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ABSTRACT 

Accurately modeling the interarrival times (IAT) is important when constructing a business process 
simulation model given its influence on process performance metrics such as the average flow time. To 
this end, the use of real data from information systems is highly relevant as it becomes more readily 
available. This paper considers event logs, a particular type of file containing process execution 
information, as a data source. To retrieve an IAT input model from event logs, the recently developed 
ARPRA framework is used, which is the first algorithm that explicitly integrates the notion of queues. 
This paper investigates ARPRA’s sensitivity to the initial parameter set estimate and the size of the 
original event log. Experimental results show that (i) ARPRA is fairly robust for the specification of the 
initial parameter estimate and (ii) ARPRA’s output represents reality more closely for larger event logs 
than for smaller logs. 

1 INTRODUCTION 

Business process simulation (BPS) refers to the imitation of business process behavior through the use of 
a simulation model (Melão and Pidd 2003). By mimicking the real system, simulation can identify the 
effects of operational changes prior to implementation and contribute to the analysis and improvement of 
business processes (Melao and Pidd 2003). 
 A BPS model consists of several building blocks such as activities and entities, where the latter refers 
to dynamic objects that flow through the system and on which activities are executed (Kelton Sadowski 
and Zupick 2015), e.g. customers of a car rental company. As with all BPS model components, modelling 
tasks are associated to entities (Martin Depaire and Caris 2014). This paper is related to entity arrival rate 
modeling, i.e. defining the pattern according to which entities arrive at the process.  

Given its influence on process performance metrics such as the average flow time, i.e. the total time 
in the system, accurately modeling the entity arrival process is crucial. To identify an interarrival time 
(IAT) input model, i.e. a parameterized probability distribution (Henderson 2003) for the time between 
the arrivals of consecutive entities, inputs can be gathered by e.g. observing the process. However, as 
process observations are time-consuming, using more readily available information sources is useful. In 
this respect, process execution information which is automatically recorded by process-aware information 
systems (PAIS), such as ERP systems, can be useful. This information is recorded as events, e.g. the 
registration of a customer, in files called event logs. These minimally contain an ordered set of events for 
each case, where a case is the event log equivalent for an entity. However, additional information is 
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typically recorded for each event such as a timestamp expressing its time of occurrence and the associated 
resource. Information extraction from event logs belongs to the process mining field (van der Aalst 2011). 

The limited work on the use of process mining to retrieve an IAT input model from an event log 
assumes that entities arrive at their first recorded timestamp. Hence, IAT observations can be directly 
calculated from the log and a probability distribution can be fitted. However, as event logs typically only 
record activity execution information, the aforementioned assumption is not appropriate when queues can 
be formed for the first activity. The latter is the case when the first activity of the process has a non-zero 
duration and limited resources. Queue formation will cause entities to arrive sooner than the time related 
to the first recorded event, e.g. the start of the first activity’s execution. When correspondence between 
entity arrival and the first recorded timestamp is wrongfully assumed, an inaccurate IAT input model is 
obtained (Martin Depaire and Caris 2015).  

To retrieve an IAT input model from an event log while taking into account queue formation, a novel 
algorithm called ARPRA is developed. The algorithm has been shown to provide a significantly more 
accurate IAT input model than a benchmark approach ignoring queue formation (Martin Depaire and 
Caris 2015). To render an executable algorithm, several parameters need to be specified. To evaluate the 
influence of those settings on ARPRA’s performance, this paper presents a sensitivity analysis. More 
specifically, ARPRA’s sensitivity is investigated for (i) the initial estimate for the IAT input model 
parameters and (ii) the event log size. 

The remainder of this paper is structured as follows. The following section introduces a running 
example and presents the scarce related work. The third section outlines ARPRA and its current 
operationalization. In the fourth section, ARPRA’s sensitivity for the initial parameter estimate and log 
size is investigated. The paper ends with a conclusion.  

2 BACKGROUND 

2.1 Running example  

Throughout this paper, the process of a fictitious car rental company will serve as a running example. The 
simplified process model is visualized in Figure 1. 

 

Figure 1: Running example. 

The car rental company’s process can be described as follows. Upon arrival, a customer is registered 
by inserting all relevant information in the company’s PAIS. When all required information is recorded, 
the customer will select an appropriate car together with the car advisor. The final process step is the 
creation of insurance documents. Based on limited process observations, the company assumes that 
service times follow a triangular distribution. All assumed parameters are annotated in Figure 1, with 
minutes as the time unit and resource capacities constant throughout the day. 

The running example can be used to illustrate the consequences of inaccurate IAT modeling. Suppose 
real customer IATs are gamma distributed, which is a more generic distribution than the popular 
exponential distribution (Law 2007), with 1.50 and 5.00 as its shape and scale parameter. Table 1 presents 
some process performance metrics for deviating parameter sets. E.g. a 10% overestimation of the 
distribution parameters leads to an underestimation of the average waiting time for ‘Customer 
registration’ by 54.15%, showing the need to carefully model IATs when building a BPS model. 
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Table 1: Effect of inaccurate IAT modeling. 

Shape / scale 
parameter 

Average flow time Average waiting time for 
‘Customer registration’ 

Utilization 
administrative clerk 

1.50 / 5.00 (real) 21.27 4.58 0.731 
1.65 / 5.50 (+10%) 18.27 (–14.10%) 2.10 (–54.15%) 0.615 (–15.87%) 
1.35 / 4.50 (–10%)  26.27 (+23.51%) 9.21 (+101.10%) 0.842 (+15.18%) 

 

To estimate an IAT input model, this paper uses an event log as it typically contains a large volume of 
process execution information. An extract from an example event log is given in Table 2. Each line in the 
log corresponds to a single event, e.g. the first line refers to the start of activity ‘Customer registration’ for 
customer with identification code 83 by administrative clerk Sue. Note that identification codes are 
assumed to be unique for each visit. The activity’s corresponding end event is recorded as the second 
event in Table 2. Given the focus on IAT modeling, the events associated to the first activity of the 
process, i.e. ‘Customer registration’, will be of key interest in the remainder of this paper.  

Table 2: Extract from example event log. 

Unique 
customer ID 

Timestamp Activity Event 
type 

Resource 

… … … … … 
83 11/06/2015 09:17:38 Customer registration start Administrative clerk: Sue 
83 11/06/2015 09:21:57 Customer registration end Administrative clerk: Sue 
83 11/06/2015 09:26:04 Car selection start Car advisor: Mike 
84 11/06/2015 09:31:21 Customer registration start Administrative clerk: Sue 
83 11/06/2015 09:35:42 Car selection end Car advisor: Mike 
83 11/06/2015 09:37:09 Insurance registration start Insurance clerk: Dave 
… … … … … 

2.2 Related work  

Despite the importance of having an accurate IAT input model and the increasing presence of information 
systems generating event logs, thorough research on how event logs can support IAT modeling is lacking. 

A preliminary insight in the arrival rate can be gathered using a dotted chart, a graphical 
representation marking the events for each case over time using dots (Song and van der Aalst 2007). By 
analyzing the position of the first dot for consecutive entities, the arrival rate can be explored. However, a 
visual inspection is insufficient to obtain an IAT input model. The closest to our work is Rozinat et al. 
(2009), which is the only reference on process mining in a BPS context that briefly mentions arrival rate 
modeling. They define the IAT as the difference between the first recorded timestamp of two consecutive 
cases. After IAT calculation, an a priori assumed exponential distribution is fitted to these observations. 

Both dotted charts and the approach of Rozinat et al. (2009) implicitly assume that a case arrives at its 
first recorded timestamp, which is not necessarily true. As highlighted in the introduction, queue 
formation for the first activity causes a discrepancy between entity arrival and the first activity start event, 
where the latter is the best proxy for entity arrival when only activity execution information is logged. 
Hence, the implicit assumption made in literature is only appropriate when entities do not have to queue 
upon arrival, i.e. (i) when the first activity has a service time of zero or (ii) when the associated resources 
are idle or have an unlimited capacity. Besides under these particular circumstances, queuing behavior is 
relevant.  

As ignoring queue formation can bias the obtained IAT input model, an algorithm is lacking which 
considers first activity queueing during the model estimation process. To this end, ARPRA is introduced 
in Martin, Depaire and Caris (2015), which is the first algorithm that explicitly takes into account queue 
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formation. It has been shown to outperform an IAT modeling method that ignores queue formation. 
Further details on the algorithm are provided in Section 3. 

3 OVERVIEW OF ARPRA 

This section gives an overview of ARPRA, the Arrival Rate Parameter Retrieval Algorithm. The 
functioning of the ARPRA framework, visualized in Figure 2, can be summarized as follows. All 
ARPRA’s inputs originate from an event log, with the percentage of entities that queued upon arrival (q) 
as its main input. Given this percentage, the algorithm iteratively adjusts the parameter set (Ȳ) of a 
particular IAT probability distribution (݂ሚ) until the queue percentage in a simulated log (ݍ෤) matches the 
queue proportion from the original event log (q). When this is the case, the parameter set (Ȳ) is recorded 
and the algorithm proceeds to its next iteration until a pre-specified number of such matches (r) are 
obtained. Afterwards, an aggregated parameter estimate is returned (Ȳ௦௘௟௘௖௧௘ௗ). 

Even though ARPRA is a generic framework, the remainder of this section details the 
operationalization suggested in Martin, Depaire and Caris (2015) as an implementation is required to 
investigate ARPRA’s sensitivity. For the sake of clarity and brevity, only key concepts are included. 

 

Figure 2: Overview of the generic ARPRA framework (Martin Depaire and Caris 2015). 

3.1 Event log inputs 

At the top of the schematic overview in Figure 2, a PAIS-supported process is shown with a particular, 
unknown, IAT input model ݂ሺȲ௥௘௔௟ሻ  and first activity service time (FAST) probability distribution ݃ሺߠ௥௘௔௟ሻ. This process generates an event log from which three inputs for ARPRA are retrieved: the 
percentage of entities that queued upon arrival (q), an initial parameter set estimate for the IAT input 
model (߰ ଴) and knowledge on the service time for the first activity (݃ሺߠሻ෫ ). 

Firstly, to mine q from the event log, the first activity timestamps are investigated for consecutive 
entities. Consider Table 3, where the first activity start and end timestamps are recorded for the first four 

REALITY
PAIS supported process

EVENT LOG

generates

 ෤ݍ

ARPRA

output

IAT input model:

GLOBAL
PARAMETERS	ݍǡ ݃ሺߠሻ෫ ǡ Ȳ ൌ 	 ߰Ͳ 

simulate process (ሚ݂ሺȲሻǡ ݃ሺߠሻ෫ ǡ ෤݊) 

ሚ݂ሺȲ݀݁ݐ݈ܿ݁݁ݏ ሻ 

repeat while ȁȰȁ ൏  and ݎ
adjust Ȳ 

IAT distribution: ݂ሚ 
tolerance: ߜ 
number of required tolerable estimates: ݎ 
number of simulated entities: ෤݊ 
number of verification replications: ݒ 

ሚ݂ǡ ǡߜ ǡݎ ෤݊ǡ ݒ  

if ȁݍ െ ෤ȁݍ	 ൑ then Ȱ ߜ ൌ Ȱ ڂ ሾȲ ǡ  ෤ሿݍ
Ȳ݅	׊ א Ȱ: ݍ෤݈݅ݐݏ  = ሾݍ෤݅ሿ  

෤݆ݍ     ൌ simulate process (ሚ݂ሺȲ݅ ሻǡ ݃ሺߠሻ෫ ǡ ෤݊)  

ݐݏ෤݈݅ݍ ר                       ൌ ݐݏ෤݈݅ݍ ڂ ෤݆ݍ ׊)   ݆ א ሼͳǡ ǥ ǡ  (ሽݒ
    Ȱݒ ൌ 	 Ȱݒ ڂ	 ሾȲ݅ ǡ ݉݁݀݅ܽ݊ሺݍ෤݈݅ݐݏ ሻሿ   
Ȳ݀݁ݐ݈ܿ݁݁ݏ ൌ 	 ൬Ȳ݅ ฬ	Ȳ݅ א Ȱݒ ר ȁݍ െ ෤݅ȁݍ ൌ minݍ෤݆ א Ȱݒȁݍ െ ෤݅ȁ൰ݍ  

iteration parameter set estimate: Ȳ 
simulated queue proportion: ݍ෤ 
tolerable estimate list: Ȱ 
simulated queue proportion list: ݍ෤݈݅ݐݏ  
verified tolerable estimate list: Ȱݒ 
output parameter set: Ȳ݀݁ݐ݈ܿ݁݁ݏ  

IAT model: ݂ሺȲ݈ܽ݁ݎ ሻ
FAST model: ݃ ሺ݈ܽ݁ݎߠ ሻ 

number of cases: ݊ 

FAST: ݃ ሺߠሻ෫  
initial parameter set: ߰Ͳ 
log queue proportion: ݍ  
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customers in the car rental company’s event log. A customer had to wait for activity ‘Customer 
registration’ when the execution starts immediately after ‘Customer registration’ ended for the previous 
customer. When this is the case, e.g. for customer 3 in Table 3, the value True is assigned to a boolean 
Queue. Otherwise, this value is set to False. After assigning Queue values to all customers, q corresponds 
to the percentage of customers for which Queue = True. 

Table 3: Illustration of Queue-value assignment. 

Unique 
customer ID 

‘Customer registration’  
start timestamp 

‘Customer registration’ 
end timestamp 

Queue 

1 07/04/2015 09:17:38 07/04/2015 09:22:57 False 
2 07/04/2015 09:33:04 07/04/2015 09:37:19 False 
3 07/04/2015 09:37:19 07/04/2015 09:42:01 True 
4 07/04/2015 09:42:01 07/04/2015 09:47:50 True 
… … … … 

 

Secondly, an initial parameter set (߰଴), which is used in ARPRA’s first iteration, is retrieved from the 
log. This involves fitting probability distribution ሚ݂, specified in Section 3.2, on known IAT values in the 
original event log. IATs are known when two consecutive entities did not queue upon arrival, i.e. have 
Queue = False. When this is the case, the start timestamp for this activity corresponds to entity arrival. 
Hence, exact IATs can be calculated, e.g. for customer 2 in Table 3. 

Finally, knowledge on the first activity service time (݃ሺߠሻ෫ ) from the event log is required as it will be 
used during the construction of a simulated log. As both the start and end timestamp are assumed to be 
recorded, service times can directly be calculated. Service time observations from the original log are 
directly used when ARPRA creates a simulated log in its iterations. This approach is selected as queues 
are formed influenced by the interaction between arrival and service times. Consequently, ARPRA will 
maintain the order of service time observations from the original event log. When the size of ARPRA’s 
simulated log (݊෤) exceeds the size of the original event log (݊), the observed FAST sequence is repeated. 

3.2 Global parameters 

Besides the event log inputs, global parameters need to be defined to obtain an executable algorithm. An 
IAT probability distribution (݂ሚ) needs to be put forward for which a parameter set (Ȳ) will be retrieved by 
ARPRA. In the current operationalization, ሚ݂ is equated to a gamma distribution: a probability distribution 
with shape parameter ߙ and scale parameter ߚ, i.e. Ȳ ൌ ሼȽǡ Ⱦሽ. It is purposefully selected because, when ߙ	1 =, a gamma distribution corresponds to an exponential distribution (Law 2007). Consequently, the 
gamma distribution is more generic, but still allows for the often cited exponential IAT probability 
distribution (Law 2007, Kelton, Sadowski, and Zupick 2015).  

Besides ݂ሚ, four other global parameters should be specified: (i) the tolerated deviation from ݍ within 
ARPRA’s iterations ߜ is set to 0.01, (ii) the size of the simulated log ෤݊ should equal 400, (iii) the number 
of tolerable estimates required to end the algorithm ݎ is 10 and (iv) ݒ, the number of additional iterations 
to verify the stability of the queue proportion for a given tolerable parameter set, also equals 10. The 
meaning of these settings is detailed in Section 3.3.  

3.3 Parameter retrieval using ARPRA 

Using the above event log inputs and global parameters, ARPRA retrieves an IAT input model. The 
rectangle marked with ARPRA in Figure 2 is subdivided in two parts by a dashed line. The upper part 
reflects the identification of a series of tolerable parameter sets, while the lower part outlines final output 
selection.  
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An IAT input model, obtained using ሚ݂ and ߰ ଴, initiates the phase in which tolerable parameter sets 
are identified. Given ݂ሚሺ߰଴ሻ, the process is simulated to create a simulated event log. From this log, the 
queue proportion (ݍ෤) is calculated as outlined for the original log in Section 3.1. When ݍ෤ is within a 
tolerance margin ߜ from the queue proportion in the original log (ݍ), the parameter set Ȳ is added to Ȱ 
and iteration proceeds. Conversely, when ݍ෤ does not have a tolerable value, the algorithm continues to the 
next iteration without recording Ȳ. To adjust parameter set Ȳ ൌ ሼȽǡ Ⱦሽ across iterations, the observation 
that the gamma distribution mean ߤ equals ߚߙ is used (Law 2007). The mean IAT can be estimated using 
the original event log by considering the time between the first activity start timestamps for the first and 
last entity in the log. Dividing this timespan by the number of arrivals in this period provides an 
approximation for ߤ. As ߤ fixes the relationship between both parameters, adjusting Ȳ is brought down to 
varying ߙ෤ and changing ߚ෨ using ߚ෨ ൌ 	 ߤ ෤ൗߙ . The adjustment of ߙ෤ across iterations occurs as follows: 

 When ݍ෤ > q + ߜ  for the current iteration, too many entities have been queueing. Consequently, ߙ෤ 
is increased for the following iteration as this increases the mean IAT for a given shape 
parameter. The adjustment size is determined by applying a percentage increase to ߙ෤ 
corresponding to the percentage point deviation between ݍ෤ and ݍ. However, given the non-linear 
relationship between ߙ෤ and ݍ෤, the calculated adjustment is smoothed downward to avoid too large 
adjustments. E.g. a result of 0.008 leads to an actual increase in ߙ෤ of only 0.001.   When ݍ෤ < q – ߜ  for the current iteration, too many entities have been queueing, requiring a 
decrease in ߙ෤ as this reduces the mean IAT for a given shape parameter. The adjustment size is 
defined analogously to the previous situation.  When ȁݍ െ 	 ෤ȁݍ ൑  Ȳ is added to ȰǤ In order to explore the entire range of parameter sets that ,ߜ	
leads to tolerable queue proportions, a large adjustment in ߙ෤ is required to push ݍ෤ outside the 
range [q – ߜ	; q + ߜ] for the following iteration. The direction of this adjustment is determined by 
the value of ݍ෤  for the current and two prior iterations. If ݍ෤ ൐ ݍ  in the current iteration, ߙ෤  is 
doubled for the next iteration to reduce ݍ෤, except when ݍ෤ ൏  for the two prior iterations. In the ݍ
latter case, ߙ෤ is halved to explore another parameter region. The inverse holds if ݍ෤ ൏  in the ݍ
current iteration. When ݍ෤ ൌ  ෤ values for the three prior iterations areݍ ,for the current iteration ݍ
taken into account, where the third lag is a tie-breaker. 

ARPRA’s iteration process ends when a pre-specified number of parameter sets are recorded, i.e. 
when ȁȰȁ ൌ  When this is the case, ARPRA proceeds to the lower part of the rectangle in Figure 2 to .ݎ
select its final output. For each of the ݎ parameter sets in Ȱ, ݒ additional ݍ෤ values are determined. This is 
done because each simulated log is based on random IAT draws from ሚ݂ሺȲ). As a consequence, different ݍ෤  values can be obtained for the same parameter set Ȳ. Hence, for each Ȳ א Ȱ, ݒ  additional queue 
proportions are determined and the median ݍ෤ value will be used in the remainder of the algorithm. Note 
that, in the current implementation, ݎ ൌ ݒ ൌ 10.  

From the previous, a list Ȱ௩ containing parameter estimates with verified ݍ෤ values is obtained. From 
this list, the final output of ARPRA is selected. Parameter set Ȳ௦௘௟௘௖௧௘ௗ is returned, which is the recorded 
parameter set that leads to the closest approximation of ݍ. In case of ties, an aggregated parameter set is 
returned by e.g. calculating the mean for ߙ෤ and its associated ߚ using ߚ෨ ൌ 	 ߤ ෤ൗߙ .   

4 SENSITIVITY OF ARPRA 

The outline of ARPRA in Section 3 only considers a single specification of the event log inputs and 
global parameters. To assess the influence of alternative definitions on ARPRA’s performance, a 
sensitivity analysis is conducted. This paper focuses on (i) the initial parameter set ߰଴ and (ii) the size of 
the original event log ݊. The first subsection outlines the experimental design. Afterwards, the results of 
the sensitivity analysis for ߰଴ and ݊  are reported in the second and third subsection, respectively.  
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4.1 Experimental design  

The sensitivity analysis evaluates the influence of alternative definitions of ߰଴	and ݊  on ARPRA’s ability 
to rediscover a known IAT input model solely using an event log. To this end, the car rental company’s 
process, introduced in Section 2.1, is the starting point. Given the focus on IAT modeling, especially the 
first activity ‘Customer registration’ is of interest. Within this context, a real IAT input model ݂ሺȲ௥௘௔௟ሻ = 
Gamma(ߙǡ ߚ ) is put forward, which is of course unknown in reality. Using this IAT probability 
distribution, an event log is created. Only using this log, ARPRA is applied and a particular output ሚ݂ሺȲ௦௘௟௘௖௧௘ௗሻ = Gamma(ߙǡ෥  ෨) is obtained. The deviation between Ȳ௥௘௔௟ and Ȳ௦௘௟௘௖௧௘ௗ reflects the ability ofߚ
the algorithm to rediscover the real IAT input model based on an event log. To put the observed 
deviations into perspective, the percentage deviation from the real value is considered. For a particular 
real IAT input model, several definitions for ߰଴  or ݊  are considered. By comparing the percentage 
deviations for these alternative definitions, their influence on ARPRA’s performance can be evaluated 

The experiment described above is repeated for several IAT gamma distributions representing reality. 
These distributions are randomly defined by drawing values for ߙ and ߚ from a uniform distribution over 
a particular range. To specify these ranges, it should be taken into account that the service times for the 
activity ‘Customer registration’ follow a triangular distribution with parameters (4, 5, 7) minutes. Hence, 
the mean service time equals 5.33 minutes. To allow ‘Customer registration’ to reach a steady state, its 
utilization factor should be smaller than one (Hillier and Lieberman 2010). This implies that the mean 
IAT, ߚߙ for the gamma distribution, should be at least 5.33 minutes as the activity only has a single 
server. Consequently, when real parameter values need to be drawn, ߙ  is drawn from a uniform 
distribution between 1 and 2 and ߚ from a uniform distribution between 5.33 and 7.  

4.2 Sensitivity for initial parameter estimate (࣒ ૙) 

4.2.1 Considered specifications 

The initial parameter estimate defines the IAT input model that will be used in the first iteration of 
ARPRA. To verify the sensitivity for ߰଴, three distinct definitions are considered:  Definition 1: the initial value of ߙ is set to 1 and the initial ߚ equals the mean IAT, where the 

mean IAT is derived from the event log as outlined in Section 3;  Definition 2: the initial values for ߙ and ߚ are determined by fitting a gamma distribution on 
entities for which IATs can be calculated in the original event log, which is the ߰଴ definition used 
in Section 3. When less than five exact IATs are retrievable from the log, ߙ is set to 1 and the 
initial ߚ equals the mean IAT.  Definition 3: the initial ߙ is set to the mean IAT and the initial ߚ is set to 1. 

Using the experimental design in Section 4.1, a real IAT input model is specified and an event log is 
created. Solely using this log, ARPRA is applied three times with alternative ߰଴ definitions. All other 
specifications are retained from the operationalization outlined in Section 3. The experiment is repeated 
for 500 distinct real IAT input models in experiment 1A. In experiment 1B, an additional varying factor is 
introduced as 150 real values of ߙ are drawn from each of three distinct ranges for ߙ and ߚ.   

4.2.2 Results 

For experiment 1A, 500 experiments are executed following the above specifications. For each of the real 
IAT input models, an event log is created. The queue proportion ݍ, a key input for ARPRA, in the 500 
event logs has a mean value of 50.93%. Minimum and maximum ݍ values equal 18.75% and 95.50%. 

To gain insight in the accuracy differences of ARPRA across ߰଴ definitions, pairwise comparisons 
are required. For each pair of ߰଴ definitions, a paired t-test for both IAT gamma distribution parameters is 
conducted on the absolute values of the percentage deviations from the real value, abbreviated by 
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 ȁߢǁ஺ோ௉ோ஺ െ  Absolute values are used as mainly the size of the .ߚ or ߙ ௥௘௔௟ȁ% with kappa representingߢ

deviation is deemed relevant, independent of whether it is an over- or underestimation. A Bonferroni 
correction is applied to correct for multiple comparisons, where a family-wise error rate of 5% is used. As 
a consequence, the three individual paired t-tests are evaluated at a 1.66% significance level (Blann 
2015). The results of the pairwise comparisons are summarized in Figure 3 using a visualization method 
originating from Demšar (2006), where the m and s digits under each definition represent the mean ȁߢ஺ோ௉ோ஺ െ ǁ௥௘௔௟ȁ% and its standard deviation, respectively. In Figure 3, ߰଴ߢ  definitions are ranked by 
increasing ȁߢǁ஺ோ௉ோ஺ െ ǁ஺ோ௉ோ஺ߢ௥௘௔௟ȁ%. The paired t-test tests the null hypothesis that the mean ȁߢ െ  %௥௘௔௟ȁߢ
using both ߰ ଴  specifications is the same. Pairwise comparisons for which insufficient evidence is 
available to reject this null hypothesis are marked using bold line segments. The results show that the 
second definition for ߰଴ leads to the lowest ȁߢǁ஺ோ௉ோ஺ െ  However, none of the .ߚ and ߙ ௥௘௔௟ȁ% for bothߢ
performance differences are statistically significant. Hence, ARPRA is fairly robust for the initial 
parameter set ߰଴. 

Besides the pairwise comparisons, the three ߰଴  definitions can be evaluated independently by 
verifying if a bias is present in the obtained IAT gamma distribution parameters. To this end, the null 
hypothesis that the mean percentage deviation from the real parameter, denoted by ሺߢǁ஺ோ௉ோ஺ െ  ,%௥௘௔௟ሻߢ
equals zero is evaluated at significance level 5%. Table 4, which expresses percentages in decimal form, 
shows that insufficient evidence is present to reject this null hypothesis for ߙ , regardless of the ߰଴ 
definition used. For ߚ , the null hypothesis can be rejected for all ߰଴  specifications, with the second 
definition rendering the lowest mean ሺߢǁ஺ோ௉ோ஺ െ   .ߚ and ߙ ௥௘௔௟ሻ% for bothߢ

         
                         (a)                   (b) 

Figure 3: Pairwise comparison of ȁߢǁ஺ோ௉ோ஺ െ  .(experiment 1A) ߚ and (b) ߙ ௥௘௔௟ȁ% for (a)ߢ

Table 4: ሺߢǁ஺ோ௉ோ஺ െ  ௥௘௔௟ሻ% results for alternative ߰଴ definitions (experiment 1A). ࣒૙ߢ
def. 

ሺࢻ෥࡭ࡾࡼࡾ࡭ െ ࡭ࡾࡼࡾ࡭෩ࢼሻ% ሺ࢒ࢇࢋ࢘ࢻ െ  ሻΨ࢒ࢇࢋ࢘ࢼ
Mean 
value 

St. dev. in 
sample 

95% conf. int. Mean 
value 

St. dev. in 
sample 

95% conf. int. 

1 -0.0028 0.1690 [-0.0177,0.0120] 0.0404 0.2404 [0.0193,0.0615] 
2 0.0127 0.1695 [-0.0022,0.0276] 0.0217 0.2232 [0.0021,0.0413] 
3 0.0067 0.1671 [-0.0080,0.0214] 0.0302 0.2718 [0.0063,0.0541] 

 

The results reported above suggest that ARPRA’s performance is relatively robust for the selected ߰଴ 
definition. However, the effect of the ߰଴ specification might be influenced by the real parameter set. To 
gain deeper understanding on this matter, experiment 1B is conducted, where three ranges for the real 
value of ߙ and ߚ are defined: (i) Range 1: ߙ ߚ  ר [1.33 ,1.0]	א ߙ :Range 2 (ii) ,[6.0 ,5.5] א ߚ  ר [1.66 ,1.33]	א ߙ :and (iii) Range 3 [6.5 ,6.0] א ߚ  ר [2.0 ,1.66]	א  From each range, 150 values are .[7.0 ,6.5] א
drawn using a uniform distribution to represent the real IAT input model. The mean ݍ values for the 
resulting event logs for range 1, 2 and 3 equal 78.56%, 46.61% and 27.95%, respectively. 

Pairwise comparisons of ȁߢǁ஺ோ௉ோ஺ െ  ௥௘௔௟ȁ% do not show statistically significant differences betweenߢ
the ߰ ଴ definitions when real values are drawn from ranges 1 or 3, when a 5% family-wise error rate is 
used. These results are not visualized due to space limitations. Conversely, for real values from range 2, 
ARPRA is significantly more accurate with the second ߰଴ definition than with the third specification for ߙ and ߚ.  

1 2 3

Def. 3
- m: 12.52%
- s: 11.06%p

Def. 2
- m: 12.36%
- s: 11.64%p

Def. 1
- m: 12.41%
- s: 11.47%p
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The results of the independent evaluation of the ߰଴ definitions in each of the ranges are shown in 
Table 5. The null hypothesis states, once again, that the mean ሺߢǁ஺ோ௉ோ஺ െ  ௥௘௔௟ሻ% equals zero. Independentߢ
from the ߰ ଴ specification, insufficient evidence is present to reject this null hypothesis when the real 
values originate from ranges 1 and 3. Conversely, for real values from range 2, a small overestimation of ߙ is shown for all initial parameter definitions and a small underestimation of ߚ for definitions 2 and 3. 

       
                         (a)                  (b) 
Figure 4: Pairwise comparison of ȁߢǁ஺ோ௉ோ஺ െ   (experiment 1B, range 2) ߚ and (b) ߙ ௥௘௔௟ȁ% for (a)ߢ

Table 5: ሺߢǁ஺ோ௉ோ஺ െ  ௥௘௔௟ሻ%  results for alternative ߰଴ definitions (experiment 1B). ࣒૙ߢ
def. 

ሺࢻ෥࡭ࡾࡼࡾ࡭ െ ࡭ࡾࡼࡾ࡭෩ࢼሻ% ሺ࢒ࢇࢋ࢘ࢻ െ  ሻΨ࢒ࢇࢋ࢘ࢼ
Mean 
value 

St. dev. in 
sample 

95% conf. int. Mean 
value 

St. dev. in 
sample 

95% conf. int. 

Range 1: ࢻ ࢼ  ר [1.33 ,1.0]	א  [6.0 ,5.5] א
1 0.0296 0.5575 [-0.0603,0.1195] 0.1018 0.4833 [0.0238,0.1798] 
2 0.0446 0.3501 [-0.0119,0.1011] 0.0946 0.6494 [-0.0102,0.1994] 
3 0.1512 1.2938 [-0.0576,0.3599] 0.1222 0.7407 [0.0027,0.2417] 
Range 2: ࢻ ࢼ  ר [1.66 ,1.33]	א  [6.5 ,6.0] א
1 0.0276 0.1291 [0.0068,0.0484] -0.0151 0.1322 [-0.0364,0.0063] 
2 0.0311 0.1191 [0.0119,0.0503] -0.0213 0.1183 [-0.0404,-0.0022] 
3 0.0407 0.1349 [0.0189,0.0624] -0.0255 0.1421 [-0.0484,-0.0026] 
Range 3: ࢻ ࢼ  ר [2.0 ,1.66]	א  [7.0 ,6.5] א
1 0.0043 0.1071 [-0.0130,0.0216] 0.0068 0.1164 [-0.0120,0.0256] 
2 0.0018 0.1034 [-0.0149,0.0184] 0.0083 0.1107 [-0.0095,0.0261] 
3 0.0031 0.1102 [-0.0147,0.0208] 0.0082 0.1145 [-0.0102,0.0267] 

 

In summary, experiments show that ARPRA is fairly robust for the specification of the initial 
parameter set. Even though definition 2 tends to lead to the most accurate results, performance differences 
are not statistically significant. Only when the real parameters have medium values, i.e. in range 2, 
ARPRA’s output is significantly more accurate when ߰଴ is based on definition 2 than on definition 3. 

4.3 Sensitivity for the size of the event log (n)   

4.3.1 Considered specifications 

ARPRA is mainly guided by ݍ, which is retrieved from the original event log. The event log is generated 
by a process with a particular IAT and FAST input model. As the log only contains events for a limited 
period of time, its size influences the likelihood that the arrival and service time patterns in the event log 
are representative for their equivalents in reality. The larger the original event log, the more likely it 
becomes that this is the case. As a consequence, it is useful to investigate the sensitivity of ARPRA to 
variations in the size of the original event log ݊. 

Based on the experimental design outlined in Section 4.1, ARPRA’s sensitivity to ݊ is evaluated by 
considering five different log sizes, i.e.	݊ א  {100, 200, 400, 800, 1600}. All other specifications, 
including the one for ߰଴, are retaken from the discussion in Section 3. This experiment is repeated 500 

ȁߙ෤ܣܴܴܲܣ െ ݈ܽ݁ݎߙ ȁ	%   หߚ෨ܣܴܴܲܣ െ ݈ܽ݁ݎߚ ห % 

876



Martin, Depaire, and Caris 
 

times. The entire procedure outlined to this point is executed twice: once with ෤݊ = 400 in experiment 2A, 
i.e. the specification mentioned in Section 3, and once with ෤݊ = ݊  in experiment 2B. 

4.3.2 Results 

Given the outlined experimental design, two series of 500 experiments are conducted. In each series, the 
500 real parameter sets lead to the creation of 2500 event logs, for which ݍ has a mean value of 48.31% 
for experiment 2A and 48.84% for experiment 2B. Minimum and maximum values equal 12% and 98% 
for experiment 2A and 11% and 96.75% for experiment 2B, respectively. 

The results of the pairwise comparison of ȁߢǁ஺ோ௉ோ஺ െ ௥௘௔௟ȁߢ % across the different log sizes for 
experiment 2A are visualized in Figure 5. When a family-wise error rate of 5% is used and, i.e. a 0.5% 
significance level is applied to individual paired t-tests, results differ between ߙ  and ߚ . For ߙ , the 
accuracy of ARPRA significantly increases as the log size increases. Accuracy improvements can also be 
observed for ߚ as ݊  increases, but these are statistically insignificant for the comparison between (i) ݊= 
400 and ݊ = 800 and (ii) ݊ = 800 and ݊= 1600. A reason for the observed accuracy improvement is that 
larger the event log, the more representative ݍ will be for the real arrival rate. 

Besides the comparative assessment, ARPRA can also be evaluated by considering all log sizes 
independently. To this end, the null hypothesis that the mean ሺߢǁ஺ோ௉ோ஺ െ  ௥௘௔௟ሻ% equals zero is evaluatedߢ
for each value of ݊ at the 5% significance level. The results are summarized in Table 6. Regarding ߙ, the 
mean and standard deviation of ሺߢǁ஺ோ௉ோ஺ െ  ௥௘௔௟ሻ% tends to decrease as ݊ increases. However, only for logߢ
sizes 800 and 1600 insufficient evidence is present to reject the aforementioned null hypothesis. For ߚ, a 
similar null hypothesis cannot be rejected for all values of ݊, apart from 100. The standard deviation of ሺߢǁ஺ோ௉ோ஺ െ ǁ஺ோ௉ோ஺ߢRegarding the mean value of ሺ .ߚ ௥௘௔௟ሻ% decreases as ݊ increases forߢ െ  ௥௘௔௟ሻ%, a lessߢ
consistent pattern is observable. 

 
              (a)                                      (b) 

Figure 5: Pairwise comparison of ȁߢǁ஺ோ௉ோ஺ െ  .(experiment 2A) ߚ and (b) ߙ ௥௘௔௟ȁ% for (a)ߢ

Table 6: ሺߢǁ஺ோ௉ோ஺ െ  .௥௘௔௟ሻ% results for varying log sizes, with ෤݊ = 400 (experiment 2A)ߢ

Log 
size ࢔ 

ሺࢻ෥࡭ࡾࡼࡾ࡭ െ ࡭ࡾࡼࡾ࡭෩ࢼሻ% ሺ࢒ࢇࢋ࢘ࢻ െ  ሻΨ࢒ࢇࢋ࢘ࢼ
Mean 
value 

St. dev. in 
sample 

95% conf. int. Mean 
value 

St. dev. in 
sample 

95% conf. int. 

100 0.1073 0.3309 [0.0783, 0.1364] -0.037 0.2558 [-0.0591, -0.0141] 
200 0.0427 0.2021 [0.0249, 0.0604] -0.004 0.2379 [-0.0253, 0.0165] 
400 0.0267 0.1543 [0.0131, 0.0402] -0.004 0.1644 [-0.0186, 0.0103] 
800 0.0013 0.1254 [-0.0097, 0.0123] 0.0148 0.1687 [-0.0000, 0.0296] 
1600 0.0026 0.1106 [-0.0071, 0.0123] 0.0096 0.1263 [-0.0015, 0.0207] 

 

In experiment 2A, ݊෤ equals 400 independent of the size of the original event log. Even though this 
limits the required computational efforts when the original log is large, it also implies that not all first 
activity service times from the original event log are used when ݊ ൐ 	 ෤݊. Consequently, the number of 
simulated entities is equated to the size of the event log in experiment 2B. From the pairwise comparison 
of ȁߢǁ஺ோ௉ோ஺ െ ݊ ௥௘௔௟ȁ% acrossߢ  values, visualized in Figure 6, it follows that the differences in accuracy 
between ݊  = 1600 and ݊ = 800 for ߙ and ݊  = 400 and ݊ = 200 for ߚ become statistically insignificant. 
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When comparing the means and standard deviations in Figure 6 with the annotations of Figure 5, few 
noteworthy differences are observed. Hence, the effect of not using all first activity service times on 
ARPRA’s accuracy seems to be rather limited. 

The results of the independent evaluation of log sizes are presented in Table 7. Insufficient evidence 
is available to reject the null hypothesis that the mean ሺߢǁ஺ோ௉ோ஺ െ ௥௘௔௟ሻߢ % equals zero at the 5% 
significance level for all log sizes for ߚ and only for the largest event log for ߙ. 

 
              (a)                                      (b) 

Figure 6: Pairwise comparison of ȁߢǁ஺ோ௉ோ஺ െ  .(experiment 2B) ߚ and (b) ߙ ௥௘௔௟ȁ% for (a)ߢ

Table 7: ሺߢǁ஺ோ௉ோ஺ െ ݊ = ௥௘௔௟ሻ% results for varying log sizes, with ෤݊ߢ  (experiment 2B). 

Log 
size ࢔ 

ሺࢻ෥࡭ࡾࡼࡾ࡭ െ ࡭ࡾࡼࡾ࡭෩ࢼሻ% ሺ࢒ࢇࢋ࢘ࢻ െ  ሻΨ࢒ࢇࢋ࢘ࢼ
Mean 
value 

St. dev. in 
sample 

95% conf. int. Mean 
value 

St. dev. in 
sample 

95% conf. int. 

100 0.0591 0.2994 [0.0328, 0.0854] 0.0078 0.2904 [-0.0177, 0.0333] 
200 0.0261 0.2110 [0.0075, 0.0446] 0.0143 0.2243 [-0.0055, 0.0341] 
400 0.0270 0.1765 [0.0115, 0.0425] 0.0135 0.4022 [-0.0218, 0.0489] 
800 0.0231 0.1235 [0.0122, 0.0340] -0.0079 0.1278 [-0.0191, 0.0034] 
1600 0.0081 0.1106 [-0.0016, 0.0178] 0.0032 0.1181 [-0.0072, 0.0135] 

 

To sum up, experimentation shows that the size of the original event log influences ARPRA’s 
performance. When increasing ݊, ARPRA’s output becomes significantly more accurate for ߙ when ݊෤ = 
400. For ߚ, performance differences for successive increases in ݊ become statistically insignificant from ݊ = 400 onwards. Moreover, the mean ሺߢǁ஺ோ௉ோ஺ െ  ௥௘௔௟ሻ% tends to decrease as the size of the event logߢ
increases. Insufficient evidence was present to show a systematic bias for both parameters in large event 
logs. In larger event logs, the value of ݍ, the main input of ARPRA, is more likely to be representative for 
the true underlying IAT input model. Consequently, ARPRA uses a more accurate guiding value for ݍ 
and, hence, its output is more likely to approximate reality more closely. The influence of equating ෤݊ to 
the size of the original event log is rather limited. When interpreting the results outlined above, it has to 
be taken into account that rather conservative values for ݊ are used. Real-life event logs tend to contain 
events related to a large number of cases. 

5 CONCLUSION 

This paper presented a sensitivity analysis of ARPRA, an algorithm that derives an IAT input model from 
an event log. It is the first algorithm that explicitly takes the notion of queues into account, which is 
important as ignoring queuing behavior can bias the retrieved arrival patterns from the log. To execute 
ARPRA, several event log inputs and global parameters need to be defined. In order to assess the 
influence of those specifications on ARPRA’s performance, a sensitivity analysis is conducted. More 
specifically, the influence of (i) the initial estimate for the parameter set ߰଴ and (ii) the size of the original 
event log ݊  are investigated. 

Experimentation shows that ARPRA is fairly robust for the specification of ߰଴ . Even though a 
specification that fits an initial gamma distribution to IATs retrievable from the log shows the most 
accurate results, the observed performance differences are not statistically significant. Regarding ݊ , 
ARPRA provides more accurate results for larger event logs than for smaller event logs. However, the 

ȁߙ෤ܣܴܴܲܣ െ ݈ܽ݁ݎߙ ȁ	%   

1 2 3 4 5

n = 100
- m: 21.47%
- s: 19.55%p

n = 200
- m: 16.40%
- s: 15.35%p

n = 400
- m: 13.67%
- s: 37.85%p

n = 800
- m: 9.52%
- s: 8.55%p

n = 1600
- m: 8.63%
- s: 8.05%p
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maximum event log size that is considered is 1600 cases, which might still be quite small in practice. 
Experimentation also showed that the effect of setting ෤݊ equal to ݊  is rather limited. 

Future work on ARPRA will focus on the development of a more advanced parameter search 
strategy, taking into account the non-linear relationship between the gamma distribution parameters and ݍ. Moreover, ARPRA should be extended to retrieve an IAT input model when (i) no a priori distribution 
is assumed and (ii) only start or end events are recorded in the event log. 
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