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ABSTRACT 

The analysis of the behavior of simulation models and the subsequent communication of their results are 
critical but often neglected activities in simulation modeling. To overcome this issue, this paper proposes 
an integrated metamodeling approach based on structural equation modeling using the partial least 
squares algorithm. The suggested method integrates both a priori information from the conceptual model 
and the simulation data output. Based on this, we estimate and evaluate the core relationships and their 
predictive capabilities. The resulting structural equation metamodel exposes structures in the behavior of 
simulation models and allows for their better communication. The link to theory via the conceptual model 
considerably increases understanding compared with other metamodeling approaches. 

1 INTRODUCTION 

Both the analysis of the behavior of simulation models and the subsequent communication of their results 
are two important but often neglected activities in simulation modeling (Tolk 2013). Over time, several 
authors have stressed the importance of these two activities and suggested a number of approaches to 
conduct them more economically and effectively (Barton 2013; Sturrock 2014; Yilmaz et al. 2014). 
Typically, first-generation statistical techniques such as low-order polynomial regression metamodels are 
incorporated into these approaches. These metamodel techniques are suitable to provide insights into the 
effects of different input variables and help identify the main drivers of simulation results. 

Still, these approaches face some challenges. While direct cause/effect relationships and interaction 
effects may be identified by using these approaches, more complex relationships between variables may 
be hidden. Current approaches do not incorporate the structure, strength, or direction of complex 
relationships between variables, such as hidden mediator effects in a more complex causal network that 
may include several layers of variables (Barton 2013, Sargent 1991). In particular, in agent-based models 
complex behavior can lead to several structural layers of effects, which are not covered explicitly by 
existing analytical approaches (Tolk et al. 2013). A related challenge is the analysis of a high number of 
variables and appropriate communication of their relationships and effects. Finally, low-order polynomial 
regression metamodels including analysis of variance (ANOVA) can lead to distorted results. Statistical 
characteristics about the data set – such as normally, independently, and identically distributed variables 
(NIID) – are defined as preconditions for their application and evaluation. However, these assumptions 
are often violated by simulation data. 

This paper presents an approach to overcome some of the described challenges. To this end, we 
submit structural equation modeling (SEM) with its statistical algorithms to use both the a priori 
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information on the conceptual simulation model and the data produced by the simulation model to 
estimate a structural equation metamodel. SEM is a second-generation statistical technique that provides a 
way of representing the simulation model representation that enables a semantic exposition of its 
structures over several layers and allows one to reduce complexity by aggregating and abstracting 
variables to constructs. Partial least squares (PLS-) SEM uses this information and the simulation data 
output in considering its statistical characteristics to estimate the parameter values (Hair et al. 2014). The 
resulting metamodel and its parameters can be assessed by several criteria to conclude its predictive 
capability and fit. The link between the conceptual model and theory may considerably increase 
understanding compared with other metamodeling approaches. Overall, the suggested structural equation 
metamodeling approach may foster the development of the analytical expositions of simulation models 
while keeping them communicable and understandable. 

This paper proceeds as follows. In the next section, we introduce SEM, with an emphasis on PLS. 
First, we present its main characteristics and requirements, and then we discuss PLS-SEM as a suitable 
approach to manage the simulation data output characteristics and outline the different steps in deriving a 
metamodel. In Section 3, we illustrate the method with an example. First, we introduce the simulation 
model used and analyze it by adopting a regression technique. Then, we derive a metamodel based on the 
same simulation data and our conceptual model and discuss the benefits of the chosen approach. In 
Section 4, we provide a brief summary and conclusion. 

2 METHODOLOGY 

We propose that SEM be viewed as a metamodel technique. Generally, metamodels are input/output 
transformations that are inferred based on the simulation model (Kleijnen and Sargent 2000). However, 
SEM metamodels may also include the structure of the simulation model as information beyond the data. 
Thus, these models emphasize the structural aspect of metamodels. 

All metamodels own specific key objectives such as understanding, prediction, optimization, and 
validation (Kleijnen 2014). Structural equation metamodels focus primarily on understanding. In this 
regard, they can be compared with the often used polynomial regression metamodels (Kleijnen and 
Sargent 2000). These approaches implicitly assume a direct cause/effect structure between the 
independent and dependent variables. Hence, the resulting metamodel embodies a simple structure of the 
simulation model (Law 2014b). However, this typically only allows one layer of effects. This 
characterizes first-generation statistical techniques (Gerow et al. 2008). SEM, as a second-generation 
statistical technique, can overcome this restriction by modeling mathematically complex structures. 

2.1 PLS-SEM 

SEM combines a conceptual semantic presentation of a model with a set of statistical techniques. Given 
the underlying research question, hypotheses are formulated a priori and establish a link to the theory. 
SEM visualizes these relationships between the entities to be investigated through its semantics. The 
corresponding measures are assigned to their entities to represent their meaning (Byrne 1998). The 
resulting structural equation model is estimated by means of a statistical algorithm. Thus, this 
methodology combines two different sources of information: (I) theory at the conceptual level and (II) 
data at the analytical level. 

The estimation procedures of structural equation models fall into two groups (Hair et al. 2014): 
covariance-based algorithms, with an emphasis on explanation and parameter accuracy, and variance-
based algorithms, with a distinct focus on the prediction and maximization of the explained variance. We 
focus on variance-based algorithm PLS. Its capability to reduce measurement errors to maximize the 
explained variance for a certain response is congruent with the aim of a simulation data analysis (Law 
2014a). Furthermore, its emerging predictive capability is suitable for metamodeling, which will support 
the metamodel’s plausibility. 
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The PLS algorithm was first presented by Wold (1982) and is a multiple ordinary least squares (OLS) 
regression technique for estimating composite factor models. As one can see from Figure 1, the SEM 
method consists of two different systems concerning the measurement and structural model. The 
structural model specifies the relationships between constructs and the measurement model describes the 
relationships between the construct and its corresponding variables. The constructs can also be called 
proxies, composites, or blocks and can interpreted as underlying factors produced by their corresponding 
measurement models (Falk and Miller 1992). PLS-SEM iteratively approximates the estimates of the 
measurement and structural parameters (Fornell and Bookstein 1982; Lohmüller 1989). 

 

 

Figure 1: Structural Equation Model. 

This structural model encompasses the constructs, which are either independent ),,( 321 n ȟ or 
dependent ).,,( 21 m Ș  In particular, 

1  is determined as an intermediate construct. The structural 
model can easily be enhanced for more structural layers of effects and can be generally expressed by 
 

,),|( ȗȟīȘǺȟȘȘ E          (1)  
 
where )( mmǺ  represents a matrix of the coefficient parameters for the dependent and intermediate 
constructs, and )( nmī  is a matrix of the coefficient parameters for independent constructs .ȟ  The 
terms ),( 121 xn ȗ  are residual vectors within the structural model and represent ).(ȘȘȗ E  As 

noted earlier, the constructs are approximated by independent ),,( 21 qxxx x  and dependent 

),,( 21 pyyy y  variables. There are two main measurement model types: formative and reflective (Hair et 

al. 2014). This relationship refers to the mathematical and conceptual link between the construct and its 
measure. The reflective measurement model can be mathematically described for independent, exogenous 
constructs by 
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ȁ  are regression matrices that are also called loadings, and į  and İ  are residual 

vectors. Thus, a reflective construct captures the common variance of its indicators. Furthermore, 
reflective measured constructs can be interpreted as abstractions, because the underlying construct 
represents the indicators. 

The second model type is the formative measure, which is for independent constructs  
 

xȆȟ ȟ            (4)  

 
and for dependent variables 
 

.yȆȘ Ș            (5)  

 
)( mp ȘȆ  and )( nq Ȇ  represent the regression matrices that contain the weights. Hence, this 

measurement can be viewed as an aggregation of the variables, because the construct is caused by the 
indicators. 

Accordingly, the estimation procedures can be roughly classified into three stages. First, the construct 
scores are approximated by the weights and loadings of their indicators. At the beginning of this 
procedure, initial arbitrary values are used. Then, the paths are approximated by the proxies that enable, 
simultaneously, an approximation of the scores by using the structural model. Based on these scores, the 
measurement model is estimated to deliver the parameter estimates for the first step. These stages are 
repeated iteratively until convergence occurs (I). The last steps are a final estimation of the path 
coefficients, weights, loadings (II), and location parameters (III) (Lohmüller 1989). Hence, PLS-SEM 
uses information from the structural model as well as data from the measurement model for its estimation. 
This property supports our aim of linking the conceptual and mathematical worlds to form a structural 
equation metamodel. 

2.2 Suitability for Simulation 

This section addresses PLS-SEM’s appropriateness for the analysis of simulated systems. Simulation data 
have specific requirements in comparison with the analysis of empirical data and models. In this respect, 
we will discuss the requirements of PLS for simulation models and its specific data characteristics. 

First, simulation models often have complex internal structures such as high-order effects and 
hierarchical mechanisms. Basically, PLS-SEM covers these characteristics by its capability to model 
mediation, interaction, and non-linear effects. This is a valuable advantage in comparison with other 
regression metamodels, for which, for instance, mediation and several layers are quite challenging to 
detect and analyze (Lowry 2014). 

Second, simulation models often consist of large numbers of variables and variable levels (Sanchez 
and Wan 2012). PLS-SEM is well known owing to its capability to analyze high-dimensional data in 
fuzzy environments (Sarstedt et al. 2014). The measurement model equations possess the ability to reduce 
qualitative and quantitative variables to focus on their corresponding meaning. Therefore, one can use the 
constructs to condense information. For instance, strongly correlated processes can be abstracted, or 
specific environment variables can be aggregated. 

Another important issue is that simulation data characteristics often violate the standard assumptions 
of statistical methods. This creates typical pitfalls in the analysis (Law 2014a), which can lead to 
misleading results. Ideally, residuals are NIID. However, NIID is not the default setting within a 
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simulation. PLS-SEM is robust to NIID because a predictor specification only implies that construct 
scores are conditional expectations of the indicators. The specification can be expressed as 
 

.nnn vxy             (6)  
 
Equation (6) is a generalized form for the two equation systems (see Section 2.1) for n  observation 
points, which has the following implications: ,0)( nvE 0);cov( nn vx  and )var();cov( nnn xxy   
(Lohmüller 1989). Eventually, this approach does not assume any statistical model and makes soft 
assumptions. In this way, it is a non-parametric approach, meaning that restrictive requirements do not 
apply here. 

We will show that this condition also has useful implications for our metamodel’s objective. For 
instance, a common pitfall of random simulation concerning NIID is the independence assumption of 
observations (Law 2014a). Considering equation (3), no correlation of ),(cor 1nn vv  is expected. Thus, 
PLS-SEM is also appropriate with the given dependencies of the observations. Another inherent 
characteristic is the heteroscedasticity of residuals. However, PLS-SEM does not expect identical residual 
distribution, besides .0)()( 1  nn vEvE  Furthermore, Lohmüller (1989) points out that neither the 
residual terms 

nv and 
1nv  nor the independent variables 

nx  and 
1nx  need an identical distribution. For 

this reason, non-normal distributions do not necessarily lead to biased results (Reinartz et al. 2009). 
To conclude, PLS-SEM is a complete non-parametric approach that possesses the capability to cover 

the emerging complex structures of models by also bearing many high-dimensional variables. 
Furthermore, because it respects the data characteristics, PLS-SEM leads to robust approximations 
(Henseler et al. 2009) that can be fairly suitable for understanding the behavior of simulation models. 

2.3 SEM for Simulation Metamodeling 

This subsection introduces the proposed metamodeling approach for simulation models by applying PLS-
SEM. Once more, we describe the application of the two basic elements, the structural model and the 
measurement model for the simulation.  

Concerning the structural model, we refer to the ontology of simulation models, according to which 
entities can be viewed as fundamental elements (Smith 2013). Thus, entities are represented as constructs 
in SEM. Additionally, mechanisms are modeled by groups of entities and their relationships (Hedström 
and Ylikoski 2010). A network of entities and structural relationships builds up the structural equation 
model and represents the underlying conceptual model of the simulation model by its semantic. The paths 
represent the structural assumptions, while the constructs embody the entities of simulation models. The 
semantic of SEM-links thus explicitly represents information on the simulation model and provides a 
conceptual model for investigating the behavior in an embedded scenario. 

Having built up the elements and structures within the structural model, the measurement model is 
generated by assigning the simulation parameters as indicators to their corresponding constructs. Here, 
the best operationalization for the entities must be found, given the purpose of the analysis. This creates a 
number of challenges. For instance, an entity can sometimes be so complex that a few variables do not 
capture the content in all its facets. Another example could be a multivariate output of error measures. 
Single variables, which are sometimes the best expression of a simple entity, can also be used. In this case 
the construct becomes its measure (Diamantopoulos et al. 2012). 

In this line, the following operationalization methods generally clarify the often missing link between 
entities and their corresponding measures. PLS-SEM offers two possible perspectives on this: reflective 
and formative constructs (see Subsection 2.1). These can be utilized for abstraction or aggregation for a 
set of variables, which may be important for a model’s representation (Smith 2013). Therefore, it is 
possible to track the development from the conceptual to the mathematical simulation model by adding 
the measure to its corresponding construct. 
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Given the elements, structure, and measurements, the model can then be estimated. Recorded files 
containing simulated data from simulation experiments serve as data for the algorithm. Ideally, these 
simulated data are generated by applying a systematic experimental design (Barton 2013; Kleijnen and 
Sargent 2000; Law 2014b; Lorscheid et al. 2012). 

The final step is to estimate and evaluate the metamodel. Given the parameter estimates from the PLS 
algorithm, the structural equation metamodel may be assessed and examined. The goal of the assessment 
is to evaluate the predictive capabilities and fit (Kleijnen and Sargent 2000) of the structures that are 
derived from the a priori information on the simulation model in combination with the measures 
calculated by the simulation data output. PLS-SEM possesses different established criteria for such an 
assessment. The validity and reliability of the constructs are evaluated by variance exploration. Reliability 
criteria such as Dillon-Goldstein’s rho and Cronbach’s alpha are typically implemented for evaluating the 
constructs (Nunnally and Bernstein 1994). Average variance extracted (AVE), which represents the 
proportion of the explained variance among the indicators, and cross-loadings assess aspects of validity. 
Variance inflation factors (VIFs) are also useful for detecting collinearity and avoiding violations. The 
structures can be evaluated by using complex resampling routines. Further, significances derived from 
several bootstrapping procedures, effect sizes (f²), and the coefficients of determination (R²) can be 
helpful for examination (see also Kleijnen and Deflandre 2006). Moreover, the Stone-Geisser resampling 
procedure is a cross-validation for drawing conclusions about prediction accuracy (Stone 1974). 

Finally, the results of this metamodeling approach are communicated. PLS-SEM provides insights 
into existing structures and effects. By using the SEM semantic, we can present a conceptual model with 
specific simulation model information to reveal the structural assumptions and predictive causal 
relationships. Furthermore, the statistical analysis involves the simulation output from designed 
experiments to conduct a parameter estimation of the underlying relationships. Moreover, several 
possibilities even exist for the assessment of the metamodel’s predictive power and fit. Finally, we 
present integrated information from the conceptual and data worlds within a structural equation 
metamodel that reveals the behavior of parts of the simulation model and offers convenient 
communication. 

3 APPLICATION 

This section presents and illustrates the proposed method by means of a simplified application. We use 
the learning agents for mechanism design analysis (LAMDA) simulation study by Lorscheid (2014). The 
model simulates a budgeting process that includes several steps, starting with reporting productivity 
values by department to achieve resources that are utilized to generate a certain department profit. The 
sum of the department profits results in a company profit. This process is embedded in an environment 
that affects the department in question. The research question in this sample model is about the drivers of 
a company’s success, focusing on the effects of (un)truthful reporting. 

First, we briefly introduce the variables. Since this model only serves as an illustration, an extensive 
description of the variables cannot be given here. For a more detailed overview, see Lorscheid (2014). A 
number of variables might influence a company’s success. Discount limits the compensation payment to 
the departments based on the profit achieved. The variable OtherDepartments (OtherDep) measures other 
agents’ reporting behavior, and Resources indicates the number of resources available to a company. A 
department’s productivity level is operationalized by means of the following variables: Minimum 
represents the minimum level of productivity, whereas Scale determines its range. Reduction regulates the 
reduction of the departments’ productivity above certain capacity levels for resource units. Agent 
behavior is determined by ReportValue, the reported productivity, and Deviation represents the deviation 
of the report from true productivity. A company’s success is reflected in at least two variables: the 
dependent variables DivsionProfit (measuring the profit of the departments) and CompanyProfit 
(representing the overall company profit). 
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3.1 First-Order Polynomial Metamodel 

In the next step, we calculate a first-order regression metamodel and present it as a metamodel for a 
simple input/output simulation model. This will be used as a reference point to elaborate on the 
contributions of the PLS-SEM metamodel. We do not use the equation expression, focusing instead on 
the impacts of the variables on the response.  
 Table 1 shows the results of the OLS regression estimation. Here, the values of standardized 
regression coefficients to their dependent variable are listed, assuming a direct relationship. Standardized 
regression coefficients are a convenient measure of a variable’s impact. Generally, the regression fulfills 
its capability as a metamodel for the simulation model. Overall predictive capability can be expressed by 
R²adj and this is high for the two given metamodels, which indicates predictive power. 

Table 1: Standardized OLS regression coefficients according to their response variables; not statistically 
significant = ‘*’. 

Variables DepartmentProfit
(R²adj = 0.904)

CompanyProfit 
(R²adj = 0.805) 

Minimum 0.012 0.108 
Reduction -0.069 -0.082 

Scale 0.008 0.134 
ReportValue 1.001 0.569 

Deviation -0.708 -0.441 
Discount -* -* 

OtherDepartments -0.098 0.292 
Resources 0.131 0.177 

 
Given these results, one can conclude that ReportValue and Deviation are the main drivers of the 

dependent variables, according to the research question, while the impact of the productivity variables 
carries little weight. Further, considering the results of their p-values, ReportValue and Deviation have 
the strongest effects, and all variables are significant except Discount. In the following, these results are 
used as a reference point for the PLS-SEM analysis. 

3.2 Structural Equation Metamodeling 

In this subsection, we develop a structural equation metamodel with PLS-SEM following the structure 
presented in Subsection 2.3 to prepare the subsequent analysis of the sample model. First, we consider the 
a priori information provided by the simulation model and the research question. The sample model’s 
purpose is to explore the impacts of several variables, including (un)truthful reporting, on company 
success. Thus, Reporting (REP) is defined as an independent entity-based construct. Entity success (SUC) 
is a dependent construct. Additionally, the model consists of a department environment and its attributes 
that affect overall and individual conditions. Therefore, we define the constructs for a department 
environment (DE) and department settings (DS) to examine their impacts. Having specified the model’s 
constructs, we arrange their sequence along the implemented budgeting process. 

We develop the paths based on the underlying theory. This allows us to shed light on the reporting 
behavior in its embedded environment and to disentangle the different cause/effect relationships of the 
independent variables. As one can see from Figure 2, the core relationship is REP’s effect on SUC, since 
this reflects the research question, namely how reporting behavior influences success. The constructs DE 
and DS are implemented to analyze their influences on the relationship between REP and SUC. REP is 
influenced by the constructs DE and DS, while REP also affects SUC. This makes REP an intervening 
construct, allowing us to explicate the causal sequence between the variables (i.e. more than one layer of 
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effects) and showing the path dependency. This finding shows the potential of our approach to make the 
interdependencies between the model elements explicit, visible, and communicable. 

The following mathematical operationalization of the constructs can be viewed as a transition from a 
conceptual to a mathematical model. The constructs are linked to the input, output, and intermediate 
variables of the simulation model, as their measures in the structural equation model. Hence, we establish 
a close link between the mathematical and conceptual models. To link these measures with the constructs, 
we first organize our variables and constructs. The construct DE is determined by three measures, namely 
Discount, OtherDep, and Resources, which specify the department environment. The construct DS is 
caused by the three variables of Minimum, Scale, and Reduction, which limit the potential productivity of 
the department. REP is defined by the variables ReportValue and Deviation, which measure the reporting 
behavior of the department. We use the formative measure to include all its independent variance. The 
sum of department profits equals overall company profit. Therefore, DepartmentProfit and 
CompanyProfit are correlated and can be embodied in a reflective and dependent construct (SUC). The 
abstraction of these two subprocesses may reduce the model’s complexity (i.e. from two models to one). 
Here, a reflectively measured construct is preferable (by integrating multiple output measures into one 
construct), because it can reduce the number of metamodels (Barton and Meckesheimer 2006). By 
running the PLS algorithm by means of SmartPLS (Ringle et al. 2014), we approximate the estimates of 
the metamodel (see Figure 2). 

Generally, the structural equation metamodel can be read as follows. The rectangles represent the 
variables that are linked with their constructs, which are symbolized as circles. Therefore, this 
relationship is either a weight or the loading. The relationships between the constructs are the paths with 
their corresponding parameter estimates. 
 

 

Figure 2: Structural Equation Metamodel. 

Given the resulting metamodel, the structure and elements of the model and its central mechanisms are 
visible. This increases the transparency of the existing interdependencies and supports their 
communication. The overview of model elements and assigned input variables may thus serve as a basis 
for discussion. 
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3.3 Assessment of the Structural Equation Metamodel 

The purpose of assessing the metamodel is to describe the structures by means of statistical measures and 
evaluate its predictive capability and the metamodel’s fit to support and complement understanding 
(Kleijnen and Sargent 2000). As already described, an assessment of the measurement model can be 
performed by means of various non-parametric criteria. First, the reflective constructs are assessed; 
second, the formative constructs are analyzed; and finally, the model’s structure is described. 

The reflective constructs can be examined by their reliability and validity. First, the reliability of the 
construct SUC is investigated by means of Dillon-Goldstein’s rho and Cronbach’s alpha. The respective 
values are 0.855 and 0.855, which can be considered as reliable compared with the threshold of 0.8 
(Nunnally and Bernstein 1994). Second, the AVE serves as a validity measure. The calculated AVE for 
the given construct is 0.794, which should at least equal 0.5. Other complementary measures are cross-
loadings and the Fornell-Larcker criterion, which are not conspicuous in our metamodel (Fornell and 
Larcker 1981). In this way, we evaluate the proportion of indicator variance explained by its construct 
(Henseler et al. 2009). Overall, we can constitute that SUC is a well-defined target construct given the 
results from the analysis of the validity and reliability of the reflective constructs. 

Because the formative constructs are causally determined by their indicators, the assessment has a 
different approach than that for reflective constructs. Primarily, these constructs should be tested chiefly 
with their conceptual meanings. The VIF measures then serve as the first assessment criterion to detect 
multicollinearity, because the measurement model is similar to multiple regression. The VIF values are 
below 5 for all formative constructs (DE, DS, REP) and model indicators. Therefore, strong collinearity 
can be excluded, suggesting the validity of the formative constructs (Henseler et al. 2009). As such, we 
conclude that the constructs are appropriate representations of our simulation entities. 

Based on the assessed constructs, we can evaluate the structural model. Here, R²adj is one of the main 
assessment criteria for a metamodel’s predictive capability. For the given model, the target construct SUC 
has an R²adj of 0.966. This finding indicates high predictive capability for the metamodel.  

3.4 Comparison of the Metamodels 

Both metamodeling techniques, OLS regression and PLS-SEM, show the crucial drivers of the simulation 
model. In particular for direct structures, low-order polynomial metamodels clarify the impacts of the 
variables, which may sufficiently represent simple models. However, if many variables and complex 
structures are involved, the balance can change. 

First, the consideration of simulation model structures can lead to different conclusions concerning 
simulation behavior and results. In the given sample model, the relationships between DS, REP, and SUC 
are of special interest since they represent the research question. As mentioned, the low-order polynomial 
metamodel states that reporting is the most influential independent variable for company success. 
However, this conclusion does not match common sense. Company success will naturally be driven by 
productivity, which could lead to skepticism and misunderstanding. By means of our proposed method, 
one can see from the metamodel that there is in fact a mediation effect. Although DS has almost no direct 
effect on SUC, it strongly affects REP, which influences SUC. Hence, there is an indirect mediation effect 
of 0.588, which occurs by multiplying the direct paths from DS to REP (0.674) by SUC (0.872). This 
example shows how structural equation metamodeling may support the correct presentation of complex 
model behavior in a transparent and yet comprehensible way. 

Second, the integrated information enables more insights into the behavior of simulation models. 
Structural equation metamodels enable an exploration of structures by strength and direction. In 
considering the relationship between DE and REP, the path has a coefficient value of 0.008. This value 
clearly indicates that there is only slight direct predictive causality, although this might be part of the 
simulation model structure. By contrast, REP has a high impact on success and has predictive relevance. 
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In this vein, the SEM semantic not only supports convenient communication but also checks the 
simulation model’s plausibility. 

Finally, PLS-SEM allows for the explicit analysis of complex structures and interdependencies. This 
is especially helpful when applied to more complex models. As one can see in Figure 2, we reduced 
several variables to constructs without changing the primary relationships and impacts. For example, we 
can consider ReportValue and Deviation in one construct or alone. In addition, using constructs enables 
interpretation and communication at the entity level by abstracting or aggregating the variables. Thus, 
complex structures such as entities with many variables can easily be reduced to constructs. Furthermore, 
by using constructs, it is possible to have one metamodel instead of several, thereby allowing a condensed 
presentation and communication of simulation behavior and results. 

4 CONCLUSION AND FURTHER RESEARCH 

We proposed an approach to the analysis of the behavior of simulation models and their subsequent 
communication by metamodels using PLS-SEM. Structural equation metamodels explicitly use a priori 
information from the conceptual model in combination with the simulation data output. Based on this, we 
estimated and evaluated the relationships and predictive capabilities of the metamodel. The link to theory 
considerably increases understanding compared with other metamodeling approaches. Overall, these 
structural equation metamodels may thus foster the development of the analytical expositions of 
simulation models while keeping them communicable and understandable. 

This paper is a first step in this new direction, and more applications are required to test this 
approach’s contribution. Indeed, PLS-SEM has been increasing its capabilities, such as consistent PLS 
(Dijkstra and Henseler 2015), which should also be explored by future research. Furthermore, SEM in 
general provides additional algorithms and goodness of fit measures that can be used to achieve other 
objectives in structural equation metamodeling, such as verification and validation. 
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