The remainder of this paper is structuredf@kws. The following section introduces a running
example and presents the scarce related work. fhird section outlines ARPRA and its current
operationalization. In the fourth section, ARPRABnNsitivity for the initial parameter estimate and log
size is investigated. The paper ends with a conclusion.

2 BACKGROUND

2.1  Running example

Throughout this paper, the process of a fictitiousreatal company will serve as a running example. The
simplified process model is visualized in Figure 1.

Service time ~ Tria(2,5,8) Setvice time ~ Tria(3,4,7)
IAT ~ Gamma(a.f3) Resource: 1 car advisor Resource: 1 insurance clerk
L | L ]
ustomer . Insurance
. . Car selection ) .
registration registration
Customer Customer
. ! .
arrival Service time ~ Tria(4,5,7) disposal

Resource: 1 administrative clerk

Figure 1: Running example.

The car rental company’s process can be described as follows. Upon arrival, a customer is registered
by inserting all relevant information in the companPAIS. When all required information is recorded,
the customer will select an appropriate car togettighr the car advisor. The final process step is the
creation of insurance documents. Based on limited process observations, the company assumes that
service times follow a triangular distribution. All assed parameters are annotated in Figure 1, with
minutes as the time unit and resource capacities constant throughout the day.

The running example can be used to illustragecibnsequences of inaccurate IAT modeling. Suppose
real customer |IATs are gamma distributed, whisha more generic distribution than the popular
exponential distribution (Law 2007), with 1.50 anfi(bas its shape and scale parameter. Table 1 presents
some process performance metrics for deviatingarpater sets. E.g. a 10% overestimation of the
distribution parameters leads to an underestimation of the average waiting time for ‘Customer
registration’ by 54.15%, showing the need tcetally model IATs when building a BPS model.
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Table 1: Effect of inaccurate IAT modeling.

Shape / scale Average flow time Average waiting time for Utilization
parameter ‘Customer registration’ administrative clerk
1.50/5.00 (real) 21.27 4.58 0.731
1.65/5.50 (+10%), 18.27 (—14.10%) 2.10 (-54.15%) 0.615 (—15.87%)
1.35/4.50 (-10%)| 26.27 (+23.51%) 9.21 (+101.10%) 0.842 (+15.18%)

To estimate an IAT input model, this paper uses an event log as it typically contains a large volume of
process execution information. An extract from an exampknt log is given in Table 2. Each line in the
log corresponds to a single event, e.g. the first linggaédethe start of activity ‘Customer registration’ for
customer with identification code 83 by administra clerk Sue. Note that identification codes are
assumed to be unique for each visit. The activiggeresponding end event is recorded as the second
event in Table 2. Given the focus on IAT modelitige events associated tioe first activity of the
process, i.e. ‘Customer registration’, will be of key interest in the remainder of this paper.

Table 2: Extract from example event log.

Unique Timestamp Activity Event Resource
customer ID type
83 11/06/2015 09:17:38 Customer registration  start Administrative clerk: $ue
83 11/06/2015 09:21:57 Customer registration  end Administrative clerk: Sue
83 11/06/2015 09:26:04 Car selection start Car advisor: Mike
84 11/06/2015 09:31:21 Customer registration  start Administrative clerk: Sue
83 11/06/2015 09:35:42 Car selection end Car advisor: Mike
83 11/06/2015 09:37:09 Insurance registratipn  staft Insurance clerk: Dave

2.2 Related work

Despite the importance of having an accurate I1AUirmodel and the increasing presence of information
systems generating event logs, thorough researchwrevent logs can support IAT modeling is lacking.

A preliminary insight in the arrival rate cabe gathered using a dotted chart, a graphical
representation marking the events for each case overusing dots (Song andrvaer Aalst 2007). By
analyzing the position of the first dot for consecutivtties, the arrival rate can be explored. However, a
visual inspection is insufficient to obtain an IAT inpuodel. The closest to our work is Rozinat et al.
(2009), which is the only reference on process mining BPS context that briefly mentions arrival rate
modeling. They define the IAT as the difference le®wthe first recorded timestamp of two consecutive
cases. After IAT calculation, an a priori assumeglomential distribution is fitted to these observations.

Both dotted charts and the approach of Rozinat €2009) implicitly assume that a case arrives at its
first recorded timestamp, which is not necessarilye.trAs highlighted in the introduction, queue
formation for the first activity causesdiscrepancy between entity arrival and the first activity start event,
where the latter is the best proxy for entity adriwéen only activity execution information is logged.
Hence, the implicit assumption made in literaturerily appropriate when entities do not have to queue
upon arrival, i.e. (i) when the first activity has a service time of zero or (ii) when the associated resources
are idle or have an unlimited capacity. Besides under these particular circumstances, queuing behavior is
relevant.

As ignoring queue formation can bias the obtained@ idput model, an algorithm is lacking which
considers first activity queueing during the model estiom process. To this end, ARPRA is introduced
in Martin, Depaire and Caris (2015), which is thstfialgorithm that explicitly takes into account queue
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formation. It has been shown to outperform an IAT modeling method that ignores queue formation.
Further details on the algorithm are provided in Section 3.

3 OVERVIEW OF ARPRA

This section gives an overview of ARPRA, tlerival Rate Parameter Retrieval Algorithm. The
functioning of the ARPRA framework, visualized Figure 2, can be summarized as follows. All
ARPRA's inputs originate from an event log, witlethercentage of entities that queued upon arrijal (
as its main input. Given this percentage, thgodihm iteratively adjusts the parameter s&) ©f a
particular IAT probability distributionf{) until the queue percentage in a simulated f)gngatches the
gueue proportion from the original event laf. \When this is the case, the parameter8gtig recorded
and the algorithm proceeds to its next iterationiil a pre-specified number of such matchesafe
obtained. Afterwards, an aggregated parameter estimate is ret¥tpgg {,).

Even though ARPRA is a generic frameworthe remainder of this section details the
operationalization suggested in Martin, Depaire @adis (2015) as an implementation is required to
investigate ARPRA's sensitivity. For the sake of clarity and brevity, only key concepts are included.

ve /7\/,77\/7‘\7,,
/C REALITY IAT modet f(Weq)
- PAIS supported process) FAST model:g(6yeq)
N

generates ~
IAT distribution: f

iada!
number of casest O tolerances
FAST: g(0) -, humber of required tolerable estimates:
TOh

initial parameter setp, £ number of simulated entities:

log queue proportiong GLOBA‘I:’ number of verification replications:

EVENT LOG PARAMETERS
lq,é(‘e)w: ¥o lf,&.r.ﬁ.v
ARPRA iteration parameter set estimaté:
) simulate procesf(W),gTﬂ,ﬁ) simulated queue proportiog:
repeat whil v tolerable estimate listb
|| <7an 5 simulated queue proportion ligt;
. q ist
adjust¥ v verified tolerable estimate list,
iflg— gl < &thend = & U [¥, 4] output parameter ¥, req

VW, € O Guse =4l

g, = simulate process (¥,), g (@), i)
Aduse = Guse U G V) €{1,...,v})

@, = @, U [¥;, median(Gys.)]

Wooerea = (¥ ¥ € @0 A lg =l = min lg-al)
| (i

¢output

IAT input model: f(Wserectea )

Figure 2: Overview of the generic ARPRA framework (Martin Depaire and Caris 2015).

3.1  Eventlog inputs

At the top of the schematic overview in Figure 2, a PAIS-supported process is shown with a particular,
unknown, IAT input modef (¥,.,;) and first activity service time (FAST) probability distribution
9(6,eq1)- This process generates an event log from which three inputs for ARPRA are retrieved: the
percentage of entities that queued upon arriggl &n initial parameter set estimate for the IAT input
model ¢/,) and knowledge on the service time for the first activit§oy).

Firstly, to mineq from the event log, the first activity testamps are investigated for consecutive
entities. Consider Table 3, where the first activitytstad end timestamps are reded for the first four
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customers in the car rental company’s event lagcustomer had to wait for activity ‘Customer
registration’ when the execution starts immediatetgralCustomer registration’ ended for the previous
customer. When this is the case, e.g. for customer 3 in Table 3, the value True is assigned to a boolean
Queue Otherwise, this value is set to False. After assiginguevalues to all customerg,corresponds

to the percentage of customers for whileue= True.

Table 3: lllustration oRQueuevalue assignment.

Unique ‘Customer registration’ ‘Customer registration’ Queue
customer 1D start timestamp end timestamp
1 07/04/2015 09:17:38 07/04/2015 09:22:57 False
2 07/04/2015 09:33:04 07/04/2015 09:37:19 False
3 07/04/2015 09:37:19 07/04/2015 09:42:01 True
4 07/04/2015 09:42:01 07/04/2015 09:47:50 True

Secondly, an initial parameter sgf§, which is used in ARPRA'’s first iteration, is retrieved from the
log. This involves fitting probability distributiofi, specified in Section 3.2, on known IAT values in the
original event log. IATs are known when two conga®ientities did not queue upon arrival, i.e. have
Queue= False. When this is the caske start timestamp for this activity corresponds to entity arrival.
Hence, exact IATs can be calculated, e.g. for customer 2 in Table 3.

Finally, knowledge on the first activity service timg(@)) from the event log is required as it will be
used during the construction of a simulated log.bAth the start and end timestamp are assumed to be
recorded, service times can directly be calculaBstvice time observations from the original log are
directly used when ARPRA creates a simulated logsiriterations. This appach is selected as queues
are formed influenced by the in&etion between arrival and servitimes. Consequently, ARPRA will
maintain the order of service time observations ftheoriginal event logWhen the size of ARPRA’s
simulated log ) exceeds the size of the original event laj the observed FAST sequence is repeated.

3.2  Global parameters

Besides the event log inputs, global parameters tebd defined to obtain an executable algorithm. An
IAT probability distribution ) needs to be put forward for which a parameter®ew(ll be retrieved by
ARPRA. In the current operationalizatighjs equated to a gamma distribution: a probability distribution
with shape parameterand scale parametgr i.e. W = {qa, $}. It is purposefully selected because, when
a =1, a gamma distribution corresponds to an expialedistribution (Law 2007). Consequently, the
gamma distribution is more generic, but still allows for the often cited exponential IAT probability
distribution (Law 2007, Kelton, Sadowski, and Zupick 2015).

Besidesf, four other global parameters shoulddpecified: (i) the tolerated deviation frapwithin
ARPRA's iterations) is set to 0.01, (ii) the size of the simulated fioghould equal 400, (iii) the number
of tolerable estimates required to end the algorithen10 and (ivly, the number of additional iterations
to verify the stability of the queue proportion fogaven tolerable parameter set, also equals 10. The
meaning of these settingsdetailed in Section 3.3.

3.3  Parameter retrieval using ARPRA

Using the above event log inputs and global paterae ARPRA retrieves an IAT input model. The
rectangle marked with ARPRA in Figure 2 is subdé@d in two parts by a dashed line. The upper part
reflects the identification of a series of tolerableapaeter sets, while the lower part outlines final output
selection.
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An IAT input model, obtained usingandy,, initiates the phase in which tolerable parameter sets
are identified. Giverf(y,), the process is simulated to create a kited event log. From this log, the
gueue proportiong) is calculated as outlined for theiginal log in Section 3.1. Whefis within a
tolerance margii from the queue proportion in the original lag),(the parameter s#t is added tepb
and iteration proceeds. Conversely, wijetoes not have a tolerable value, the algorithm continues to the
next iteration without recordingf. To adjust parameter s&t= {a, §} across iterations, the observation
that the gamma distribution mearequalsxf is used (Law 2007). The mean IAT can be estimated using
the original event log by considering the time betwte first activity start timestamps for the first and
last entity in the log. Dividing this timespan blge number of arrivals in this period provides an
approximation fou. As u fixes the relationship betwedroth parameters, adjustidgis brought down to
varying@ and changing usingg = #/4- The adjustment at across iterations occurs as follows:

o Wheng >q + 6 for the current iteration, too many entities have been queueing. Conseaggently,
is increased for the following iteration as thiwreases the mean IAT for a given shape
parameter. The adjustment size is deteethinrby applying a percentage increase @to
corresponding to the percentage point deviation betyesrdq. However, given the non-linear
relationship betweed andg, the calculated adjustment is smoothed downward to avoid too large
adjustments. E.g. a result of 08i@ads to an actual increaseiiof only 0.001.

e Wheng < g —& for the current iteration, too many entities have been queueing, requiring a
decrease i@ as this reduces the mean IAT for a giwdrape parameter. The adjustment size is
defined analogously to the previous situation.

e When|qg — | < 6,V is added tab. In order to explore the entire range of parameter sets that
leads to tolerable queue proportions, a large adjustmehisimequired to push outside the
range f| —4 ; q + 6] for the following iteration. The directioof this adjustment is determined by
the value ofg for the current and two prior iterations.gf> g in the current iterationy is
doubled for the next iteration to redufeexcept whe§ < g for the two prior iterations. In the
latter cased is halved to explore another parater region. The inverse holdsgik g in the
current iteration. Whe# = g for the current iteratior§ values for the three prior iterations are
taken into account, where the third lag is a tie-breaker.

ARPRA's iteration process ends when a pre-specified number of parameter sets are recorded, i.e.
when|®| = r. When this is the case, ARPRA proceeds toldler part of the rectangle in Figure 2 to
select its final output. For each of th@arameter sets i, v additionalg values are determined. This is
done because each simulated log is based on random IAT drawg#)mAs a consequence, different
g values can be obtained for the same parameté¥ .seétence, for eacH € @, v additional queue
proportions are determined and the mediaralue will be used in the remmaer of the algorithm. Note
that, in the current implementatian= v = 10.

From the previous, a ligb,, containing parameter estimates with verifjedalues is obtained. From
this list, the final output of ARPRA is selected. ParameteWggl ;.4 iS returned, which is the recorded
parameter set that leads to the closest approximatigninfcase of ties, an aggregated parameter set is
returned by e.g. calculating the meandaand its associate®l usingg = #/,.

4  SENSITIVITY OF ARPRA

The outline of ARPRA in Section 3 only considerssingle specification of the event log inputs and
global parameters. To assess the influence ofnalige definitions on ARPRA’s performance, a
sensitivity analysis is conducted. This paper focuses on (i) the initial parameggraset (ii) the size of
the original event log. The first subsection outlines the experina¢tesign. Afterwards, the results of
the sensitivity analysis fap, andn are reported in the second and third subsection, respectively.
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4.1  Experimental design

The sensitivity analysis evaluates th#uiance of alternative definitions gf, andn on ARPRA'’s ability
to rediscover a known IAT input model solely usingeaent log. To this end, the car rental company’s
process, introduced in Section 2.1, is the startingtp@iven the focus on IAT modeling, especially the
first activity ‘Customer registration’ is of intest. Within this context, a real IAT input mogé, ;) =
Gammag, ) is put forward, which is of course unknoewn reality. Using this IAT probability
distribution, an event log is created. Only using this log, ARPRA is applied and a particular output
F(Wsorectea) = Gammag, B) is obtained. The deviation betweer,; andW¥,,,....q reflects the ability of
the algorithm to rediscover the real IAT input mbd@sed on an event log. To put the observed
deviations into perspective, therpentage deviation from the real value is considered. For a particular
real IAT input model, several definitions fgr, or n are considered. By comparing the percentage
deviations for these alternative definitions, thefluence on ARPRA'’s performance can be evaluated

The experiment described above is repeated farablAT gamma distributions representing reality.
These distributions are randomly defined by drawing valueg &ordg from a uniform distribution over
a particular range. To specify these ranges, it shioellthken into account that the service times for the
activity ‘Customer registration’ follow a triangular disution with parameters (4, 5, 7) minutes. Hence,
the mean service time equals 5.33 minutes. To allow ‘Customer registration’ to reach a steady state, its
utilization factor should be smaller than one (Hillier and Lieberman 2010). This implies that the mean
IAT, ap for the gamma distribution, should be aadt 5.33 minutes as the activity only has a single
server. Consequently, when real paeder values need to be drawn,s drawn from a uniform
distribution between 1 and 2 agdrom a uniform distribution between 5.33 and 7.

4.2  Sensitivity for initial parameter estimate @)
4.2.1 Considered specifications

The initial parameter estimate defines the IAT inpudei that will be used in the first iteration of
ARPRA. To verify the sensitivity fop,, three distinct definitions are considered:
o Definition 1: the initial value of is set to 1 and the initi# equals the mean IAT, where the
mean IAT is derived from the event log as outlined in Section 3;
o Definition 2: the initial values foxr andf are determined by fitting a gamma distribution on
entities for which IATs can be calculatedtire original event log, which is thig, definition used
in Section 3. When less than fiveagx IATs are retrievable from the lag,is set to 1 and the
initial 8 equals the mean IAT.

o Definition 3: the initiala is set to the mean IAT and the initials set to 1.

Using the experimental design in Section 4.1, a real IAT input model is specified and an event log is
created. Solely using this log, ARPR# applied three times with alternatiyg definitions. All other
specifications are retained from the operationalizatidfinea in Section 3. The experiment is repeated
for 500 distinct real IAT input modeis experiment 1A. Iexperiment 1B, an additional varying factor is
introduced as 150 real valuesaofire drawn from each of three distinct rangesxffandg.

4.2.2 Results

For experiment 1A, 500 experiments are executedvidlig the above specifications. For each of the real
IAT input models, an event log is created. The queue propgrtiankey input for ARPRA, in the 500
event logs has a mean value of 50.93%. Minimum and maxignuatues equal 18.75% and 95.50%.

To gain insight in the accacy differences of ARPRA acrogg definitions, pairwise comparisons
are required. For each pair§ definitions, a paired t-test for bobAT gamma distribution parameters is
conducted on the absolute values of the percendeg@tions from the real value, abbreviated by
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|[Rarpra — Krear|% With kappa representing or f. Absolute values are usexd mainly the size of the
deviation is deemed relant, independent of whether it is amer- or underestimation. A Bonferroni
correction is applied to correct for multiple comparisonisere a family-wise error rate of 5% is used. As

a consequence, the three individual paired t-tests are evaluated at a 1.66% significance level (Blann
2015). The results of the pairwise comparisons amasarized in Figure 3 using a visualization method
originating from DemSar (2006), where theand s digits under each definition represent the mean
lkarpra — Kreat| %0 and its standard deviation, respectively. In Figurep3definitions are ranked by
increasing & gpra — Krea|%. The paired t-test tests tmeill hypothesis that the me&tyrprs — Krea1|%

using bothy, specifications is the same. Pairwise cangons for which insufficient evidence is
available to reject this null hygwdsis are marked using bold line segments. The results show that the
second definition fot), leads to the lowes$k, zpra — Kreq:|% fOr botha andf. However, none of the
performance differences are statiatly significant. Hence, ARPRA is fairly robust for the initial
parameter sep,,.

Besides the pairwise comparisons, the thpgedefinitions can be evaluated independently by
verifying if a bias is present in the obtained IAThgaa distribution parameters. To this end, the null
hypothesis that the mean percentage dieviafrom the real parameter, denoted (Byrpra — Krear) %0,
equals zero is evaluated at significance level 5%IleT4, which expresses percentages in decimal form,
shows that insufficient evidence is presém reject this null hypothesis fer, regardless of thg,
definition used. Fop, the null hypothesis can be rejected foryajlspecifications, with the second
definition rendering the lowest me&t,rpra — Krear) %0 fOr botha andg.

|@arpra — Qreat | % |EARPRA = Breal | %
1 2 3 N 1 2 3 )y
> L
Def. 2 Def. 1 Def. 3 Def. 2 Def. 3 Def. 1
-m: 12.36% -m: 12.41% -m: 12.52% -m: 13.67% -m: 13.94% -m: 14.40%
-s:11.64%p -s:11.47%p -s:11.06%p -s: 17.77%p -5:23.52%p -5:19.66%p
(a) (b)

Figure 3: Pairwise comparison |@f,zprs — Kreq:|% fOr () @ and (b)g (experiment 1A).

Table 4:(Ryrpra — Krear) %0 results for alternativey, definitions (experiment 1A).

Py (@arPRA — Xrea) Y0 (EARPRA = Brea)%
def. Mean St. dev.in | 95% conf. int. Mean St.dev.in| 95% conf. int.
value sample value sample
1 -0.0028 0.1690 [-0.0177,0.0120]0.0404 0.2404 [0.0193,0.0615]
2 0.0127 0.1695 [-0.0022,0.0276]0.0217 0.2232 [0.0021,0.0413]
3 0.0067 0.1671 [-0.0080,0.0214]0.0302 0.2718 [0.0063,0.0541]

The results reported above suggest that ARPRAMormance is relativelsobust for the selectagi,
definition. However, the effect of thg, specification might be influenced by the real parameter set. To
gain deeper understanding on this matter, experihBnis conducted, where three ranges for the real
value ofa andp are defined: (i) Range & €[1.0, 1.33]A S € [5.5, 6.0], (i) Range 2x €[1.33, 1.66]

A B €[6.0, 6.5] and (iii) Range 3 €[1.66, 2.0]n B € [6.5, 7.0]. From each range, 150 values are
drawn using a uniform distribution to represent the real IAT input model. The gnesoes for the
resulting event logs for range 1, 2 andy8a& 78.56%, 46.61% and 27.95%, respectively.

Pairwise comparisons ¢f,zpra — Krea:|/% do not show statistically significant differences between
the, definitions when real values are drawn from ranges 1 or 3, when a 5% family-wise error rate is
used. These results are not visualide@ to space limitations. Conversely, for real values from range 2,
ARPRA is significantly more accurate with the secgrgddefinition than with the third specification for
a andp.
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The results of the independent evaluation ofyipelefinitions in each of the ranges are shown in
Table 5. The null hypothesis states, once again, that the (Bgar — x,.q1)% €equals zero. Independent
from they, specification, insufficient evidence is preseémtreject this null hypothesis when the real
values originate from ranges 1 and 3. Converselydalrvalues from range 2, a small overestimation of
a is shown for all initial parameter deiiions and a small underestimationgofor definitions 2 and 3.

|@arpra = Creat| % |Barpra = Breat | %
1 2 3 N 2 3 >
L L
Def. 2 Def. 1 Def. 3 Def. 2 Def. 1 Def. 3
-m: 9.12% -m: 10.25% - m: 10.86% -m: 9.49% -m: 10.75% -m: 11.51%
- s: 8.24%p -s: 8.27%p - s: 8.93%p - s: 7.34%p -s: 7.79%p - s: 8.65%p
(@) (b)

Figure 4: Pairwise comparison |@f,zprs — Kreq:|1% fOr (&)@ and (b)B (experiment 1B, range 2)

Table 5:(% rpra — Krear)% results for alternativey, definitions (experiment 1B).

Yo (@grPRA — Xrea) Y0 (Barpra — Brea)%
def. Mean St. dev. in | 95% conf. int. Mean St.dev.in| 95% conf. int.
value sample value sample

Range l:a €[1.0, 1.33]A B €[5.5, 6.0]
1 0.0296 0.5575 [-0.0603,0.1195]0.1018 0.4833 [0.0238,0.1798]
2 0.0446 0.3501 [-0.0119,0.1011]0.0946 0.6494 [-0.0102,0.1994]
3 0.1512 1.2938 [-0.0576,0.3599]0.1222 0.7407 [0.0027,0.2417]
Range 2:a € [1.33, 1.66]A B € [6.0, 6.5]

1 0.0276 0.1291 [0.0068,0.0484 -0.0151 0.1322 [-0.0364,0.0063]
2 0.0311 0.1191 [0.0119,0.0503 -0.0213 0.1183 [-0.0404,-0.0022]
3 0.0407 0.1349 [0.0189,0.0624 -0.0255 0.1421 [-0.0484,-0.0026]
Range 3:a €[1.66, 2.0]n B € [6.5, 7.0]

1 0.0043 0.1071 [-0.0130,0.0216]0.0068 0.1164 [-0.0120,0.0256]
2 0.0018 0.1034 [-0.0149,0.0184]0.0083 0.1107 [-0.0095,0.0261]
3 0.0031 0.1102 [-0.0147,0.0208]0.0082 0.1145 [-0.0102,0.0267]

In summary, experiments show that ARPRA iglyarobust for the specification of the initial
parameter set. Even though definittends to lead to the most acdareesults, performance differences
are not statistically significant. Only when the rgalrameters have medium values, i.e. in range 2,
ARPRA's output is significantly more accurate whignis based on definition 2 than on definition 3.

4.3  Sensitivity for the size of the event logn|

4.3.1 Considered specifications

ARPRA is mainly guided by, which is retrieved from the originavent log. The event log is generated
by a process with a particular IAT and FAST input mode the log only contains events for a limited
period of time, its size influences the likelihood ttre arrival and service time patterns in the event log
are representative for their equivalents in reality. Terger the original event log, the more likely it
becomes that this is the case. As a consequenceysefal to investigate the sensitivity of ARPRA to
variations in the size of the original event log
Based on the experimental design outlimedection 4.1, ARPRA’s sensitivity tois evaluated by

considering five different log sizes, i.e.€ {100, 200, 400, 800, 1600}. All other specifications,
including the one foy,, are retaken from the discussion in Satt8. This experiment is repeated 500
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times. The entire procedure outlined to this point is executed twice: oncg w90 in experiment 2A,
i.e. the specification mentioned in Section 3, and oncefvitn in experiment 2B.

4.3.2 Results

Given the outlined experimental design, two serieSQff experiments are conducted. In each series, the
500 real parameter sets lead to ¢heation of 2500 event logs, for whighhas a mean value of 48.31%
for experiment 2A and 48.84% for experiment 2B. Minimum and maximum values equal 12% and 98%
for experiment 2A and 11% and 96%53or experiment 2B, respectively.

The results of the pairwise comparison |Rfzprs — Krea:| % across the different log sizes for
experiment 2A are visualized in Figure 5. When a family-wise error rate of b¥edand, i.e. a 0.5%
significance level is applied to individual paired t-tests, results differ betweserdf. Fora, the
accuracy of ARPRA significantly increases as the lag Bicreases. Accuracy improvements can also be
observed fop asn increases, but these are statisticallsignificant for the comparison between«y
400 andn= 800 and (iij»= 800 anch= 1600. A reason for the observed accuracy improvement is that
larger the event log, the more representajivéll be for the real arrival rate.

Besides the comparative assessment, ARPRA canbalsevaluated by considering all log sizes
independently. To this end, the null hypothesis that the rfigask, — xr.q1)% €quals zero is evaluated
for each value of at the 5% significance level. The résware summarized in Table 6. Regardindhe
mean and standard deviation(@frrra — kreqa1)% tends to decrease asncreases. However, only for log
sizes 800 and 1600 insufficient evidence is present to reject the aforementioned null hypothgsia. For
similar null hypothesis cannot be rejected for all values, @part from 100. The standard deviation of
(Rarpra — Krea)%0 decreases asincreases fof. Regarding the mean value @fzprs — Krea)%, @ less
consistent pattern is observable.

|@arpra = Qreat | % |Barera = Brear| %
1 2 3 4 5 . 1 2 3 4 5 .
| ' !
n=1600 n=23800 n=400 n=200 n=100 n=1600 n=2800 n=400 n=200 n=100
-m:8.08%  -m:9.42%  -m:1185%  -m:14.82% -m:22.27% -m:8.64%  -m:10.38% -m: 11.93% _m:1534% -m: 19.86%
-s:7.55%p  -s5:8.26%p  -s:1024%p -5 14.38%p - s:26.71%p -5:9.25%p  -s:13.38%p  -si1133%p .5 18.17%p - s:16.51%p
(@) (b)

Figure 5: Pairwise comparison |@f,zpra — Kreq:1% fOr () a and (b)B (experiment 2A).

Table 6:(R4rpra — Krear)% results for varying log sizes, with= 400 (experiment 2A).

Log (XarPRA — Area) %0 (Barpra — Brea)%
size Mean St. dev.in | 95% conf. int. Mean St. dev. in 959% conf. int.
n value sample value sample

100 0.1073 0.3309 [0.0788,1364] | -0.037 0.2558 [-0.05910.0141]
200 0.0427 0.2021 [0.0240,0604] | -0.004 0.2379 [-0.025%).0165]
400 0.0267 0.1543 [0.0130,0402] | -0.004 0.1644 [-0.0186).0103]
800 0.0013 0.1254 [-0.0093,0123]| 0.0148 0.1687 [-0.0000.0296]
1600 | 0.0026 0.1106 [-0.007D.0123] | 0.0096 0.1263 [-0.0018.0207]

In experiment 2Afi equals 400 independent of the size of the original event log. Even though this
limits the required computational efforts when the oagilog is large, it also implies that not all first
activity service times from the original event log are used when#i. Consequently, the number of
simulated entities is equated to the size of the daegrnin experiment 2B. From the pairwise comparison
Of |Rarpra — Krea:|% acrossn values, visualized in Figure 6, fibllows that the differences in accuracy
betweem = 1600 anch = 800 fora andn = 400 andh = 200 forf become statistically insignificant.
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When comparing the means and standard deviations in Figure 6 with the annotations of Figure 5, few
noteworthy differences are observed. Hence, thecefff not using all first activity service times on
ARPRA's accuracy seems to be rather limited.

The results of the independent evaluation ofdzgs are presented in Tallelnsufficient evidence
is available to reject the null hypothesis that the m@aRers — K0qr) % €quals zero at the 5%
significance level for all log sizes f@rand only for the largest event log teor

|@arprA — Areat | %0 |[§ARPRA — Breal | %

2 3 4 5 1 2 3 4 5

— 1 | | T o —= [ 7
n=1600 n=2800 n =400 n =200 n=100 n=1600 n=800 n =400 n =200 n=100
- m: 8.39% m:935%  -m: 12.02% m: 15.62%  -m:21.74% -m:8.63% -m:9.52% -m:13.67% -m:16.40% -m:21.47%
-s: 7.23%p -5:839%p  -s:13.18%p -s: 14.42%p - s:21.40 %p -s5:8.05%p -s:855%p -s:37.85%p -s:15.35%p -s:19.55%p
(a) (b)

Figure 6: Pairwise comparison |@f,zpra — Kreq:|% fOr (@)@ and (b)B (experiment 2B).

Table 7:(R4rpra — Kreq)% results for varying log sizes, with=n (experiment 2B).

L_Og (&ARPRA — areal)% (EARPRA — ﬁ eal)%
size Mean St. dev.in | 95% conf. int. Mean St. dev. in 959% conf. int.
n value sample value sample

100 0.0591 0.2994 [0.0328,0854] | 0.0078 0.2904 [-0.017D.0333]
200 0.0261 0.2110 [0.0076,0446] | 0.0143 0.2243 [-0.0059.0341]
400 0.0270 0.1765 [0.0116,0425] | 0.0135 0.4022 [-0.0218.0489]
800 0.0231 0.1235 [0.012Q,0340] | -0.0079 0.1278 [-0.019D,0034]
1600 | 0.0081 0.1106 [-0.0016.0178]| 0.0032 0.1181 [-0.007D.0135]

To sum up, experimentation shows that the sizdhe original event log influences ARPRA’s
performance. When increasing ARPRA’s output becomes significantly more accuratexfarhenii =
400. Forg, performance differences for successive increasesdatome statistically insignificant from
n = 400 onwards. Moreover, the me@grprs — Kreq)% tends to decrease as the size of the event log
increases. Insufficient evidence waggent to show a systematic bias for both parameters in large event
logs. In larger event logs, the valueggfthe main input of ARPRA, is me likely to be representative for
the true underlying IAT input model. ConsequenthRPRA uses a more accurate guiding valuegfor
and, hence, its output is more likely to approximaiaity more closely. The influence of equatihtp
the size of the original event log is rather limité¢hen interpreting the results outlined above, it has to
be taken into account that rather conservative values doe used. Real-life event logs tend to contain
events related to a large number of cases.

5 CONCLUSION

This paper presented a sensitivity analysis of ARP&»¥Aalgorithm that derives an IAT input model from
an event log. It is the first algorithm that exiilic takes the notion of queues into account, which is
important as ignoring queuing behavior can bias théewed arrival patterns from the log. To execute
ARPRA, several event log inputs and global pararseteed to be defined. In order to assess the
influence of those specifications on ARPRA'’s perfong® a sensitivity analysis is conducted. More
specifically, the influence of (i) thieitial estimate for the parameter ggf and (ii) the size of the original
event logn are investigated.

Experimentation shows that ARPRA isirla robust for the specification ap,. Even though a
specification that fits an initial gamma distributitm IATs retrievable from the log shows the most
accurate results, the observed performance differences are not statistically significant. Regarding
ARPRA provides more accurate results for larger el@ys than for smaller event logs. However, the
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maximum event log size that is considered is 1600 cases, which might still be quite small in practice.
Experimentation also showed that the effect of seftiagual ton is rather limited.

Future work on ARPRA will focus on the development of a more advanced parameter search
strategy, taking into account themlinear relationship between theng@a distribution parameters and
q. Moreover, ARPRA should be extended to retrievéfdninput model when (i) no a priori distribution
is assumed and (ii) only start or enckris are recorded in the event log.
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