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ABSTRACT

In this paper, we develop a stochastic process tool to tell the stories behind big data with agent-based

models. Specifically, we identify an agent-based model as a stochastic process that generates the big data,

and make inferences by solving the agent-based model under the constraint of the data. We hope to use

this tool to create a bridge between those who have access to big data and those who use agent-based

simulators to convey their insight about these data.

1 INTRODUCTION

“Big data” have the big potential to revolutionize both our understanding of complex systems and our way

of making data products. However, it is a significant endeavor to tell stories about big data with generative

models (agent-based or system dynamics models) and to implement data products as optimization problems

involving big data, because those who work with big data and those who work with models speak different

languages.

To bridge big data and generative models, we start by identifying a generative model as a stochastic

process, which generates time series according to a well-defined probability measure. We then fit the

parameters of the stochastic process to the data using machine-learning methods, and reason about the

data by solving the fitted model under the constraints of these data. In stochastic process terminology, the

system state of this generative model is comprised of the states of the individual agents, the inter-agent

relationships, and the world. System state changes over time according to a state transition matrix/kernel

defined by the events of the generative model, and we are interested primarily in making inferences regarding

the stochastic process by studying the noisy observations about these stochastic process states.

However, the primary difficulty in solving the stochastic processes defined by an agent-based model—

finding the probabilities for the agent-based model to generate every possible state sequences—stems from

the exploding state space: in a system with 100 agents, and with each agent taking two states, we will have

2100 system states. To avoid the necessity of enumerating state combinations, we introduce mean-field

approximation. The estimated probability that I catch a cold is the average probability that I catch a cold

from my neighbor x (who is sniffling but whose cold-or-not I don’t know) plus the average probability that

I catch a cold from my neighbor y (who appears healthy, but whose cold-or-not I also don’t know), and so

on. The fact that my neighbor x does have a cold will not change my estimation, although it does increase

my chance of catching a cold. This kind of mean-field approximation is employed widely in statistical

physics, and can be a significant help here in dealing with exponentially-increasing state space (Heskes

and Zoeter 2002, Wainwright and Jordan 2008). Other potential methods include Markov chain Monte

Carlo (Dong, Heller, and Pentland 2012, Wilkinson 2006) and diffusion approximation (Wilkinson 2006).

This paper therefore advocates, for the first time, that we should combine the power of big data and

the power of model-thinking in the stochastic process framework. Agent-based modeling is a physicist’s

approach for modeling human societies when data are unavailable and experiments impossible (Epstein
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2007), and we believe that big data will transform agent-based modeling from speculation into a physical

science. This paper also offers a solution to fit any agent-based model defined by a production rule system

to big time series data, based on mean-field approximation. Hence, this system bridges modelers with data

miners. We have benchmarked our solution on systems of hundreds of agents, and our benchmarking gives

meaningful results.

With the tool to weave multi-agent modeling and big data for stochastic process inference, we hope

to track real world social systems continuously using big data from social media and Internet of Things

on the one hand, and multi-agent models on the other hand. We can better understand the diffusion of

influence and the formation of networks (Dong, Lepri, and Pentland 2011, Dong, Heller, and Pentland 2012)

from the behavior and interaction data continuously observed by personal mobile phones (MIT Human

Dynamics Lab 2012), and social physics models (Castellano, Fortunato, and Loreto 2009). We can estimate

road traffic (Dong and Pentland 2009) in real-time according to millions of tracked vehicle locations and

multi-agent transportation simulators ((Smith, Beckman, and Baggerly 1995, MATSim development team

(ed.) 2007)). We can track national socio-economical indicators according to call detail records (Orange

S. A. ) and city models (Batty 2007).

The rest of this paper is organized as follows. In Section 2, we introduce a probabilistic production

(rule) system to describe the microscopic dynamics of a generative model, and identify the production

system as a stochastic process. In Section 3, we derive a mean-field solution to the generative model under

the constraint of data—in other words, given a simulator and noisy observational data about a process

generated by the simulator logic, our algorithm infers the probabilities on a per-agent basis of all possible

outcomes. In Section 4, we give examples and benchmark this algorithm against other algorithms. We

summarize what we have accomplished and offer our speculation about big data in Section 5.

2 STOCHASTIC PROCESS INDUCED BY PRODUCTION SYSTEM

We employ a production (rule) system to describe multi-agent dynamics. Such a production system is

widely used in artificial intelligence, chemistry, systems biology, and other fields.

A production system in artificial intelligence consists of a working memory that maintains the current

state of the world and a rule interpreter that triggers different rules (or productions) with a well-defined

mechanism, changing the state of the world according to these triggered rules. A production has a

precondition and an action—when the precondition matches the current state of the world, the interpreter

can trigger the production, execute the action of the production, and so change the current state of the

world. Researchers in expert systems are interested in using a determinist algorithm that triggers the best

rule for reaching a goal from a collection of matching rules. In comparison, we treat a production system

as a stochastic process by assigning different rates of happening to rules, and by defining a time series of

system states as the probability of a sequence of rules firing, which generates the system-state time-series.

We take this approach because we are most interested in fitting the production system to observations about

how people behave and interact, in order to solve problems and solve for the rates. This allows us to make

predictions about human behavior and interactions using the fitted production system, an effort similar to

those in research on cognition architecture (Anderson 1996, Newell and Simon 1972).

Algorithm: Markov process induced by a multi-agent model

Input: initial world statex (t = 0), productions 1, . . . , v, each production happens with ratehk (xt, ck) =

ckg (xt) and change world state xt−
k
→ xt.

Output: a series of times when productions are triggered, the IDs of the triggered productions, and the

corresponding states brought about by the triggered productions {ti, vi, x (ti) : i} where 0 = t0 <

t1 < · · · < tn < tn+1 = T , vi ∈ {1, . . . , v}, x
(

t−i
) vi→ x (ti) and x (t) is the right limit and the

time series x (t) is left continuous.

Procedure:
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Basis set current time to t0 = 0, set the current state to x (t0), repeat the following step until the

current time ti+1 > T .

Induction sample the next reaction time τ ∼ exponential (
∑

k hk(x(ti), ck)), sample the next

reaction vi+1 ∼ hk/
∑

k hk, set current time to ti+1 = ti + τ , and update world state x(ti+1)
according to production vi+1.

Such a model defines a stochastic process. The probability for this sequence of events {ti, vi, x (ti) : i} to

happen is P (v, x) =
∏

i hvi (xt) · exp (−
∑

i hvi (xt) · (ti+1 − ti)) (Wilkinson 2006). The time interval τ
to the next event is the minimum of exponential distributions, and so is itself an exponential distribution.

We leave abstract the actions of the productions, because an inference algorithm with general productions

will be more useful.

For example, in the Lotka-Volterra model (commonly known as the predator-prey model), the world is

comprised of x(1) number of predators and x(2) number of prey. The prey has an unlimited food supply,

and will reproduce with a rate proportional to the prey population without predation (prey→ 2× prey, or

x(1) → x(1)+1 with rate c1x
(1)), but predation will decrease the prey population and increase the predator

population at a rate proportional to the rate that predator and prey meet (prey + predator→ 2× predator,

or (x(1), x(2))→ (x(1)− 1, x(2) +1) ). The predator population will lose its members due to natural death

at a rate proportional to the predator population (predator → ∅, or x(2) → x(2) − 1). By “solving” the

Lotka-Voterra equations—that is, finding the temporal evolution of the predator population and the prey

population, constrained by initial and boundary conditions—we can answer questions such as whether the

two species could coexist, whether the populations could pass through certain thresholds, and what the

likely population sizes will be in the future.

Theoretically, any computer program that operates computer storage through a set of instructions can

describe a production system with its world state and rules. However, we prefer the simplest model that

can explain the phenomenon under inspection, because the simplest model with the fewest rules may be the

most generalized and applicable model for leveraging our past experiences to gain an advantage in the future

(Popper 1965). In fact, many elegant models find applications across domains. Epidemics models, for

example, are applicable not only to the study of epidemics themselves, but also to the spreading of opinions

and innovations (Castellano, Fortunato, and Loreto 2009). Similarly, Lotka-Voterra models are applicable

to ecology, but also to economics when researchers want to understand the interactions of different industry

sectors (Goodwin 1975).

The stochastic process inference tool developed in this paper aims to create a bridge between big

data and business insight about big data, enabling data miners to tell stories behind data with the logic

of agent-based models, and enabling agent-based modelers to make predictions about real-world systems

from data.

3 MAKING INFERENCES WITH PRODUCTION SYSTEM

In this section, we derive a computationally-tractable solution for any network dynamics model identified

by a production system. In other words, given a network dynamics model with unknown event constants

{ck : k = 1, . . . , v} and latent states {xt = (x
(1)
t , · · · , x

(C)
t ) : t ∈ R}, we find the most likely estimate of

the event constants and latent states from a finite number of observations about the model {y
(c)
t : (c, t)},

where the superscript c indicates different agents. We first discretize the Markov jump process into a hidden

Markov process in order to make the problem suitable for numerical evaluation and implementation on

digital computers. We then apply a mean-field approximation such that the latent state of a node evolves

according to the average effects of the latent states of other nodes’. With this approximation in place, we

give the expectation maximization (EM) algorithm of the resulting hidden Markov model as a solution to

our original problem.
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3.1 Time and State Discretization

We can assume that the latent state xt defined by a production system takes a finite number of values in

many applications, and treat a production system as a continuous time Markov chain with transition rate

matrix (also called infinitesimal generator) Q(i, j) = d
dτ
p(xt+τ = j|xt = i) given by

Q(xt, xt+τ ) =

{
∑

xt
k
→xt+τ

hk(xt, ck) if xt 6= xt+τ

1−
∑

k hk(xt, ck) if xt ≡ xt+τ

. (1)

These latent states may have already taken a finite number of values (e.g., infected vs. susceptible in the SIS

epidemics model). When the latent states take only a few integer values “most of time” (i.e., the tightness

assumption (Dudley 2002)), we set the domain of the latent states to be these integer values according to

the computational precision requirement. When the latent states take an interval of real values most of

time, we set the domain to be a few disjoint subintervals, again according to the precision requirement.

A continuous-time Markov chain is related to a discrete-time Markov chain through a uniform rate

parameter γ ≥ maxx
∑

k hk(x, ck) using either the uniformization method (also known as Jensen’s method),

or the randomization method (Ibe 2008). Let Q(xt
k
→ xt+∆xk) = hk(xt, ck) be the infinitesimal generator

of the continuous-time Markov chain. The probability transition matrix of the uniformized discrete-time

Markov chain is I + Q/γ, where I is the identity matrix and the time of the transitions is a Poisson

process with rate γ. The number of transitions between time 0 and time ∆t is a random variable of

Poisson distribution with rate constant γ—that is, the probability of n transitions during ∆t, including

null transitions x → x, is e−γ∆t (γ∆t)n /n!. The state transition matrix between time 0 and time t is

therefore p(x0 → x∆t) =
∑∞

n=0 (I +Q/γ)n e−γ∆t (γ∆t)n /n!. When we let γ → ∞ and γ∆t = 1, we

get p(x0 → x∆t)→ I + Q

✁γ
·✓γ∆t.

The likelihood of any sample {xt, yt : t = n∆t} generated by a given network dynamics model is

p({xt, yt : t = n∆t}|{ck : k = 1, . . . , v}) (2)

=

observation
∏

n,c

p(y
(c)
n∆t|x

(c)
n∆t) ·

events
∏

n,∆x

(
∑

∆xk=∆x

∆t · hk(xn∆t, ck))
1 x(n+1)∆t
−xn∆t≡∆x ·

no event
∏

n

(1−∆t ·
∑

k

hk(xn∆t,ck))
1x(n+1)∆t≡xn∆t .

In the following, we will use t ∈ N to represent discrete time and hk(xt, ck) to represent the probability

for event k to happen in discrete-time hidden Markov model.

3.2 Forward-backward Algorithm under Mean-field Approximation

Recall that a hidden Markov model assigns to every sequence of hidden states {xt : t} and the corresponding

observations {yt : t} a probability p({xt, yt : t = 1, . . . , T}), according to the state transition probability

p(xt|xt−1) and the probabilistic observation distribution p(yt|xt). Inferring the probability distribution of

latent states involves dynamic programming to iteratively solve the forward statistics α̃t(xt) = p(xt, y1,...,t)

for t = 1, . . . , T , the backward statistics β̃t(xt) = p(yt+1,...,T ) for t = T, . . . , 1, and the one-step statistics

γt(xt) = p(xt|y1,...,T ) and two-step statistics ξt(xt,t+1) = p(xt,t+1|y1,...,T ), and from these statistics we can

estimate the state transition probability and the parameters of the observation model. To avoid floating-point

underflow, we often compute

αt(xt) = p(xt|y1,...,t, π) = α̃t(xt)

/ t
∏

τ=1

Zτ , βt(xt) = β̃t(xt)

/ T
∏

τ=t+1

Zτ , where
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Zt = p(yt|y1,...,t−1) =
∑

xt−1,t

αt−1(xt−1)p(xt|xt−1)p(yt|xt) =
∑

xt−1,t

αt−1(xt−1)p(xt|xt−1)p(yt|xt)βt(xt),

In a hidden Markov model identified by a (stochastic) multi-agent model or a system dynamics model, the

state space can be huge, representing the joint state of thousands to millions of agents, or thousands of system

variables. In addition, the state-transition probability is normally specified with a limited number of events.

In the following, we solve the marginal statistics α
(c)
t (x

(c)
t ), β

(c)
t (x

(c)
t ), γ

(c)
t (x

(c)
t ) and ξ

(c)
t (x

(c)
t , x

(c)
t+1) with

mean-field approximation — the state of an individual node evolves according to the average (mean-field)

effects of the other nodes — and estimate the event rates according to the marginal statistics.

We adopt the approximation

γ
(c)
t (x

(c)
t ) = α

(c)
t (x

(c)
t )β

(c)
t (x

(c)
t ), (3)

p(xt|y1,...,T ) =
∏

c

γ
(c)
t (x

(c)
t ), (4)

seek the marginal forward statistics α
(c)
t to be consistent with the two-slice statistics ξt(xt−1,t) for t =

2, . . . , T , and seek the backward statistics β
(c)
t−1 to be consistent with the two-slice statistics ξt(xt−1,t) for

t = T, . . . , 2:

find α
(c)
t s.t.

∑

fix x
(c)
t

ξt(xt−1,t) = α
(c)
t (x

(c)
t )β

(c)
t (x

(c)
t ),

find β
(c)
t−1 s.t.

∑

fix x
(c)
t−1

ξt(xt−1,t) = α
(c)
t (x

(c)
t−1)β

(c)
t−1(x

(c)
t−1),

whereξt(xt−1,t) =
1

Zt

∏

c

α
(c)
t−1(x

(c)
t−1)

∏

c

β
(c)
t (x

(c)
t )p(xt|xt−1)p(yt|xt).

We further let event rates factorizable into a product of functions, each of which involves one node in

the system

p(xt|xt−1) =







∑

k:xt=xt−1+∆xk

ck
∏

c g
(c)
k (x

(c)
t−1) xt = xt−1 +∆xk

1−
∑

k ck
∏

c g
(c)
k (x

(c)
t−1) xt = xt−1

(5)

For example, the infection rate in the SIS epidemic model c · x(1) · x(2) is the rate when one infected

person is in contact with one susceptible person (c) multiplied by the number of different ways in which

x(1) susceptible person can be in contact with x(2) infectious persons. Similarly, the predation rate in the

predator-prey model c · x(1) · x(2) is the rate at which one predator is in contact with one prey multiplied

by the number of different ways that x(1) prey can be in contact with x(2) predators.

We find the marginal two-slice statistics ξ
(c)
t (x

(c)
t−1,t) by marginalizing ξt(xt−1,t) over all x

(c′)
t−1,t for

c′ 6= c:

ξ
(c)
t (x

(c)
t−1,t) =

∑

c′ 6=c

∑

x
(c′)
t−1,t

ξt(xt−1,t) =
1

Zt
· (6)







probability of no state change

(1−
∑

k

ckg
(c)
k (x

(c)
t−1)

∏

c′ 6=c

g
(c′)
k

∣

∣

∣

x
(c′)
t−1=x

(c′)
t

) ·
∏

c′

∑

x
(c′)
t−1=x

(c′)
t ,fix x

(c)
t−1

α
(c′)
t−1(x

(c′)
t−1)β

(c′)
t (x

(c′)
t )p(y

(c′)
t |x

(c′)
t )+
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∑

k

state transition probability due to event k

ckg
(c)
k (x

(c)
t−1)

∏

c′ 6=c

g
(c′)
k

∣

∣

∣

x
(c′)
t−1+∆x

(c′)
k

=x
(c′)
t

·
∏

c′

∑

x
(c′)
t−1+∆x

(c′)
k

=x
(c′)
t ,fix x

(c)
t−1

α
(c′)
t−1(x

(c′)
t−1)β

(c′)
t (x

(c′)
t )p(y

(c′)
t |x

(c′)
t )







where

g
(c′)
k

∣

∣

∣

constraint
=

∑

constraint
α
(c′)
t−1g

(c′)
k β

(c′)
t p(y

(c′)
t |x

(c′)
t )

∑

constraint
α
(c′)
t−1β

(c′)
t p(y

(c′)
t |x

(c′)
t )

,

Zt = (1−
∑

k

ck
∏

c′

g
(c′)
k

∣

∣

∣

x
(c′)
t−1=x

(c′)
t

) ·
∏

c′

∑

x
(c′)
t−1=x

(c′)
t

α
(c′)
t−1(x

(c′)
t−1)β

(c′)
t (x

(c′)
t )p(y

(c′)
t |x

(c′)
t )+

∑

k

ck
∏

c′

g
(c′)
k

∣

∣

∣

x
(c′)
t−1+∆x

(c′)
k

=x
(c′)
t

·
∏

c′

∑

x
(c′)
t−1+∆x

(c′)
k

=x
(c′)
t

α
(c′)
t−1(x

(c′)
t−1)β

(c′)
t (x

(c′)
t )p(y

(c′)
t |x

(c′)
t ).

Hence we can make inferences about agent states in a multi-agent model by iteratively solving the

marginal forward and backward statistics (Equation 7 and Equation 8), and we can estimate event rate

constants from the marginal statistics (Equation 9). The probability of observations under the approximate

distribution is p =
∏

t Zt.

α
(c)
t (x

(c)
t )← 1/Zt· (7)







probability of no state change

(1−
∑

k

ckg
(c)
k (x

(c)
t−1)

∏

c′ 6=c

g
(c′)
k

∣

∣

∣

x
(c′)
t−1=x

(c′)
t

) ·
∏

c′

∑

x
(c′)
t−1=x

(c′)
t ,fix x

(c)
t−1

α
(c′)
t−1

(

β
(c′)
t

)1c′ 6=c

p(y
(c′)
t |x

(c′)
t )+

∑

k

state transition probability due to event k

ckg
(c)
k (x

(c)
t−1)

∏

c′ 6=c

g
(c′)
k

∣

∣

∣

x
(c′)
t−1+∆x

(c′)
k

=x
(c′)
t

·
∏

c′

∑

x
(c′)
t−1+∆x

(c′)
k

=x
(c′)
t ,fix x

(c)
t−1

α
(c′)
t−1

(

β
(c′)
t

)1c′ 6=c

p(y
(c′)
t |x

(c′)
t )






,

β
(c)
t−1(x

(c)
t−1)← 1/Zt· (8)







probability of no state change

(1−
∑

k

ckg
(c)
k (x

(c)
t−1)

∏

c′ 6=c

g
(c′)
k

∣

∣

∣

x
(c′)
t−1=x

(c′)
t

) ·
∏

c′

∑

x
(c′)
t−1=x

(c′)
t ,fix x

(c)
t−1

(

α
(c′)
t−1

)1c′ 6=c

β
(c′)
t p(y

(c′)
t |x

(c′)
t )+

∑

k

state transition probability due to event k

ckg
(c)
k (x

(c)
t−1)

∏

c′ 6=c

g
(c′)
k

∣

∣

∣

x
(c′)
t−1+∆x

(c′)
k

=x
(c′)
t

·
∏

c′

∑

x
(c′)
t−1+∆x

(c′)
k

=x
(c′)
t ,fix x

(c)
t−1

(

α
(c′)
t−1

)1c′ 6=c

β
(c′)
t p(y

(c′)
t |x

(c′)
t )






,

ck ←
1

C
·
∑

c

∑

t

ξ
(c)
t (event k)

/

∑

t

∏

c

g
(c)
k

∣

∣

∣

x
(c)
t−1=x

(c)
t

(9)

where ξ
(c)
t (event k) = ξ

(c)
t (x

(c)
t − x

(c)
t−1 = ∆x

(c)
k ) ·

cold
k g

(c)
k (x

(c)
t−1)

∏

c′ 6=c g
(c′)
k

∣

∣

∣

x
(c′)
t−1+∆x

(c′)
k

=x
(c′)
t

∑

k′:∆x
(c)

k′
=∆x

(c)
k

cold
k g

(c)
k′ (x

(c)
t−1)

∏

c′ 6=c g
(c′)
k

∣

∣

∣

x
(c′)
t−1+∆x

(c′)

k′
=x

(c′)
t

.
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3.3 Parameter Estimation Under Mean-Field Approximation

In order to determine an estimation for the state transition model (i.e., ck) and the observation model

(p(y(c)|x(c))) that maximizes the expected log likelihood in the M-step of the EM algorithm, we set the

derivatives of the expected log likelihood over the parameters to be zero and consider constraints when

necessary:

∂E log p

∂ck
=

1

C

∑

c

∑

t

(

ξ
(c)
t (event k)

ck
−
∏

c

g
(c)
k

∣

∣

∣

x
(c)
t−1=x

(c)
t

)

set
= 0,

where ξ
(c)
t (event k) = ξ

(c)
t (x

(c)
t − x

(c)
t−1 = ∆x

(c)
k ) ·

cold
k g

(c)
k (x

(c)
t−1)

∏

c′ 6=c g
(c′)
k

∣

∣

∣

x
(c′)
t−1+∆x

(c′)
k

=x
(c′)
t

∑

k′:∆x
(c)

k′
=∆x

(c)
k

cold
k g

(c)
k′ (x

(c)
t−1)

∏

c′ 6=c g
(c′)
k

∣

∣

∣

x
(c′)
t−1+∆x

(c′)

k′
=x

(c′)
t

and cold
k is the old estimation of rate constant.

It follows that the new estimation of the rate constant (ck) of transition k is the total number of transitions

in the sample divided by the total number of times the transition could happen:

ck ←
1

C
·
∑

c

∑

t

ξ
(c)
t (event k)

/

∑

t

∏

c

g
(c)
k

∣

∣

∣

x
(c)
t−1=x

(c)
t

.

The maximum likelihood estimation of the parameters of the output models (p(y(c)|x(c))) is model-

dependent. Here, we provide the solutions for the two most common output models.

When the observation about a node takes a finite number of values, we get

p(y(c)|x(c)) =
1
y
(c)
t ≡y(c)

∑

t γ
(c)
t (x(c))

∑

t γ
(c)
t (x(c))

(10)

When the observation of a node takes a normal distribution around the state of the node, we have

µ(c)(x(c)) =
∑

t

y
(c)
t · γ

(c)
t (x(c))

/

∑

t

γ
(c)
t (x(c)), (11)

σ(c)(x(c)) =
∑

t

(y
(c)
t − µ(c))2 · γ

(c)
t (x(c))

/

∑

t

γ
(c)
t (x(c)). (12)

4 EXAMPLES

In this section, we make stochastic process inferences using the predator-prey systems dynamics and the

ant forage multi-agent dynamics. The predator-prey systems dynamics are simple enough, such that we

can touch on the details of identifying an agent-based model as a stochastic process and make inferences

thereof, and of how mean-field approximation works. As such, ant forage multi-agent dynamics nicely

demonstrates how mean-field approximation enables us to make inferences in big systems.

4.1 Inferring Predator-Prey Dynamics

The predator-prey (Lotka-Volterra) model taken from (Wilkinson 2006) has three reactions, in which

predation increases predator population by one and decrease prey population by one at the same time.

“Prey” and “predator” are respectively a prey individual and a predator individual:
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prey→ 2 prey, rate = c1

prey + predator→ 2 predator, rate = c2

predator→ ∅, rate = c3

Interpreting this Lotka-Volterra systems dynamics as a discrete-time Markov chain (Section 3.1), the

time-dependent system-state is the predator and prey populations (x
(1)
t , x

(2)
t ) ∈ {1, . . . ,M1}×{1, . . . ,M2},

and the state transition kernel (Equation 13) is induced by 3 reactions, and an event rate can be estimated

as the total event occurrence over the number of times the event could have occurred (Equation 14).

In comparison, under mean-field approximation (Section 3.2), we keep track of only the marginal state

distributions of the predator and prey populations (Equation 15 and Equation 16), where the probability that

the prey population decreases due to predation is computed according to the average predator population

x
(2)
n = E

p(x
(2)
t )

x
(2)
t , and the probability of predator increase due to predation is computed according to

the average prey population x
(1)
n = E

p(x
(1)
t )

x
(1)
t . The an event rate (Section 3.3) is estimated as the total

event occurrences in both populations over the total number of times the event could have occurred in both

populations (Equation 17).

p(xn → xn+1) = (13)

















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


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c1x
(1)
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(1)
n x
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c3x
(2)
n xn+1 − xn = (0,−1)

1−c1x
(1)
n −c2x

(1)
n x

(2)
n −c3x

(2)
n xn+1 − xn = (0, 0)

0 otherwise

c1 =

∑

n,xn
ξ
(

xn, (x
(1)
n + 1, x

(2)
n )
)

∑

n,xn
x
(1)
n ξ(xn, xn)
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∑

n,xn
ξ
(

xn, (x
(1)
n − 1, x

(2)
n + 1)

)
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n x
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(14)
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∑
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ξ
(

xn, (x
(1)
n , x

(2)
n − 1)

)
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x
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n ξ(xn, xn)

.

p(x(1)n → x
(1)
n+1) = (15)
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With the discrete-time Markov chains of both the predator-prey model and the approximate model,

we can proceed to compare the inferences that use mean-field approximation with the exact inferences.

Mean-field approximation is one way to pay the price of being able to make stochastic process inferences

on dynamical systems involving an intractable number of interacting factors or agents.

We set c1 = 1, c2 = .007, c3 = .6, x
(1)
0 = 50, x

(2)
0 = 100, and sampled a time series of prey/predator

populations from time 0 to time 40 according to a continuous-time Markov process (Section 2). The time

series show periodicity, randomness, and predator population following prey population (Figure 1a, 1b).

We perturbed the system states in time intervals [2, 2.1) and (7.7, 8] with a Gaussian random noise of mean

0 and a standard deviation of 20 (N (0, 202)) (resulting in noisy observations), and compared the exact

inference population trajectories between time 2.1 and time 7.7 (Figure 1c) with the mean-field inference

(Figure 1d).

Within 0.5 time unit of observations (i.e., at times 2.5 and 7.5), the inferred predator and prey populations

using exact forward-back inference are visibly correlated. This correlation results from predation decreasing

prey population and increasing predator population at the same time. The correlation between populations

becomes less visible as we move away in time from the observations. The mean-field approximation

removes the correlation by decoupling the predation equation into two: decreasing the prey population due

to the existence of the predator population, and increasing predator due to the existence of prey.
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Figure 1: Predator-prey dynamics (a) in phase space, (b) as time series, (c) population density estimation

(c) from exact inference, and (d) mean-field inference.

4.2 Inferring Ant Forage Dynamics

In this section, we make stochastic process inferences using ant forage multi-agent dynamics. The ant

forage dynamics under discussion is from The NetLogo model “Ants,” defined by NetLogo programming

language (Wilensky 1997). The Ants world is a 71 × 71 grid with an ant nest at the center, three food

sources (each with different amounts of food and at different distances from the nest), and 125 ants moving

food from the sources to the nest. The logic of individual ants is simple, but it nonetheless adds up to an

interesting collective intelligence. An ant with food wiggles toward the nest and leaves a specified amount

of chemical on grid points along its way. This chemical diffuses to the eight neighboring grids and then

evaporates. An ant without food senses the chemical with moderate density in front of it, and follows

the chemical to an area with high chemical concentration. In areas with too low or too high chemical

concentrations, the ant merely wiggles forward until it finds food. A simulation run of the Ants model is

animated in Figure 2a.

Agent-based modelers simulate the Ants model without engaging any observational data. Here, we

show that we can translate the ant forage model in NetLogo into a discrete-time Markov chain, and infer
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how ants travel from their origins at time 0 to their destinations at time 200, considering their interactions

through chemical and food.

The system state is a Cartesian product of the states of each ant, which can occupy any of the 71× 71
squares, moving in any of eight directions, and be with food or without; of the amount of food on each

grid point of the food sources; and of the amount of chemical on each grid point in the world: • ant state

a (ant, x, y, dir, food?) ∈ {0, 1}, where x ∈ {−35, . . . , 35}, y ∈ {−35, . . . , 35}, dir ∈ {04π, . . . ,
7
4π},

food ∈ {0, 1} representing an ant without food and an ant with food respectively, and ant ∈ {1, . . . , 125}
indexes into an ant. • food on grid f(x, y) ∈ {0, . . . ,maxf}, where x, y ∈ {−35, . . . , 35} indexes into a

grid point under investigation. • chemical on grid c(x, y) ∈ {0, . . . ,maxc}, where x, y ∈ {−35, . . . , 35}
indexes into a grid point under investigation, and maxc is the cut-off amount of chemical that a grid point can

hold (chosen according to computation time and inference precision). • is this the nest? n(x, y) ∈ {0, 1},
where 0 means that the grid point is outside of the nest, and 1 in the nest.

The stochastic events of the system include an ant loading food at a food source, an ant taking food

from a food source, an ant unloading food at the nest, an ant leaving food at the nest, chemical diffusion,

and chemical evaporation: • ant unloading food an ant with food drops it at the nest and leaves the nest,

a (ant, x, y, dir, 1)∧ n(x, y)→ a (ant, x, y, dir + π, 0). • ant loading food an ant without food takes food

at a food source and turns back to the nest, a (ant, x, y, dir, 0) ∧ f(x, y) > 0 → a (ant, x, y, dir + π, 1) ∧
f(x, y)−1. • ant seeking food a (ant, x, y, dir, 0)∧f(x, y) ≡ 0→ a (ant, x′, y′, dir′, 1), an ant without food

wiggles towards areas with high chemical concentration, where (x′, y′) = round(x+∆t · (sin, cos)(dir′)),
and we approximate this forward-wiggling behavior as defined in NetLogo language with p(dir→ dir′ =
dir±(sin, cos)∆d) ∝ c ·1∆d≡0+f((x, y)+(cos, sin)dir′)γ . • ant heading to the nest a (ant, x, y, dir, 1)∧
not n(x, y) → a (ant, x′, y′, dir′, 1), an ant with food wiggles towards the nest. • chemical diffusion

c(x, y)∧c(x+∆x, y+∆y)→ (1−δ) ·c(x, y)∧c(x+∆x, y+∆y)+δ ·c(x, y), where ∆x,∆y ∈ {0,±1}.
Next, we decompose the system state into ant states, food states, and chemical states, and assume

mean-field interactions among the ants, food, and chemical in order to circumvent tracking an astronomical

number of states in the state space ((71× 71× 8× 2)125 ×max71×71
f ×max71×71

c ). The amount of food

on each grid point is a categorical distribution taking values from 1, . . . ,maxf . The amount of chemical

on each grid point is a categorical distribution taking values from 1, . . . ,maxc. Each ant can be at any of

the 71× 71 grid points, moving in any of the eight headings, with or without food. The average amount

of food to be taken by an ant at a grid point is the average amount of food at the grid point times the

probability that an ant without food is on this grid point. The average amount of chemical to be left by an

ant at a grid point is the probability that the ant with food is on this grid point. The chemical diffuses and

evaporates according to a compound Poisson process.

With the mean-field inference algorithm, we can infer how ants in their initial positions at time 0 could

move to their positions at time 200 based on their interactions with both chemical and food (Figure 2a),

and on how other simulations could move the ants from the same origins to the same destinations with the

same number of steps. We compare ant locations in a simulation with our inference from the first frame

and final frames in Figure 2b, where different colors in the heat map represent the x
12 percentiles, where

x ∈ {0, . . . , 12}. This animation demonstrates visually that our approximate inference has captured the

dynamics of the model.

To assess the accuracy of the approximate inference on the Ants model, we independently sampled

the time series of ants, chemical, and food from their respective hidden Markov processes under the

mean-field approximation with the forward filtering backward sampling (FFBS) algorithm, and used the

Metropolis-Hastings algorithm to accept or reject samples according to the exact probability of the Ant

model. We set burn-in period and thinning interval heuristically, and evaluated convergence by comparing

various statistics of independent Metropolis-Hastings runs. We found the probability of a sample path under

the mean-field approximation to be a good estimation of the exact probability induced by the Ants world

(R2 = 0.99, p < 10−6), and the marginal one-slice statistics to be a good estimation of those computed
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(a) sample (b) inference

Figure 2: Online version shows a simulation run of the Ants model (left) and the stochastic inference of

ant trajectories from the end points (right). Printed version shows ant states (left) and inferred ant locations

(right) at time 127.

from the Metropolis-Hastings sample (R2 = 0.95, p < 10−3). Hence, we believe the approximate inference

developed in this paper has good accuracy.

The time/space complexity of the approximate algorithm scales linearly with the number of agents or

system variables, and for each agent or system variable the complexity scales linearly with the number

of latent state (because the state transition matrix induced by productions is sparse). The approximate

forward-backward algorithm couldn’t get noticeable improvement after 4 iterations, and the approximate

forward-backward + parameter estimation algorithm couldn’t get noticeable improvement after 20 iterations

for a wide range of initial configurations. Hence the approximation based on greedy local projection is

scalable to much larger data set.

While this example makes a stochastic inference about model-generated data assuming the model

is correct, there is no restriction in making stochastic inferences about real-world data with competing

agent-based models. Such a combination of model and data helps data scientists to tell stories about data

and to identify a data business as an optimization problem on data, and also helps modelers to benchmark

competing models against real-world data and to make predictions about real-world data with their models.

For example, it could be interesting to combine traditional agent-based road-traffic models with petabyte

vehicle tracking data and make predictions about events that have never previously occurred. Or, one could

combine meme-diffusion models with real-world mobile data and web surfing data to predict the next fad,

or combine city growth models with demographics to predict economic trends.

5 CONCLUSIONS AND DISCUSSIONS

In this paper, we gave a mean-field inference algorithm to approximate a continuous-time coupled Markov

process defined by multi-agent models. Such inference algorithm is useful in bridging together big data and

the world of generative models describable with rule-based production systems. Statistics such as stopping

times about an individual chain can be estimated from fitting Markov models if we employ structured
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variational approximation. Such variational algorithms decouple the interacting chains, and so cannot be

used to estimate statistics about the interactions among chains; however, in such situations estimations can

be based on Monte Carlo algorithms.
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