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ABSTRACT 

Discrete event simulation is an accepted technology for investigating the dynamic behavior of complex 
manufacturing systems. Visualizations created within simulation studies often focus on the animation of 
the dynamic processes of a single simulation run, supplemented with graphs of certain performance 
indicators obtained from replications of a simulation run or a few manually conducted simulation 
experiments. This paper suggests a much broader visually aided analysis of simulation input and output 
data and their relations than it is commonly applied today. Inspired from the idea of visual analytics, we 
suggest the application of data farming approaches for obtaining datasets of a much broader spectrum of 
combinations of input and output data. These datasets are then processed by data mining methods and 
visually analyzed by the simulation experts. This process can uncover causal relationships in the model 
behavior that were previously not known, leading to a better understanding of the systems behavior. 

1 INTRODUCTION 

Analyzing discrete event manufacturing simulations is usually performed by looking at a few distinct 
output parameters (e.g., throughput, resource utilization) according to the simulation project scope. This is 
typically driven by guiding questions such as “which scheduling strategy performs best” or “what size 
does this buffer need”. As a side effect of this approach, one does not have to model aspects of the system 
that are not influential to answering the proposed questions.  
 Simulation experimentation is usually conducted manually, in the best case assisted by some kind of 
experiment manager. Simulation based optimization on the other hand tries to find an optimal solution for 
some set of output values of the simulation by varying selected input parameters and automatically 
executing repeated simulation runs. Input parameters in that scenario are varied according to the applied 
optimization algorithm. 
 In both cases, the simulation analyst usually takes an educated guess based on his experience which 
input parameters might be influential on the project scope and therefore time and effort is invested in 
experimenting with these focus parameters in a fixed system configuration environment. Kleijnen et al. 
refer to this as the trial-and-error approach to finding a good solution and argue that simulation analysts 
should spend more time in analyzing than building the model (Kleijnen et al. 2005).  

In this paper, we suggest a much broader visually aided analysis of simulation input and output data 
and their relations. By adopting techniques from the database sector, a visually aided approach for 
simulation data analysis is outlined. We call this approach “visual analytics of manufacturing simulation 
data”. The outlined approach combines elements from big data technologies, data mining, knowledge 
discovery in databases, and interactive visual analysis. 
 While a previous paper outlined the data mining and knowledge discovery aspects of the approach 
(Feldkamp, Bergmann, and Strassburger 2015), we here focus on the visualization side.  
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 The remainder of this paper is structured as followed: In section 2 we introduce visual analytics and 
related work. Section 3 discusses the general process for visual analytics of manufacturing simulation 
data. Section 4 introduces a case study and discusses different visualization techniques which can be 
beneficial for interactive visual exploration of simulation input and output data. Section 5 concludes the 
paper and discusses future work. 

2 VISUAL ANALYTICS 

Visualization in general is an important tool when an interpretation of data is needed. As such, 
visualization is commonly applied in almost any simulation study in some way. Typical visualization 
techniques applied in the context of discrete event simulations include the animation of the dynamic 
processes of a single simulation run, often focusing on the movement of entities through the system under 
investigation. Other visualization techniques are applied as part of traditional simulation output analysis 
(Law 2014) and include graphs of certain performance indicators obtained from replications of a 
simulation run or a few manually conducted simulation experiments. 

Visual analytics goes beyond visualization techniques that are commonly applied in simulation 
studies today. Visual analytics aims at integrating the human into a visual data exploration process (Keim 
2002). Integrating the human with its perceptual abilities to large data sets is key for the success in this 
approach. The basic idea of visual analytics is to present the data in some visual form, allowing the 
human to get insight into the data, draw conclusions, and interact with the data to confirm or disregard 
those conclusions. Suitable visualizations can utilize the human ability to recognize patterns and 
coherence. This is also referred to as visual reasoning, which is the science of synthesizing information 
from massive datasets in order to provide understandable assessments that can be used effectively for 
communication action and decision making (Thomas and Cook 2005). 

Visual analytics can be defined as “an iterative process that involves information gathering, data 
preprocessing, knowledge representation, interaction and decision making” (Keim et al. 2008). It 
combines the strengths of machines, e.g., for processing huge amounts of data, with those of humans, e.g., 
for pattern recognition and drawing conclusions. As such, visual analytics combines methods from 
knowledge discovery in databases (KDD), statistics and mathematics as driving forces behind automatic 
data analysis with human capabilities to perceive, relate, and conclude (Fayyad, Piatetsky-Shapiro, and 
Smyth 1996).  

A proper visual analysis should show the important, big picture first, and uncover details on demand. 
The visual analytics process is furthermore conducted through a frequent shift between visual and 
computational analysis of data (Keim et al. 2008), which makes it a semi-automatic process.  

Among others, main benefits of visual analytics are increasing cognitive resources by expanding 
human working memory, reducing time exposure by representing large amounts of data in a small space 
and promoting recognition of patterns as well as exploring relationships that otherwise remain hidden or 
at least were more difficult to find (Thomas and Cook 2005). 

The term “visual analytics” is commonly associated with the terms “Big Data” and “Data Mining” 
(Chen et al. 2009; Wong et al. 2012). Data Mining is an important substep in the KDD process involving 
the algorithmic tools for statistical processing, e.g., clustering or regression (Han, Kamber, and Pei 2012). 
Hence, a prerequisite for its applicability is the presence of large amounts of data. As we aim at adopting 
visual analytics for a better analysis of discrete event simulations, we propose the usage of a “data 
farming” approach (as suggested in (Horne and Meyer 2005; Sanchez 2007)) for designing large scale 
simulation experiments for obtaining detailed data sets which document the behavior of our system under 
investigation. In this context, farming refers to data creation and describes how one should cultivate 
simulation experiments to maximize the data yield (Sanchez 2014). As these datasets can grow large very 
fast, they become too big to manually review each observation individually, making visual analytics a 
reasonable tool for their analysis. 
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3 ADOPTING VISUAL ANALYTICS FOR MANUFACTURING SIMULATION DATA 

Simulation experiments can be regarded as a black box that transforms input data into output data. In a 
manufacturing context, the input data are adjustable system parameters like inter arrival times, buffer 
sizes or scheduling strategies. Result data on the other hand is composed of the system’s performance 
indicators like throughput times or machine utilization.  

Figure 1 shows our general approach for knowledge discovery in manufacturing simulations through 
visual analytics. First we have to identify adjustable system input parameters. The next step is estimating 
bottom and top factor level limits and defining experiments accordingly. Moreover, measurable output 
parameters have to be defined. This includes possible data types and measurement scales. As a side note, 
interpretation of results certainly implies a decent understanding of the underlying model. Although we 
abstracted the model into a black box in our concept, knowledge of the model and creation of knowledge 
through result interpretation are undeniably connected in a specific application. Furthermore, we assume 
that the model is correct and verified, otherwise garbage-in garbage-out principle would be in effect.  

After simulation experiments have been conducted, output data can be processed through data mining 
methods and represented with suitable visualizations. An initial investigation should explore shape and 
distribution of output parameters and linkage between those. Yet before looking at related input 
parameters, possible interesting patterns might even be discovered by only looking at output data. 

 

Knowledge

discovery in 

simulation data

data farming

smart 

experiment 

design  

experiment definitions 

(N parameter sets) 

simulation 

output data

simulation black box
(N experiments * M 

replications)

data mining,

e.g. clustering

Knowledge

visual analytics;

output data cluster

visual analytics;

incl. input data

+ ++
+

++
+

+

+
++ +

+

+
+

+

+
+

+
+

+

++ ++ ++
+

+
+
+

+

+
++ +

+

+
+

+

+
+

+
+

+

++ +

 

Figure 1: Visual Analytics (red border) as key technique of a knowledge discovery process for discrete 
event manufacturing simulations. 

Afterwards, visualizations should establish links between corresponding input and output parameter 
sets. This eventually yields interesting relationships between corresponding input/output parameter 
values. Findings should be interpreted and transformed into knowledge by verifying them through the 
design and conducting of additional experiments in such a way that an iterative process emerges. 

The prerequisite for applying visual analytics techniques is the transformation of data obtained 
through the simulation experiments into a visually representable form. As we are in total control of data 
creation, we here do not have to deal with faulty or incomplete data, that data mining techniques typically 
have to eliminate through selection and preprocessing steps. Furthermore, the amount of generated output 
data solely depends on the experimental setup and on the performance measures of interest and can be 
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adjusted through intelligent design of simulation experiments.  
The transformation of the raw output data includes the application of data mining methods such as 

clustering (Feldkamp, Bergmann, and Strassburger 2015). We suggest to apply a clustering of entire 
simulation runs based on selected output parameters. As a result, experiments within the same cluster are 
similar regarding the selected system performance measures. 

Figure 2 left side shows a small notional demonstration. Note that this example includes a very small 
number of simulation runs, respectively cluster points. In a large scale experiment design, the number of 
cluster points is too big to identify single points, but rather a trend and tendency of point distribution is 
the focus of visual representation.  
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Figure 2: Left side: Two-dimensional representation of simulation output clustering. Each point 
represents a single experiment and each cluster represents a group of experiments that are similar 
regarding throughput and average cycle time. Right side: Parallel coordinates visualization with four 
parameters.  

If the clustering algorithm needs to process more than two variables, a multidimensional data 
representation is necessary. The parallel coordinates method as shown in Figure 2 (right side) has proven 
to be a quite intuitive method for interactive visual inspection and will be further discussed in section 4. 

Visualizing the clustering results will yield a first visual impression and a quick overview of the 
performance measures from a large numbers of experiments at once. We also get a first impression on 
how those experiments are distributed regarding the observed performance measures. 

The next step consists in the investigation of the clusters and the experiments they are composed of. 
Each experiment (i.e., simulation run) represents a dataset composed of a set of output parameters with 
corresponding input parameters. If we look at a distinct cluster, we can also investigate which input 
parameters are linked to the experiments in this clusters. Following the iterative process of visual 
analytics, we may apply further statistical methods to gain additional insights on how input parameter 
values are distributed among the different clusters. 

Taking a look at cluster 2 in Figure 2 as an example, the system’s performance of corresponding 
experiments is rather poor (amplified by low throughput and high cycle times), whereas system 
performance of cluster 3 experiments are quite good, with rather high throughputs and low cycle times. 
From here we can investigate which input settings led to the corresponding systems performance 
measures that define this cluster. 

If we are able to outline a significance of distinct input parameters values that lead to a specific 
cluster allocation that is yet even unexpected, we actually created new knowledge. At best this knowledge 
is utilized to support factory planning decisions. For a better understanding, we clarify the visual analytics 
process with a simple use case example in the following chapter.  

4 USE CASE SCENARIO 

4.1  Design of Experiments 

For a demonstration of our approach, we use an enhanced single server model. Seven different types of 
products enter a manufacturing system through a single source. Each product type has distinct processing 
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and setup times. Additionally, each job is assigned a unique due date when entering the system. Jobs are 
sorted before entering the processing station. The station requires a proper setup according to the product 
type. Setup time of the station varies depending on the product type. Figure 3 shows a screenshot of 
simulation model. 

 

 

Figure 3: Screenshot of the Plant Simulation Model. 

 Adjustable input parameters of the model include the inter arrival time of jobs, the sorter’s maximum 
capacity, the sorting strategy, and the mixture of product types. Output parameters include throughput, 
mean cycle times, setup times, due date delays, and station utilization. 

Table 1: Experimental design. 

Input Parameters Margins Levels 
Inter arrival time 60s-240s 18 
Sorter capacity 10-1000 10 

Sorter strategy 5 strategies 5 

Product mixture 
(Seven product types) 

0-100% 
per product 

47 Experiments 
(NOLH-Sampling) 

Random number stream 1-10 10 

 
 Table 1 shows the design of experiments. For inter arrival times we chose fixed values from 60 
seconds up to 240 seconds, which are also the minimum and maximum processing times per job. Sorter 
capacity was varied from 100 to 1000 slots. 5 different sorting strategies were investigated: First in first 
out (FIFO), shortest processing time (SPT), minimum slack time (SLACK), a weighted combination of 
SPT and earliest due date (SPTEDD), and sorting according to current station setup state. 
 Regarding the product mixture it was not possible to perform experiments with a full factorial design 
from 0%-100% per product type, as this would result in at least 7101 product mixes. Therefore, a sampling 
method was needed to reduce the number of experiments while maintaining large coverage of the 
parameter space. 
 We created our experiments based on the nearly orthogonal latin hypercube (NOLH), which is a 
sampling method that offers a realistic distribution of parameter variability. Orthogonal means that these 
designs try to minimize correlation between input variables and factor-level combinations are evenly 
sampled (Hernandez, Lucas, and Carlyle 2012; Ye 1998). With the sampling design we ended up with 47 
manifestations regarding the product mixture and all input variables combined resulted in a total number 
of 491.160 experiments. Note that we used the sampling method for the product mixture and full factorial 
design for the other variables. This is possible because our test scenario is simple. When models become 
more complex and the number of input variables increases, sampling over all input variables is necessary.  
 We portioned the simulation runs onto multiple machines and conducted them with Tecnomatix Plant 
Simulation. For storing input/output datasets we used a MongoDB noSQL database (MongoDB Inc. 
2010). We choose the noSQL approach, because the schemaless and highly scalable database 
implementation allows to quickly adapt to dataset modifications while neglecting revisions of data 
schema. 
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4.2 Clustering Simulation Output Data 

A prerequisite for visual analytics is the clustering of the datasets under investigation. In conjunction with 
simulation data analysis, we propose to group individual simulation runs into clusters of similar output 
performance values. 
 The first question to answer is therefore which output parameters should be taken into account for the 
clustering algorithm. Because we can observe a large number of distinct output parameters, datasets are 
likely multi-dimensional. In multi-dimensional data, similar datasets are composed of subsets that often 
correlate among each other. Furthermore, correlation among subsets indicates valuable relationship 
information between attributes and eventually hidden casualization (Böhm et al. 2004).  
 Taking this into account, we can identify possible parameter combinations for clustering by looking at 
spatial shapes of subsets and searching for interesting patterns. A valuable form of visualization for this 
purpose are scatterplot matrix visualizations. They draw a two-dimensional scatterplot for each variable 
pair of the multi-dimensional data set. This allows us to visually search for any noticeable, interesting 
structures among subsets. For example, a rather structure less point cloud with a high proportion of 
outliers would result in a decrease of the clusters entropy, so pairwise visual investigation of subsets 
eventually leads to additional insights (Wilkinson, Anand, and Grossman 2006) and therefore meaningful 
clusters. 
 Figure 4 shows selected output parameters of our case study as a scatterplot matrix. From this figure, 
we can identify correlated structures between throughput, station utilization, and station setup proportion. 
What we see are strongly correlated structures among those parameters, which can be expected in a single 
server model. 

 

 

Figure 4: Scatterplot matrix of selected output parameters. Visual inspection can identify parameter sets 
of apparently correlated structures (e.g., throughput – setup proportion, utilization – setup proportion, 
etc.). 

 For demonstration of the concept we therefore use these parameters for clustering our simulation 
runs. As a result, we receive a good separation of clusters that allows us to build a group hierarchy from 
good to poor performance runs (Figure 5). The three dimensional data points are represented in a one 
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dimensional parallel coordinates plot as described in the prior chapter. For a better visual representation, 
each column has been standardized to a 0 mean and a standard deviation of 1, so this visualization is used 
to evaluate the comparison between experiments, not to look at the actual parameter values. Regardless of 
cluster allocation, this visual representation gives a quick overview (regarding the three selected 
performance measures) of almost half a million simulation experiments. 
 A counter example for a bad clustering would be the usage of throughput, setup proportion, and delay 
for the clustering algorithm, because the underlying variables have a very high proportion of outliers and 
are less structured. 

 

C
o
o
rd

in
a
te

 V
a

lu
e

Throughput Utilization SetupProp  

Figure 5: Parallel coordinates visualization of the clustering based on three parameters. Each vertical axis 
represents one output parameter.  

 Looking at Figure 5, the experiments that compose cluster 1 (blue color) have the lowest 
performance, with a low throughput, high proportion of machine setups but still low overall station 
utilization. This performance is worse because e.g. experiments in cluster 4 (purple color) perform much 
better among throughput and station utilization to the proportion of station setup times. Experiments in 
cluster 5 (green) and cluster 2 (orange) perform best, even though cluster 2 has a few outlier experiments 
that have very low setup proportion but do not fulfil the expected linear relation to throughput and station 
utilization. Further investigation should – among other things - find out why those experiments have 
lower throughput than cluster 5 experiments despite low setup time proportion. 

4.3 Investigation of Relationships to Input Data Parameters 

After we grouped the experiments in clusters regarding system performance (of selected output 
parameters), the next step in the proposed visual analytics process is finding relations to experiment input 
parameters and investigating which input parameters values the clusters are composed of. 

For example, a certain input parameter value range that appears frequently in a distinct cluster 
indicates that this parameter is likely influential to the cluster allocation. For that purpose, again, different 
options for visually aided investigation are possible.  

4.3.1 Relationships to Job Inter Arrival Time 

As a start, we may want to investigate the influence of the input parameter “inter arrival time” on the 
cluster allocation. For reasons of simplicity, we want to experiment further with the parallel coordinates 
visualizations introduced above. We now include the desired input parameter “inter arrival time” in the 
plot (Figure 6). 
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Figure 6: Visualization of the clusters now including input parameter inter arrival time. 
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Figure 7: Separate parallel coordinates visualizations of the individual clusters. Interesting aspects 
previously hidden due to overlays can now be uncovered (e.g., outliers concerning setup proportion in 
clusters 2-4, value range overlaps concerning inter arrival time in almost all clusters). 

786



Feldkamp, Bergmann, and Strassburger 
 

 With some imagination, we could already conclude from the good (green) cluster in Figure 6 that low 
values for the input parameter inter arrival time seem to have a positive influence on the selected output 
performance indicators. However, as parallel coordinate plots can become unhandy rather quickly due to 
multiple overlays of the depicted simulation parameters, we have the option to interactively experiment 
with the data sets by fading in and out desired or undesired datasets. That way we can eliminate any 
undesired overlays in the visualization. 

Inspecting the clusters now individually as depicted in Figure 7 we see overall low inter arrival times 
in cluster 5 (green, good performance). However, as also simulation runs from other clusters have 
overlapping inter arrival time value ranges, we can conclude that inter arrival time cannot be the only 
input variable that is influential to cluster allocation and good system performance.  

In cluster 5, we can further see an apparent correlation between inter arrival time and the output 
parameter “setup proportion”, leading to the desire to further investigate on reasons for that. As a 
consequence, we may now want to look at the influence both the product mixture and the sorting strategy 
in these runs. 

4.3.2 Relationships to Product Mixture 

Several options for investigating the product mixture are possible, including histograms of class 
distributions and box plots of certain ratio parameters (Feldkamp, Bergmann, and Strassburger 2015). 
Due to space constraints, we here stay with parallel coordinates plots and visualize overall throughput 
alongside individual throughputs of each product type (Figure 8).  

We can see that the highest cumulative throughputs (parameter to the farthest left on x-axis) are 
correlated with very unbalanced proportions of throughput regarding the product type. This can be 
concluded from the spikes in the parameters showing throughput per product type. The simulation runs in 
the good (green) cluster have a tendency to prefer product mixes with a single product type leading to the 
spikes in throughput of this product type (green spikes in product type throughput). Please note that the 
individual spikes in throughput of a certain product type result from different simulation runs.  

Also from Figure 8 we see that the flatter the lines become, the more balanced is the throughput over 
the product types, leading to a decreased overall throughput. Moreover, the plot also reflects the hierarchy 
of clusters from good to poor system performance. Analysis of this could be confirmed by individual 
cluster plots, which are omitted here due to space constraints. 

 

 

Figure 8: Parallel plot of measured cumulative throughput (parameter on the farthest left) alongside with 
throughputs per product type (from A to G), color-coded with corresponding cluster membership. 
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4.3.3 Relationships to Job Sorting Strategy 

As of now, we have learned that low inter arrival times and unbalanced product mixes seem to have a 
positive effect on the selected performance indicators. While this may be obvious for the depicted single 
server model, visual analysis of more complex models may well reveal less obvious knowledge. 

Staying with the case study, we may now want to investigate for the reasons of our observations, 
leading us to the need to investigate the applied sorting strategy. Since this variable is on a nominal scale 
and has no numeric ratio, we now need to find other visual representations than previously applied. An 
informative visualization should show the proportion of the 5 strategies per cluster. A potential 
visualization would be pie charts. We here suggest the usage of mosaic plots, as they are visually 
somewhat more expressive and more intuitive to read (Figure 9). 

We see that Cluster 1 does not include experiments conducted with the setup optimal strategy. We 
can therefore exclude this strategy as a driving factor for bad system performance. On the contrary, 
looking at the high proportions of this scheduling strategy in Clusters 2, 3 and 5 we may even associate 
this strategy as an important factor that leads to good system performance. For this case study, this is 
obviously an accurate conclusion since this strategy leads to less machine blocking by setup processes. 

 

 

Figure 9: Mosaic plot of sorting strategy proportion per cluster. Note that the width reflects the overall 
amount of simulation runs in the cluster. 

In summary, regarding to our simple single server model, we found out by visual analytics that short 
inter arrival times of jobs are key to a good system performance, at least up to a break-even point where 
machine blockings due to setup processes decrease the systems performance again.  

In that situation a setup optimal scheduling strategy lessens this effect. Furthermore, focusing on 
reducing the product mixture variety is always superior to any sophisticated product mixture, regardless 
of the applied scheduling strategy. 

In line with the proposed iterative process for visual analytics based knowledge discovery, new sets 
of experiments could now be designed to either confirm or dismiss these findings, in order to create 
further knowledge. Next steps would include the design of additional experiments that focus on exploring 
the limits of those input values that apparently lead to good system performance. 

5 DISCUSSION AND SUMMARY 

Although options for finding hidden knowledge in a simple single server model are quite limited, we 
demonstrated how a visual analytics based knowledge discovery process for manufacturing simulation 
data can be performed. We have shown how this process can be adopted for simulation output analysis 
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and how visual analytics combined with elements from big data analytics can be usefully applied in 
simulation studies. Our approach brings in an additional viewpoint to discrete event simulation analysis, 
which can be considered alongside traditional experimentation techniques conducted in simulation 
studies.  
 Moreover, our approach might be more appealing to people who are not “simulation experts”, 
because in contrast to working through lines of numbers, visualization is a more striking way of handling 
simulation data. On the other hand it may be less precise since it is more open to interpretation. Planning 
decisions should always be assisted with traditional simulation studies, but our approach on covering a 
broadband of system behaviors can help to guideline a certain path. 

Visual linkage between input/output parameters of different scale measurement levels (e.g. nominal 
and numerical) leads to new challenges in visualization methods. This is in due consideration that 
visualization should be easily understandable and interpretable. In a best case scenario, the visualization 
can promote intuitive investigation and knowledge discovery by leveling the tradeoff between 
correctness, complexity, and simplicity. 

Future research is needed for deriving visualization methods and tool sets that are especially suited 
for visual analytics in the context of manufacturing simulation data, or even discrete event simulation data 
in general. For the demonstrations shown in this paper we applied a variety of toolsets, including Plant 
Simulation, Matlab, and Excel. For visual analytics to become commonplace, an integration of the 
demonstrated methods with commonly applied simulation packages will be needed. 

Taking for example the problem of product mixture, we still face the challenge on how to feasibly 
plot one single depiction of thousands of experiments with each experiment having different mixture 
proportions. Furthermore, visual analytics demands interaction with data, so an easy and real-time user 
interaction with the visualizations are also important aspects of future research. 
 Other future research options include the investigation of other data mining and machine learning 
techniques for simulation data analysis. Promising methods are for example classification methods like 
decision trees or support vector machines and association rule learning like pattern and sequence mining. 
Furthermore, online machine learning methods (Bergmann, Stelzer, and Strassburger 2014) could enable 
the combination of real world factory data logging and simulation data for a real time data or near-real 
time data analysis. 
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