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ABSTRACT

p-values of null hypothesis significance testing have long been the standard and decisive measure of deductive

statistics. However, for decades, top statistical methodologists have argued that focusing on p-values is

not conducive to science, and that these tests are regularly misunderstood. The standard replacement or

at least complement proposed for p-values by those critics are confidence intervals and statistical effects

sizes. Regrettably, analyzing and comparing huge data sets (from data mining or simulation based data

farming) with two measures is awkward. As a single-value measure of first interpretation for the scanning

of Big Data this article proposes statistically secured effect sizes either based on exact, mathematically

sophisticated confidence intervals for effect sizes or simplified approximations. It is further argued that

simplified secured effect sizes are among the most instructive single measures of statistical interpretation

completely perspicuous for the layman.

1 INTRODUCTION AND MOTIVATION

Data mining and simulation based data farming provide analysts with huge sets of data. Their paramount task

is to find important effects in such Big Data. Effects that are visible by differences between data parameters

like means and variances. Most of these data sets are samples of further unknown populations. Hence,

all reasoning is based on inferential statistics. Deducing from samples and transferring the conclusions to

populations has to be made with respect to possibility of random effects. The standard single measure for

a first assessment of theses effects are p-values based on significance tests (see item 3 in the enumeration

of section 2 for an exact definition of p-values). Table 1 exemplifies the situation for four deliberately

chosen pairs (i = 1,2) of samples (represented by the sample mean xi, standard variation si and size ni).

Table 1: Four exemplary data sets ready for interpretation based on p-values from adequate t-tests

No. x1 s1 n1 x2 s2 n2 p-value

1 495 4 50 500 5 50 < 0.0001

2 495 4 103 500 10 25 0.0199

3 495 100 105 496 100 105 0.0253

4 495 4 10 500 6.5 10 0.0529

The data is based on the assumption that (X1, X2, . . . ,Xn1
)∼N(µ1, σ2

1 ) and (Y1, Y2, . . . ,Yn2
)∼N(µ2, σ2

2 )
are in each case two independent samples of sizes n1 and n2 from two approximately normally distributed

populations with the sample means x1 and x2, and the sample variances s2
1 and s2

2 . Our main interest is

whether δ := |x1 − x2|, the difference between the means of both samples, is practically important and

unlikely a coincidence. What can be concluded from table 1?
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• The first sample pair is an unproblematic “textbook” case. Both samples have the standard size

considered to be large enough for the majority of methods in inferential statistics. Variances are

similar, and small with respect to the mean difference δ = 5. Consequently, the p-value is very low.

• The second example is characterized by a huge difference in sample size, and a considerable

difference in sample variance, but the p-value is lower than the common .05-threshold. Such an

imbalance in sample size is not uncommon when the large sample stems from a closed simulation

system, and the small sample is the scarce empirical data available. It is therefore frequent in all

kinds of simulation-based analysis for which we use a small given real data set as reference for

model validation, and further investigate new, slightly changed options by simulation.

• The third case might stem from a trivial queuing simulation. It shows that significant results

(p = .0253) are possible even for tiny effects (negligible mean difference (1) in light of the standard

deviation 100) if sample size is huge.

• The fourth case is contrary to the third: Here we have strong effect (almost identical to the first

sample, s2 is slightly greater) but due to the small sample size a non-significant p-value.

A statistical interpretation solely grounded on the p-values of null hypothesis significance testing

(NHST) (assuming α = .05) accepts the first three data sets as evidence of significant results and rejects

the last case. Is this the only possible reasoning? What are the alternatives if we are looking for a single

value or, at the most, a single interval? Is the interpretation of these numbers “fool-prove” for the cursory

first inspection of Big Data (imagine 1000 rows in table 1)?

In answering these questions, the paper first tries to convince the simulation practitioner that p-values

are suboptimal for condensing statistical data into a single decisive measure. Second, for this specific

purpose, the advantages and drawbacks of confidence intervals (CI) and effect sizes (ES) are discussed.

The article then demonstrates why, with respect to getting a first idea of effects in Big Data, confidence

intervals for effect sizes (CIES) are superior to ordinary CI and ES. It is further argued that mathematically

precise CIES are impractical for scanning under heteroscedasticity (σ1 6= σ2) due to ambiguity. Finally,

an approximation is presented that secures effect sizes based on elementary statistics. It can serve as

a pragmatic remedy against the often difficult selection of the right variance under heteroscedasticity.

Additionally, it is completely perspicuous even for the layman (here defined as someone who had only an

introductory course in statistics).

2 DEFICITS OF SIGNIFICANCE TESTS

For decades NHST has been the standard procedure of deductive statistics. However, the use of significance

testing in the analysis of research data has been discredited, both logically and conceptually, from numerous

top statisticians – continuously for almost 100 years (Boring 1919, Berkson 1938, Fisher 1955, Bakan

1966, Greenwald 1975, Carver 1978, Rosnow and Rosenthal 1989, Tukey 1991, Cohen 1994, Sedlmeier

1996, Schmidt and Hunter 1997, Falk 1998). Due to methodological inertia for decades with little effect

besides a recommendation of the American Psychological Associations (APA) Task Force on Statistical

Inference (Wilkinson 1999) to include confidence intervals and effects sizes in any statistical summary.

In recent years, however, things have started to change. Landmark publications from Gigerenzer (2004),

Ioannidis (2005), Hubbard and Armstrong (2006), Armstrong (2007), Hubbard and Lindsay (2008) and

Lambdin (2012) had sufficient impact to question the paramount importance of NHST in social science,

medicine and psychology. It is beyond the scope of this paper to discuss all these criticism, and what has

been said in support of significance tests (Mulaik, Raju, and Harshman 1997, Hagen 1997, Senn 2001),

but the simulation practitioner should know at least the following major problems:

1. The central assumption of NHST, that there is absolutely no difference between the means of two

groups (µ1 = µ2) is basically a straw man. In almost all research questions groups will have different
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means if we measure precisely (Tukey (1991), 100): “They are always different for some decimal

place”). The crucial question is whether this difference is practically important or not.

2. NHST applies the modus tollens on probabilistic statements. Cohen (1994) demonstrated that this

is logically wrong.

3. NHST is based on a lot of critical assumptions. p-values are therefore extremely easy to misinterpret

for non-experts (see especially Schmidt and Hunter (1997) and (Lambdin 2012). A p-value, to

specify two of the most popular errors, is neither the probability that the results obtained occurred

due to chance nor the probability of the null hypothesis given the data. It is only the probability to

get the observed data (x) or more extreme results, assuming the null hypothesis H0 is true in the

population (precisely: p := Pr(T (X)> T (x)|H0); where T (X) is the specific test statistic (Lambdin

2012)).

4. Since even the smallest effect is significant above a certain sample size (see data set 3 from table

1), and increasing sample size with simulations is trivial, NHST is next to meaningless for the

comparison of two simulated data sets (White et al. 2014, Troitzsch 2014).

5. On the other hand significance tests are almost useless when small samples are involved, since only

huge effects in small samples (visible at first sight) generate p-values which cause the null hypothesis

to be rejected. All other effects lead to non-rejection (data set 4), which does not provide evidence

for the null hypothesis. Logically, one should perform equivalence tests (H0 ∼ |µ2 − µ1| ≥ ∆) in

such situations (Parkhurst 2001). Unfortunately, only experts seem to know about them, although

equivalence tests are conceptually of equal importance to science than significance testing and often

easy to perform without further effort (Neuhaeuser 2010).

6. Due to the rather arbitrary 5% rule of rejection, and the tendency of journals to publish significant

results only, NHST have caused a serious “file drawer” problem (Rosenthal 1979, Fanelli 2012):

Non significant studies do not get published, although each of them is an important contribution

to science. This disregard is more critical than it might seem at first sight, since a series of non-

published, non-significant studies could even uncover a strong effect in meta-analysis (Thompson

2007, 429).

7. Stand alone, significance test put too much emphasis on the probability of a random effect, without

telling anything about the magnitude of the effect. The magnitude of an effect is, however, at least

in general, the very first thing one would like to know about.

8. NHST mislead to rigid mechanical reasoning (p-value<α). Although refutation or corroboration are

indeed the central goals of science, they are not apodictic verdicts based on binary values. Magnitude

and likelihood of effects have to be assessed in context of domain, newness and impact. (By the

way, the famous p < α-rule combines Fisher’s evidential statistic (p-value) and Neyman-Pearson’s

error estimate (α) in a way not justified by either theory (Hubbard 2004).)

In a nutshell, no simulation result should ever be summarized by p-values only, or by p-values as the

essential outcome. The standard replacement or at least complement proposed for NHST by most of the

critics mentioned above are confidence intervals (CI) (for specific arguments see Brandstaetter (1999) and

Poole (2001)) and statistical effects sizes (ES) (Harris 1991, Thompson 2008). Are they the ideal solution

for condensing as much instructive information about data sets as possible into single measures?

3 CONFIDENCE INTERVALS AND EFFECT SIZES

Table 2 is a result summary for the exemplary data sets from table 1 based on confidence intervals and

effect sizes. For technical explanations, symbols, and issues of interpretation see the following subsections.

Is this the ideal aggregation for interpretation without NHST? Even from a first glance, it is clear, that

there is much more information assembled in this table than in a single p-value. However, the question

here is not how to give maximum information (presumably by raw data put into graphs (Sedlmeier 1996))

but whether this information is absolutely necessary for a first interpretation. One reason for the reluctance
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Table 2: Summarizing data without using NHST: CI and ES

No. F-test δ CIStudent
0.05 CIWelch

0.05 g ∆s1
∆s2

1 0.062 5 [3.203;6.797] [3.202;6.798] 1.1 1.25 1

2 < 0.0001 5 [3.32;6.68] [0.86;9.14] 1.18 1.25 0.5

3 0.5 1 [0.1235;1.8765] [0.1235;1.8765] 0.01 0.01 0.01

4 0.082 5 [−0.07;10.07] [−0.18;10.18] 0.89 1.25 0.77

to give up p-values is their succinctness. Hence, we should first clarify which additional information CI

and ES provide, and second, search for the most concise representation.

3.1 Confidence intervals

Mathematically, ordinary confidence intervals (CI) are based on the same mathematics as significance tests.

Their major advantage is that they comprehend more information. A confidence interval

1. cannot only answer the question (like NHST) how likely the results are erroneously caused by

randomness (the α-based interval includes zero),

2. it also indicates the absolute magnitude of the effect, since the CI mean is exactly the difference

δ := |x1 − x2|, and

3. indicates the precision of the measurement via the quotient (=: ϑ ) between the confidence range

and δ .

The CI explained in most textbooks are based on the Student’s t-test which presupposes equal variances

(in the logic of NHST: F-test > .05 ). A corresponding CI for δ ∗ := |µ1 −µ2| is calculated by:

CI
δ ∗

S
α := [(x1 − x2)± t · s0 ·ϕ] , t := tn1+n2−2;1− α

2
, ϕ :=

√

n1 +n2

n1n2

(1)

In case of different variances (σ2
1 6= σ2

2 ), also called heteroscedasticity (Greek “hetero” (’different’)

and “skedasis” (’dispersion’)), which is obvious for data set 2, the CI has to be based on the Welch test

(which has also been used for data set 2 in table 1):

CI
δ ∗

W
α :=

[

(x1 − x2)± t ′ · s′
]

, s′ =

√

s2
1

n1

+
s2

2

n2

, t ′ = tν ;1− α
2
, ν =

(

1
n1
+ u

n2

)2

1
n2

1(n1−1)
+ u2

n2
2(n2−1)

, u =
s2

2

s2
1

(2)

The standard interpretation of the CI in table 2 is:

• In data set 1 the confidence interval CI
δ ∗

S
α (Student’s since F-test’s p-value> .05) is far from including

zero (effect very unlikely caused by randomness), and with respect to the absolute magnitude δ = 5

the interval is relatively precise (confidence range = 3.594; ⇒ ϑ = 3.594
5

= 0.719 < 1).

• In data set 2 CI
δ ∗

W
α (F-test’s p-value< .05) does not include zero (:= “uncritical”), but precision is low

with respect to the absolute magnitude δ = 5 (confidence range = 8.28; ⇒ ϑ = 8.28
5

= 1.656 > 1).

• In data set 3 CI
δ ∗

S
α (F-test’s p-value > .05) is uncritical, the precision (confidence range = 1.753;

⇒ ϑ = 1.753 > 1) is low with respect to the effect’s magnitude δ = 1.

• In data set 4 CI
δ ∗

S
α (F-test’s p-value > .05) is critical, the precision (confidence range = 10.14;

⇒ ϑ = 2.028 > 2) is very low with respect to the effect’s absolute magnitude δ = 5.

The interpretation of confidence intervals seems easy, their content is substantially stronger than the

message of p-values. They have been proposed as complete replacements for significance tests (Brandstaetter
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1999). However, many users misinterpret CI by concluding that they can be 95% confident that the calculated

interval captures the estimated population parameter. This is nonsense since any concrete CI either captures

the “true” parameter or not (Thompson 2007). The correct interpretation is: If we drew infinitely many

random samples, 95% of them would capture the parameter, and 5% would not. Unfortunately, we do not

know which case we face using a single CI (Note that this reasoning is based on a frequentist interpretation

of probability.). A certain disadvantage of CI is that they are equally dependent from basic assumptions

(normality, homoscedasticity (σ2
1 = σ2

2 ), similar sample size) as significance tests. They can be misused

for mechanical reasoning, too, since a critical CI (inducing zero) is logically equivalent to (p-value < α).

Based on CI only, the same decisions are taken for our four exemplary data sets as with NHST: Only

the last data set has a critical CI. (Using CI as simple replacements for NHST is NOT recommended: CI

should be used to compare the results of different studies in meta-analytic research (Osborne 2008, 258),

and as measures of precision (Poole 2001)). A minor theoretical but practically important disadvantage is

that CIs are measures of the absolute magnitude of an effect. Since they are not normalized, they cannot

be compared directly across different research questions. In addition, a tiny effect like in data set 3 ( δ = 1

while σ2 ≈ 104) is not directly visible from the CI – a drawback that leads us to statistical effect sizes,

which are recommended in addition to CI by most researches.

3.2 Effect sizes

Effect sizes (ES) are the measures of first choice for the estimation of the relative magnitude of a difference

in samples (Harris (1991), Thompson (2008), Ellis (2010)). In general, effect size statistics characterize

the extent to which sample results diverge from the expectations specified in the null hypothesis. There are

40+ effects sizes (Kirk 1996) with various degrees of mathematical complexity, but effect sizes for mean

comparison are almost trivial: one calculates the difference between two sample means (δ = |x1−x2|) and

divides the result by a sample standard deviation (s) – in order to relate δ to a measure of variance. The

critical question is which standard deviation should be used. When he originally developed the concept of

effect sizes, Cohen (1962) was unsure about how to solve this problem uniquely for all cases. Ideally, we

would like to compute D = µ1−µ2

σ , assuming σ1 = σ2 = σ . Replacing the expectancy values µi with the

samples means xi, or medians (Thompson 2007, 425) for skewed distributions, is straightforward, but the

calculation of an appropriate estimator for σ necessitates some choice. If both samples are of comparable

reliability, importance, and size Cohen’s initial recommendation (“Cohen’s d”) was obvious (see equation

3). For two samples of substantially different size the pooled variance s0 =

√

(n1−1)s2
1+(n2−1)s2

2

n1+n2−2
can be used

to extend this idea and calculate (ds0
). Hedges (1981) could even find an unbiased and consistent estimator

(“Hedges g”), which is especially recommended for small samples (for n := n1 + n2 < 16 the correction

factor between d an g is lower than .95). Note, however, that all three measures, to some varying degree,

fail to represent the variability in either group, if s2
1 and s2

2 differ substantially.

d :=
|x1 − x2|

√

(s2
1 + s2

2)/2

; ds0
:=

|x1 − x2|
s0

; g :=

(

1− 3

4(n1 +n2)−9

)

·ds0
(3)

If one sample (a huge “control group”, for example) seems much more reliable than the other, Glass,

McGaw, and Smith (1981) recommended to ignore the second variance, and compute ∆ (an index is used

to indicate that ∆ is computed with s1 or s2):

∆s1
:=

|x1 − x2|
s1

=
δ

s1

; ∆s2
:=

|x1 − x2|
s2

=
δ

s2

(4)

The logic here is that the standard deviation of one of the samples s1 or s2 is taken to be more adequate

for the calculation of the effect size. The strength of this assumption is directly proportional to the size

of the group whose variance is selected (Ellis 2010). However, both variants are correct, they are “two

distinct features of finding which cannot be expressed by one number (Glass, McGaw, and Smith 1981,
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107)”. The same is true for Hedges g. Thus, in general, there are at least three different ES one has to

have a look at: g (or d), ∆s1
and ∆s2

.

Effect sizes are closely connected to NHST via the general qualitative relation (Sedlmeier 1996):

significance ≈ effect size× sample size, (e.g. t = ds0
×
√

n1n2

n1 +n2

, t = Student’s t value) (5)

This relation immediately reveals why in NHST tiny effects can be compensated by huge sample sizes.

Cohen (1988) has given a general rule for the interpretation of effect sizes like d, g, ∆s1
and ∆s2

.

According to them, below 0.2 any effect size is negligible, above 0.2 and below 0.5 effects are small, from

0.5 to 0.8 medium, and above 0.8 great. These thresholds can also be applied on the best known measure

of effect size, Pearson’s correlation coefficient r, via the transformation ds0
= 2r√

1−r2
. Using this rule we

get a change in interpretation. With regard to ES it is sample 3 which is critical because all its effect sizes

are far below the level of practical significance. All other values indicate strong or at least medium effects

(see table 2).

Unfortunately, Cohen’s rule has been criticized as being far too simplistic from various authors (e.g.

Rosnow and Rosenthal 1989, Thompson 2007, Ellis 2010). The main problem is that effects have to be

interpreted in context with the current body of knowledge in specific domains. Any completely new effect

should initially be considered important, and some domains are notorious for exhibiting only small effects.

However, for a first analysis on Big Data, and the search for strong effects these thresholds are quite useful.

Less mechanical and more context sensitive interpretations should follow if one is also interested in small

and negligible effects (Prentice and Miller 1992). The interpretation is rendered even more difficult by the

existence of three mathematically equally justified versions for ES. The choice of a single effect size is

critical under heteroscedasticity: The ratio between s1 and s2 is directly reflected by the ratio between the

effect sizes ∆s1
and ∆s2

with g lying between them (see data set 2). Substantially differing variances can

therefore be the most important source of effect size uncertainty for many practical applications. Respecting

all these caveats what should be recommended for a first glance on Big Data? All three ES and the CI? Is

there no simpler solution? Before we are going to address these questions in section 5, we have to correct

an error that highlights how subtle interpretation of statistical data gets whenever basic assumptions are

neglected.

4 CORRECTING A SUBTLE ERROR

The decisive attribute of data set 2 is the huge difference in sample size in connection with a significant

difference in sample variance (indicating heteroscedasticity: σ1 6= σ2). . Obviously, the difference between

sample variance s1 and s2 in the example is quite large to assume σ1 = σ2 in the populations. This

assumption is indeed critical. It would have wrongly led us to the ordinary Student’s t-test where the

unequal variance Welch-t-test is necessary. In the example the difference between the ordinary Students’s

t-test and the Welch-t-test is tremendous: Student-p-value: 7.64×10−9; Welch-p-value 0.0199. Note that,

although more powerful than the t-tests, the Mann-Whitney U test (equivalent to the Wilcoxon rank sum

test) is not recommended under heteroscedasticity, see Kasuya (2001). Regrettably, heteroscedasticity is

still a practical nuisance: It might seem reasonable, if not compulsory, to first test whether the variances

are different, and then choose the Student or Welch t-test accordingly. This is exactly what we have done

in table 2 and the following reasoning about appropriate CIs. In fact, this is even a current textbook

recommendation (e.g. Pezzullo (2013)) for the corresponding tests. Unfortunately, it is a bad solution

(Moser and Stevens 1992, Hayes and Cai 2007). If you use the F-test first to compare variances in order

to decide which test or CI to use (Student or Welch), you will have increased your risk of a Type I error.

As a remedy for this calamity it has been proposed to use the Welch t-test as a general solution (Ruxton

2006). You lose power when the standard deviations are, in fact, similar but gain power in the cases where

they are not. We can simply apply this recommendation by solely using the CI based on the Welch test.

This is a robust and simple solution for the problem, which, fortunately, does not change our interpretation
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of table 2, since CI
δ ∗

S
α does not differ much from CI

δ ∗
W

α for the data sets 1, 3 and 4 for which the change is

necessary. Is there a similar robust solution for unifying the information of CI and ES?

5 CONFIDENCE INTERVALS FOR EFFECT SIZES

Calculating effect sizes as point values can only lead to estimators indicating how important differences

between means (or medians) are in light of sample variances. They ignore the likelihood of a random

result, especially in small samples. That is the reason why confidence intervals (or statistical tests) have

to be calculated in addition. Unfortunately, there are three different ES, and only one CI which have to be

related to each other by the analyst. Consequently, with regard to a synoptic view on the relative magnitude,

likelihood and precision of effects it seems more pertinent to directly calculate confidence intervals for

effect sizes CIES
α . They contain all three types information in measurements adapted to the specific ES.

Table 3 demonstrates the advantage of CIES
α for the exemplary data sets. It shows the range of a confidence

interval for g in comparison to the display of CI
δ ∗

W
α and the ordinary ES.

Table 3: Summarizing data with CI for ES

No. CIWelch
0.05 CI for ES CI

g
0.05 g ∆s1

∆s2

1 [3.20;6.80] [0.68;1.52] 1.1 1.25 1

2 [0.86;9.14] [0.78;1.58] 1.18 1.25 0.5

3 [0.12;1.88] [0.001;0.019] 0.01 0.01 0.01

4 [−0.18;10.18] [−0.03;1.81] 0.89 1.25 0.77

With respect to information density and convenience of interpretation confidence intervals for effect

sizes are obviously superior to the other measures:

• CIES
α contains information from ordinary CI as well as from ES.

• They are inherently attributed to a specific ES (g, ∆s1
or ∆s2

).

• They are measures of likelihood, relative magnitude, and precision of an effect in a single interval.

• Interpretation of CIES
α is technically as simple as the interpretation of ordinary CI.

• One could even transfer the (not recommended) rigid mechanical reasoning mentioned for ordinary

CIs to CIES
α , and reject respectively not reject null hypotheses on the basis of critical CIES

α (see data

set 4).

Calculating CIES
α is, however, sophisticated. Whereas formulas can be used for NHST; ordinary

CI and ES, most CIES
α have to be calculated by computer-intensive iteration procedures (Cumming and

Finch 2001). The CIES
α in table 3 have been calculated using an EffectSizeCalculator available for free

(http://www.cem.org/effect-size-calculator). This calculator is a nice example of the problems with mechan-

ical thinking based on modern computer-supported statistics. It is based on normality, homoscedasticity,

and similar sample size. It is therefore incorrect to use it for data set 2. In addition, data sets 2 and 4

illustrate that the two other ES (∆s1
and ∆s2

) differ substantially from g as would do the corresponding

CIES
α . Hence, if we use CIES

α we still have to face the problem of three measures instead of a single one.

The inexactness of the CIES
α used for data set 2 is a solvable problem. Mathematically satisfying

“robust” solutions for CI
g
α , and CI

∆si
α have been first described by Algina, Keselman, and Penfield (2006)

and are extended in (Keselman, Algina, Lix, Wilcox, and Deering 2008). Their solutions are based on

trimmed means, winsorized variances, and bootstrapping methods. Using such advanced techniques they

could create robust CIES
α for heteroscedasticity, non-normality in general, and skewed and heavy-tailed

distributions in particular. They are here considered to be the currently favored expert’s solution for the

problem of condensing as much mathematically exact information into single telling measures. However,

from a practitioners point of view there are some disadvantages:
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1. CIES
α are advanced statistics. It takes time to fully understand the mathematics behind them. Most

users will probably apply them without deep comprehension, trusting in the robustness of the

method. Unfortunately, even for the trimmed and winsorized CIES
α there will be instances (data sets)

with bad Type I error control. The lecturer in me would therefore prefer an elementary solution.

2. On the other hand, the preoccupation with exactness (of the confidence intervals) is in an important

sense misleading. Three equally justified ES (based on means) which differ tremendously under

heteroscedasticity imply that mathematical exactness is often illusory for practical interpretation.

3. In an exact CIES
α effects are always seen in light of a single selected variance (for standardization)

and based on the uncertainty of both variances which are pooled. When sample size differs strongly

under heteroscedasticity a different approach seems equally sensible: Uncertainty is assumed to

be caused solely by the small sample variance whereas the importance of the mean difference is

judged by the large sample variance. Hence, one can even construct a fourth sensible CI for ES in

such a case (see next section).

Does all this mean that we have to give up the idea of a general single measure which is both instructive

and perspicuous even for laymen? Under homoscedasticity an exact CIES
α for g is presumably the solution

we strive for: We get a single measure containing information about likelihood, relative magnitude and

precision of an effect which is easy to interpret. We can also use either CI
∆s1
α or CI

∆s2
α if we know which

variance is crucial. But what can we do to construct a single interval under heteroscedasticity and uncertainty

about the correct variance to scale the effect? While scanning through Big Data this last case will be the

rule not the exception. A very crude approach would be to use the extrema of CI
∆s1
α and CI

∆s2
α to construct

a new broader confidence interval. Regrettably, this bricolage lets the error rate α completely uncontrolled.

Is there another simple solution?

6 SECURING EFFECT SIZES

In order to get an idea of such an solution, we first construct the additional CIES
α mentioned in the last

enumeration (no. 3). We can use data set 2 (x1 = 495, s1 = 4, n1 = 1000; x2 = 500, s2 = 10, n2 = 25) to

recalculate the effect size under the assumptions that the second sample was too favorable by chance, and

that the first sample is completely unbiased, i.e. x1 = µ1 and σ1 = s1. We thereby construct a effect size

which is secured with respect to the uncertainty introduced by the small sample. The rationale behind this

approach is, that in an extremely large sample (n ≥ 103) x and s are, in general, very good estimators for

µ and σ . We will not make a big mistake equalizing them.

We simply calculate how low µ2 might be, given only the parameters x2, n2, and s2 of our second sample,

and a preselected α-level of .05. The corresponding value, calculated using a Student’s-t-distribution with

24 degrees of freedom, is 496.58 (see figure 1). This means that there is a 5%-chance that if µ2 is actually

as low as 496.58, we get a sample mean x
(n=25)
2 ≥ 500. We thereby “secure” our estimation of µ2 against

the randomness of the small sample. With our additional assumption of an unbiased first sample we get:

δ0.05(secured) = δ0.05(s) = |495−496.58|= 1.58. For this scaling we prefer the standard deviation of the

first sample σ1 = s1, since this value is (here) assumed to be an unbiased estimator of the more pertinent

variance.

εs2−secured; s1−scaled
0.05 = εs2−s1

0.05 =
δ0.05(s)

s1

=
1.58

4
= 0.39

The effect size we get by this calculation is secured with respect to the randomness of the small sample

and scaled with respect to the presumably very “realistic” variance of the large sample. SES are lower

“bounds” for ES. An upper “bound” is simply the extension into the other direction. It is therefore called

extended effect size (EES) for matters of distinction.

εs2−extended; s1−scaled
0.05 = εe2−s1

0.05 =
δ0.05(e)

s1

=
8.42

4
= 2.11
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Figure 1: The rationale behind an secured effect size.

Instead of a mathematically exact CIES
α we can therefore use the simple approximation [SES,EES]

∆s1
α =

[εs2−s1
α ;εe2−s1

α ].
We can summarize the steps we have taken so far by the following formula:

εs2−secured; s1−scaled
α = εs2−s1

α :=
|x2 −µ1|

s1

− s2 · tn2−1;1−α

s1 ·
√

n2

=
|x2 − x1|

s1

− s2 · tn2−1;1−α

s1 ·
√

n2

. (6)

Mathematically, we could also calculate the corresponding secured effect size with the first sample as

starting point:

εs1−secured; s2−scaled
α = εs1−s2

α :=
|x1 −µ2|

s2

− s1 · tn1−1;1−α

s2 ·
√

n1

=
|x1 − x2|

s2

− s1 · tn1−1;1−α

s2 ·
√

n1

. (7)

In that case we assume that the second sample is unbiased, i.e. x2 = µ2. Using the corresponding EES one

gets an approximate interval [SES,EES]
∆s2
α around ∆s2

.

It seems as if we have made a step backwards. We still have two intervals, and now only two

approximations. But we can use the basic idea to do something new: In order to generate a simple interval

representing all the information we have we calculate 2α-secured bounds for both samples individually

and scale them with the pooled variance s0. This idea leads to (assuming for simplicity that x2 ≥ x1)):

εs1&s2−secured;s0−scaled
α = εs1&s2−s0

α :=

(

x2 −
s2√
n2

· t(n2−1;1−2α)

)

−
(

x1 +
s1√
n1

· t(n1−1;1−2α)

)

s0

(8)

Here the sample means are secured with the corresponding standard variations. The resulting difference

is standardized by using the pooled variance s0. Using the corresponding EES one gets a broad interval

[SES;EES]ds0 around Cohen’s ds0
(one could apply the correction factor for Hedges g, but it is almost 1

(> .985) for n = n1 +n2 > 50) that includes the specific uncertainty of both samples. Since SES and EES

are mixtures of the variances of both samples they cannot be interpreted as exact CIES
α . They should be

taken as first estimations of the likelihood and precision of effect sizes under the special assumptions made

above. However, essentially, they communicate the same message as “exact” CIES
α .
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6.1 Reasoning with secured and extended effect sizes

For the special purpose of getting a first idea about effects in Big Data [SES;EES]ds0 are much more

instructive than p-values (see table 4):

Table 4: Summarizing data with single measures: p-values versus secured and extended effect sizes

No. (x1; s1; n1) - (x2; s2; n2) p-value [SES; EES]ds0 CI
ES=g
0.05

1 (495;4;50)− (500;5;50) < 0.0001 [0.63;1.58] [0.68;1.52]
2 (495;4;103)− (500;10;25) 0.0199 [0.33;1.84] [0.78;1.58] (?)

3 (495;100;105)− (496;5;105) 0.0253 [0.001;0.018] [0.001;0.019]
4 (495;4;10)− (500;6.5;10) 0.0529 [0.08;1.77] [−0.03;1.81]

The [SES;EES]ds0 in table 4 confirm that CI
ES=g
0.05 has been erroneously applied on data set 2. The

approximate intervals are relatively close to the exact values for the uncritical cases 1 and 3, and only

slightly too narrow for data set 4 (the shift to the right (greater effect) is here caused by the differences

between ds0
and g for n = 20). For practical work I recommend to extend the intervals by calculating

α-secured bounds for both samples. Tests with hundreds of data sets have corroborated the pertinence

of such [SES;EES]ds0 under normality. [SES;EES]ds0 is a very convenient measure while searching for

statistically uncritical strong effects in Big Data. Effects that would hit you right between the eyes if only

you could see them in all that data. In that sense, the lower bound SES serve as triggers for what has been

called the ultimate “interocular traumatic test” in a classic article from Edwards, Lindman, and Savage

(1963). Triggers that cannot be as easily misunderstood as other single measures. From the four exemplary

data sets only set 1 hints at such an effect, data set 3 has absolutely no potential for a strong effect, and the

huge ranges of data sets 2 and 4 (around means that indicate strong effects) advise to increase the sample

sizes of the real data if possible. [SES;EES]ds0 gives information about approximate measurement precision,

plausibility of a change in sign, and relative magnitude of the effects. It is based on elementary statistics

only, thus completely perspicuous even for the layman without a background in advanced statistics. It is,

deliberately, a simplifying approximation, but it serves well as a first step into data analysis. An obvious

disadvantage of this approximation is that it based on normality. One can correct this problem by using

the same methods applied from (Keselman, Algina, Lix, Wilcox, and Deering 2008) for exact CI for ES.

This is an area of future research.

7 SUMMARY AND CONCLUSION

p-values, confidence intervals, and effect sizes (the “Big Three” (Hatcher 2013)) are standard measures of

getting a first idea of the effects in data sets. For this purpose, however, p-values are clearly suboptimal,

since confidence intervals (CI) and effect sizes (ES) do not only convey information about the likelihood

of random effects, but also about the precision of the measure and the absolute and relative magnitude

of the effect. This additional information, which is often crucial while searching for effects in huge data

sets (Big Data), can also be condensed into confidence intervals for effect sizes, which are presumably the

measures of maximum information density. They are recommended as the most instructive exact measures

of first assessment. Unfortunately, they are as ambiguous under heteroscedasticity as effect sizes, and

presuppose advanced statistics. A single, elementary interval that approximates exact CI for ES can be

constructed using statistically secured effect sizes. It is as easy to interpret as a conventional CI, and only

based on the assumption of sample normality. Increasing robustness of secured effect sizes with respect to

non-normality while not decreasing simpleness is a matter of future research.
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