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ABSTRACT

The analysis of the behavior of simulation modwaid the subsequent communication of their results are
critical but often neglected activities in simulation moagliTo overcome this issue, this paper proposes

an integrated metamodeling approach based ortstal equation modeling using the partial least
squares algorithm. The suggested method integrates both a priori information from the conceptual model
and the simulation data output. Based on this, we estimate and evaluate the core relationships and their
predictive capabilities. The resulting structural equratnetamodel exposes structures in the behavior of
simulation models and allows for their better commation. The link to theoryia the conceptual model
considerably increases understanding coegbar with other ~metamodeling approaches.

1 INTRODUCTION

Both the analysis of the behavior of simulation mMedmd the subsequent communication of their results
are two important but often neglected activitiesiimulation modeling (Tolk 2013). Over time, several
authors have stressed the importance of theseattigities and suggested a number of approaches to
conduct them more economically and effectivehar@Bn 2013; Sturrock 2014; Yilmaz et al. 2014).
Typically, first-generation statistical techniqueslsas low-order polynomial regression metamodels are
incorporated into these approaches. These metaneatelitiues are suitable to provide insights into the
effects of different input variables and hapntify the main drivers of simulation results.

Still, these approaches face some challenges. Whigetdiause/effect relationships and interaction
effects may be identified by using these approaahese complex relationships between variables may
be hidden. Current approaches do not incorporate the structure, strength, or direction of complex
relationships between variables, such as hiddenatwdeffects in a more complex causal network that
may include several layers of variables (Barton 2&Egent 1991). In particai, in agent-based models
complex behavior can lead to several structuralriayé effects, which are not covered explicitly by
existing analytical approaches (Tolk et al. 2013). Ateelachallenge is the analysis of a high number of
variables and appropriate communication of theittiaiahips and effects. Finally, low-order polynomial
regression metamodels including analysis of variaAdQVVA) can lead to distorted results. Statistical
characteristics about the data set — such as norrmradigpendently, and identically distributed variables
(NIID) — are defined as preconditions for their apgiion and evaluation. However, these assumptions
are often violated by simulation data.

This paper presents an approach to overcome swntiee described challenges. To this end, we
submit structural equation modeling (SEM) with g#atistical algorithms to use both the a priori

978-1-4673-9743-8/15/$31.00 ©2015 IEEE 701



Mertens, Lorscheid, and Meyer

information on the conceptual simulation modedahe data produced by the simulation model to
estimate a structural equation metamodel. SEMsicand-generation statistidabhnique that provides a
way of representing the simulation model repredmmiathat enables a semantic exposition of its
structures over several layers and allows oneettuce complexity by aggregating and abstracting
variables to constructs. Partial least squares {PEEM uses this information and the simulation data
output in considering its statistical characteristicedttmate the parameter values (Hair et al. 2014). The
resulting metamodel and its parameters can be assbgsseveral criteria to conclude its predictive
capability and fit. The link between the conceptmabdel and theory may considerably increase
understanding compared with otheetamodeling approaches. Overtike suggested structural equation
metamodeling approach may foster the developmetheofinalytical expositions of simulation models
while keeping them communicable and understandable.

This paper proceeds as follows. In the nextisecwe introduce SEM, with an emphasis on PLS.
First, we present its main characteristics and reqents, and then we discuss PLS-SEM as a suitable
approach to manage the simulation data output characteristics and outline the different steps in deriving a
metamodel. In Section 3, we illustrate the methatt \&n example. First, we introduce the simulation
model used and analyze it by adopting a regressidimtque. Then, we derive a metamodel based on the
same simulation data and our conceptual model distliss the benefits of the chosen approach. In
Section 4, we provide a brief summary and conclusion.

2 METHODOLOGY

We propose that SEM be viewed as a metamtet#inique. Generally, metamodels are input/output
transformations that are inferred based on thelation model (Kleijnen and Sargent 2000). However,
SEM metamodels may also include the structurdn@fsimulation model as information beyond the data.
Thus, these models emphasize the structural aspect of metamodels.

All metamodels own specific key objectives suah understanding, prediction, optimization, and
validation (Kleijnen 2014). Structural equation meta®s focus primarily on understanding. In this
regard, they can be compared with the oftesed polynomial regression metamodels (Kleijnen and
Sargent 2000). These approacheglicitty assume a direct cause/effect structure between the
independent and dependent variablésnce, the resulting metamodelladies a simple structure of the
simulation model (Law 2014b). However, this typigabnly allows one layer of effects. This
characterizes first-generation statistical teghes (Gerow et al. 2008). SEM, as a second-generation
statistical technique, can overcome this restriction by modeling mathematically complex structures.

2.1 PLS-SEM

SEM combines a conceptual semantic presentationnoddel with a set of statistical techniques. Given

the underlying research question, hypotheses are fatetlih priori and establish a link to the theory.

SEM visualizes these relationships between the entities to be investigated through its semantics. The
corresponding measures are assigned to theiresntiti represent their meaning (Byrne 1998). The
resulting structural equation model is estimated by means of a statistical algorithm. Thus, this
methodology combines two different sources of infdrama (I) theory at the conceptual level and (ll)

data at the analytical level.

The estimation procedures of structural equatiwodels fall into two groups (Hair et al. 2014):
covariance-based algorithms, with an emphasigxpianation and parameter accuracy, and variance-
based algorithms, with a distinct focus on the ptemticand maximization of the explained variance. We
focus on variance-based algorithm PLS. Its capabitityeduce measurement errors to maximize the
explained variance for a certain response is congmihtthe aim of a simulation data analysis (Law
2014a). Furthermore, its emerging predictive capability is suitable for metamodeling, which will support
the metamodel’s plausibility.
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The PLS algorithm was first presented by Wold (1982} ia a multiple ordinary least squares (OLS)
regression technique for estimating composite factor models. As one can see from Figure 1, the SEM
method consists of two different systems conicgy the measurement and structural model. The
structural model specifies the relationships betwamrstructs and the measurement model describes the
relationships between the constraetd its corresponding variables. €Tbonstructs can also be called
proxies, composites, or blocks and can interpreted as underlying factors produced by their corresponding
measurement models (Falk and Miller 1992). PLS-Sievhtively approximates the estimates of the
measurement and structupgirameters (Fornell and Boa&s 1982; Lohmduller 1989).
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Figure 1: Structural Equation Model.

This structural model encompasses tloastructs, which are either independgnt (¢,,&,,&,... &) or
dependeny = (,,7,....n,,). In particular,, is determined as an intermetieconstruct. The structural
model can easily be enhanced for more structayars of effects and can be generally expressed by

EMIn.§)=Bn+IE+L, (1)

where B(mxm) represents a matrix of the coefficientrggaeters for the depemiteand intermediate
constructs, and”(mxn) is a matrix of the coefficient pameters for independent construgtsThe
terms¢=(¢,.¢,... ¢, ,,) are residual vectors within the structural model and reprgseqt- E(y). As

noted earlier, the constructs are approximated by independerik,x,,...x,) and dependent
y=(YY,....y,) variables. There are two main measurement ntygek: formative and reflective (Hair et

al. 2014). This relationship refers to the mathematca conceptual link between the construct and its
measure. The reflective measurement model can be mathematically desaribddgendent, exogenous
constructs by

x=AE+d ~E@B)=0 )

and for dependent engenous constructs by
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y=Amn+e ~E(g)=0 3)

A, (pxm) and A (gxn) are regression matrices that are also called loadingss and¢ are residual

vectors. Thus, a reflective construct captures ¢cbmmmon variance of its indicators. Furthermore,
reflective measured constructs can be interpreted as abstractions, because the underlying construct
represents the indicators.

The second model type is the formative measwihich is for independent constructs

g =1Ix (4)

S

and for dependent variables
n=1,y. (5)

I, (pxm) and I, (gxn) represent the regression matrices that contain the weights. Hence, this

measurement can be viewed as an aggregatioreofdtiables, because the construct is caused by the
indicators.

Accordingly, the estimation procedures can be roughlalysified into three stages. First, the construct
scores are approximated by the weights and loadings of their indicators. At the beginning of this
procedure, initial arbitrary values are used. Thea,pliths are approximated by the proxies that enable,
simultaneously, an approximation of the scores by using the structural model. Based on these scores, the
measurement model is estimated to deliver the pdesnastimates for the first step. These stages are
repeated iteratively until convergence occurs (l)e Tast steps are a final estimation of the path
coefficients, weights, loadings (Il), and locati parameters (lll) (Lohmiller 1989). Hence, PLS-SEM
uses information from the structural model as well@s from the measurement model for its estimation.
This property supports our aim of linking the conceptual and mathematical worlds to form a structural
equation metamodel.

2.2 Suitability for Simulation

This section addresses PLS-SEM'’s appropriatenessdamlysis of simulated systems. Simulation data
have specific requirements in comparison with theyamabf empirical data and models. In this respect,
we will discuss the requirements of PLS for siniolamodels and its specific data characteristics.

First, simulation models often have complex ing structures such as high-order effects and
hierarchical mechanisms. Basically, PLS-SEM coubese characteristics by its capability to model
mediation, interaction, and non-linear effects. TiBisa valuable advantage in comparison with other
regression metamodels, for which, for instance, mediation and several layers are quite challenging to
detect and analyze (Lowry 2014).

Second, simulation models often consist of largelmers of variables and variable levels (Sanchez
and Wan 2012). PLS-SEM is well knavwowing to its capability to analyze high-dimensional data in
fuzzy environments (Sarstedt et al. 2014). The measemt model equations possess the ability to reduce
gualitative and quantitative variablesfazus on their corresponding meaning. Therefore, one can use the
constructs to condense information. For instastengly correlated processes can be abstracted, or
specific environment variables can be aggregated.

Another important issue is that simulation data characteristics often violate the standard assumptions
of statistical methods. This creates typical pitfalisthe analysis (Law 2014a), which can lead to
misleading results. ldeally, residuals are NIID. Heare NIID is not the default setting within a

704



Mertens, Lorscheid, and Meyer

simulation. PLS-SEM is robust to NIID because adprtor specification only implies that construct
scores are conditional expectations of thedattirs. The specification can be expressed as

yn:a+:BXn+Vn' (6)

Equation (6) is a generalized form for thveo equation systems (see Section 2.1) rfoobservation
points, which has the following implicationg(v,) = 0, cov(x,;v,) =0 andcov(y,;x,) = B var(x,)
(Lohmdiller 1989). Eventually, this approach does assume any statistical model and makes soft
assumptions. In this way, it is a non-parametgpraach, meaning that restrictive requirements do not
apply here.

We will show that this condition also has useifubplications for our metamodel’s objective. For
instance, a common pitfall of random simulatiancerning NIID is the independence assumption of
observations (Law 2014a). Considegriequation (3), no correlation @br(v,,v,,,) is expected. Thus,

PLS-SEM is also appropriate with the givenpeledencies of the obsetims. Another inherent
characteristic is the heteroscedasticity of resididsvever, PLS-SEM does not expect identical residual
distribution, besidesE(v,) = E(v,.,) = 0. Furthermore, Lohmiiller (1989) points out that neither the

residual terms, andv, , nor the independent variables and x, , need an identical distribution. For

this reason, non-normal distributions do not necdgdasd to biased results (Reinartz et al. 2009).

To conclude, PLS-SEM is a comf#enon-parametric approach that possesses the capability to cover
the emerging complex structures of models by also bearing many high-dimensional variables.
Furthermore, because it respects the data chastic® PLS-SEM leads to robust approximations
(Henseler et al. 2009) that can be fairly suitdbltaunderstanding the behaviof simulation models.

23 SEM for Simulation Metamodeling

This subsection introduces the proposed metamuglapproach for simulation models by applying PLS-
SEM. Once more, we describe the application eftihio basic elements, the structural model and the
measurement model for the simulation.

Concerning the structural model, we refer to ¢dnéology of simulation models, according to which
entities can be viewed as fundamemigments (Smith 2013). Thus, ensti@re represented as constructs
in SEM. Additionally, mechanisms are modeleddrgups of entities and their relationships (Hedstrém
and Ylikoski 2010). A network of entities and strueturelationships builds up the structural equation
model and represents the underlying conceptual hufdiee simulation model by its semantic. The paths
represent the structural assumptions, while thetnorts embody the entities of simulation models. The
semantic of SEM-links thus explicitly represeim$ormation on the simulation model and provides a
conceptual model for investigatingethehavior in an embedded scenario.

Having built up the elements and structures withie structural model, the measurement model is
generated by assigning the simulatiprameters as indicators teethcorresponding constructs. Here,
the best operationalization for the entities mustdomd, given the purpose of the analysis. This creates a
number of challenges. For instance, an entity cameimes be so complex that a few variables do not
capture the content in all its facets. Another exangauld be a multivariateutput of error measures.
Single variables, which are sometimes the best expres$ia simple entity, can also be used. In this case
the construct becomes its measure (Diamantopoulos et al. 2012).

In this line, the following operationalization methagEnerally clarify the often missing link between
entities and their corresponding measures. PLS-SEMsadfifi® possible perspectives on this: reflective
and formative constructs (see Subsection 2.1). Thesbeattilized for abstraction or aggregation for a
set of variables, which may be important for a model’'s representation (Smith 2013). Therefore, it is
possible to track the development from the conceptugihe mathematical simulation model by adding
the measure to its corresponding construct.
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Given the elements, structure, and measuremt#rgsmodel can then be estimated. Recorded files
containing simulated data from simulation experiraesgrve as data for the algorithm. Ideally, these
simulated data are generated Ipplgiing a systematic experimental design (Barton 2013; Kleijnen and
Sargent 2000; Law 2014b; Lorscheid et al. 2012).

The final step is to estimate and evaluate theamedel. Given the parameter estimates from the PLS
algorithm, the structural equation metamodel mapdsessed and examined. The goal of the assessment
is to evaluate the predictive capabilities and fit {jdln and Sargent 2000) of the structures that are
derived from the a priori information on the silation model in combination with the measures
calculated by the simulation data output. PLS-SEM msesedifferent established criteria for such an
assessment. The validity and reliability of the cons$race evaluated by variance exploration. Reliability
criteria such as Dillon-Goldstein’s rho and Cronbactiftha are typically implemented for evaluating the
constructs (Nunnally and Bernstein 1994). Averaggamae extracted (AVE), which represents the
proportion of the explained variance among the indicators, and cross-loadings assess aspects of validity.
Variance inflation factors (VIFs) are also usefiot detecting collinearity and avoiding violations. The
structures can be evaluated by using complexmgliag routines. Further, significances derived from
several bootstrapping procedures, effect sizes (fi), the coefficients of determination (R2) can be
helpful for examination (see also Kleijnen andiBadre 2006). Moreover, the Stone-Geisser resampling
procedure is a cross-validation for drawing dasions about prediction accuracy (Stone 1974).

Finally, the results of this metamodeling amgrh are communicated. PLS-SEM provides insights
into existing structures and effects. By using th&3emantic, we can present a conceptual model with
specific simulation model information to revetiie structural assumptions and predictive causal
relationships. Furthermore, the statistical gsial involves the simulation output from designed
experiments to conduct a parameter estimationthef underlying relationships. Moreover, several
possibilities even exist for the assement of the metamodel’'s preiie power and fit. Finally, we
present integrated information from the conceptaatl data worlds within a structural equation
metamodel that reveals the behavior of paofsthe simulation model and offers convenient
communication.

3 APPLICATION

This section presents and illustitidie proposed method by means of a simplified application. We use
the learning agents for mechanism design anafy#i®DA) simulation study by Lorscheid (2014). The

model simulates a budgeting process that includesrakesteps, starting with reporting productivity
values by department to achieve resources that are utilized to generate a certain department profit. The
sum of the department profits results in a companyit. This process is embedded in an environment

that affects the department in questidhe research question in this sample model is about the drivers of

a company'’s success, focusing on the effects of (un)truthful reporting.

First, we briefly introduce the variables. Since thigdel only serves as an illustration, an extensive
description of the variables cannot be given here aFmore detailed overview, see Lorscheid (2014). A
number of variables might influence a company’s success. Discount limits the compensation payment to
the departments based on the profit achieved. Thabla OtherDepartments (OtherDep) measures other
agents’ reporting behavior, and Rasces indicates the number of resources available to a company. A
department’s productivity level igperationalized by means of the following variables: Minimum
represents the minimum level of productivity, wher8aale determines its range. Reduction regulates the
reduction of the departments’ productivity above certain capacity levels for resource units. Agent
behavior is determined by ReportValue, the reported productivity, avidtid@ represents the deviation
of the report from true productivity. A company’s success is reflected in at least two variables: the
dependent variables DivsionProfit (measuring tefit of the departments) and CompanyProfit
(representing the overall company profit).
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3.1 First-Order Polynomial Metamodel

In the next step, we calculate a first-order regien metamodel and present it as a metamodel for a
simple input/output simulation model. This will hesed as a reference point to elaborate on the
contributions of the PLS-SEM metamodel. We do not use the equation expression, focusing instead on
the impacts of the variables on the response.

Table 1 shows the results of the OLS regres@stimation. Here, the values of standardized
regression coefficients to their dependent varialddisted, assuming a direct relationship. Standardized
regression coefficients are a convenient measurevafiable’s impact. Genergll the regression fulfills
its capability as a metamodel for the simulation mo@skrall predictive capability can be expressed by
RZqjand this is high for the two given matadels, which indicates predictive power.

Table 1: Standardized OLS regression coefficientsrdomp to their response variables; not statistically
significant = ',

Variables DepartmentProfit CompanyProfit
(R2,q; = 0.904) (R?,4; = 0.805)
Minimum 0.012 0.108
Reduction -0.069 -0.082
Scale 0.008 0.134
ReportValue 1.001 0.569
Deviation -0.708 -0.441
Discount -* -*
OtherDepartments -0.098 0.292
Resources 0.131 0.177

Given these results, one can conclude that Repbrévand Deviation are the main drivers of the
dependent variables, according to the research qoesthile the impact othe productivity variables
carries little weight. Further, considering the resoftsheir p-values, ReportValue and Deviation have
the strongest effects, and all variables are signifieanept Discount. In the following, these results are
used as a reference point for the PLS-SEM analysis.

3.2 Structural Equation Metamodeling

In this subsection, we develop a structural #ignametamodel with PLS-SEM following the structure
presented in Subsection 2.3 to prepare the subsequdysiarof the sample model. First, we consider the
a priori information provided by the simulation moadad the research question. The sample model’s
purpose is to explore the impacts of several vigbincluding (un)truthful reporting, on company
success. Thus, Reporting (REP) is defined as apémifient entity-based construct. Entity success (SUC)
is a dependent construct. Additionally, the model consists oparteent environment and its attributes
that affect overall and individual conditions. Therefowe define the constructs for a department
environment (DE) and departmentts®s (DS) to examine their impacts. Having specified the model’s
constructs, we arrange their sequealomg the implemented budgeting process.

We develop the paths based on the underlying th@dvig allows us to shed light on the reporting
behavior in its embedded environment and to disgihtathe different cause/effect relationships of the
independent variables. As one can see from FigureeZ;dre relationship is REP’s effect on SUC, since
this reflects the research question, namely how tieygobehavior influences success. The constructs DE
and DS are implemented to analyze their influerareshe relationship between REP and SUC. REP is
influenced by the constructs DE and DS, while Rig® affects SUC. Thimmakes REP an intervening
construct, allowing us to explicate the causal sequeeteeen the variables (i.e. more than one layer of
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effects) and showing the path dependency. Thisriindhows the potential of our approach to make the
interdependencies between the model elésnexplicit, visible, and communicable.

The following mathematical operationalization of t@nstructs can be viewed as a transition from a
conceptual to a mathematical model. The conttrace linked to the input, output, and intermediate
variables of the simulation model, as their measurdsarstructural equation model. Hence, we establish
a close link between the mathematical and conceptadetls. To link these measures with the constructs,
we first organize our variablesd constructs. The construct BEdetermined by three measures, namely
Discount, OtherDep, and Resources, which specifydégartment environment. The construct DS is
caused by the three variables of Minimum, Scale, and Reduction, which limit the potential productivity of
the department. REP is defined by the variablgmR¥alue and Deviatiorwhich measure the reporting
behavior of the department. We use the formatieasure to include all its independent variance. The
sum of department profits equals overall camp profit. Therefore, DepartmentProfit and
CompanyProfit are correlated and can be embodiedrigflective and dependent construct (SUC). The
abstraction of these two subprocesses may reduceditiel’mmcomplexity (i.e. from two models to one).
Here, a reflectively measured construct is prefer@ipyeintegrating multiple output measures into one
construct), because it can reduce the number of metamodels (Barton and Meckesheimer 2006). By
running the PLS algorithm by means of SmartPLS (Ringle et al. 2014), we approximate the estimates of
the metamodel (see Figure 2).

Generally, the structural equation metamodel camebd as follows. The rectangles represent the
variables that are linked with their constructs,ickihare symbolized as circles. Therefore, this
relationship is either a weight or the loading. ThHatienships between the constructs are the paths with
their corresponding parameter estimates.
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Figure 2: Structural Equation Metamodel.

Given the resulting metamodel, the structure and elements of the model and its central mechanisms are
visible. This increases the transparency tbe existing interdependencies and supports their
communication. The overview of model elements asgigaed input variables may thus serve as a basis

for discussion.
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3.3  Assessment of the Structural Equation Metamodel

The purpose of assessing the metamodel is to descelsrtittures by means of statistical measures and
evaluate its predictive capability and the matdpi's fit to support andcomplement understanding
(Kleijnen and Sargent 2000). Asreddy described, an assessment of the measurement model can be
performed by means of various non-parametric cateFirst, the reflective constructs are assessed;
second, the formative constructs are analyzed; and finally, the model’s structure is described.

The reflective constructs can be examined by tlediability and validity. First, the reliability of the
construct SUC is investigated by means of Dildoldstein’s rho and Cronbach’s alpha. The respective
values are 0.855 and 0.855, which can be considesegtliable compared with the threshold of 0.8
(Nunnally and Bernstein 1994). Second, the AVE seagea validity measure. The calculated AVE for
the given construct is 0.794, whishould at least equal 0.5. Other complementary measures are cross-
loadings and the Fornell-Larcker criterion, whiate not conspicuous in our metamodel (Fornell and
Larcker 1981). In this way, we evaluate the prtiparof indicator variance explained by its construct
(Henseler et al. 2009). Overall, wan constitute that SUC is a wellfahed target construct given the
results from the analysis of the validitydareliability of the reflective constructs.

Because the formative constructs are causallyrd@ted by their indicators, the assessment has a
different approach than that for reflective construBtsmarily, these constructs should be tested chiefly
with their conceptual meanings. The VIF measures then serve as the first assessment criterion to detect
multicollinearity, because the measurement modelnmlagi to multiple regression. The VIF values are
below 5 for all formative constructs (DE, DS, RE#)d model indicators. Therefore, strong collinearity
can be excluded, suggesting the validity of the foirreaconstructs (Henseler et al. 2009). As such, we
conclude that the constructs are approprapeesentations of our simulation entities.

Based on the assessed constructs, we caloate the structural model. HereJR% one of the main
assessment criteria for a metamaosi@l'edictive capability. For the given model, the target construct SUC
has an R; of 0.966. This finding indicates high predictive capability for the metamodel.

34 Comparison of the Metamodels

Both metamodeling techniques, OLS regression and$#8; show the crucial drivers of the simulation
model. In particular for direct structures, lowder polynomial metamodels clarify the impacts of the
variables, which may sufficiently represent simptedels. However, if many variables and complex
structures are involved, the balance can change.

First, the consideration of simulation model staues can lead to different conclusions concerning
simulation behavior and results. In the given sampbeel, the relationships between DS, REP, and SUC
are of special interest since they represent thargseguestion. As mentioned, the low-order polynomial
metamodel states that reporting is the mostuénftial independent variable for company success.
However, this conclusion does not match commonese@empany success will naturally be driven by
productivity, which could lead to skepticism and umderstanding. By means of our proposed method,
one can see from the metamodel that there is in fact a mediation effect. Although DS has almost no direct
effect on SUC, it strongly affects REP, which influen8&KC. Hence, there is an indirect mediation effect
of 0.588, which occurs by multiplying the direct matfhom DS to REP (0.674) by SUC (0.872). This
example shows how structural equation metamodefiag support the correct presentation of complex
model behavior in a transparent and yet comprehensible way.

Second, the integrated information enables nisghts into the behavior of simulation models.
Structural equation metamodels enable an exploration of structures by strength and direction. In
considering the relationship between DE and REPpétle has a coefficient value of 0.008. This value
clearly indicates that there is only slight direceédictive causality, although this might be part of the
simulation model structure. By contrast, REP hagh impact on success and has predictive relevance.
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In this vein, the SEM semantic not only supports convenient communication but also checks the
simulation model’'s plausibility.

Finally, PLS-SEM allows for the explicit analysis of complex structures and interdependencies. This
is especially helpful when applied to more complex models. As one can see in Figure 2, we reduced
several variables to constructittvout changing the primary relationships and impacts. For example, we
can consider ReportValue and Deioa in one construct or alone. &udition, using constructs enables
interpretation and communication at the entity levelabwtracting or aggregating the variables. Thus,
complex structures such as entities with many varsatdaé easily be reduced to constructs. Furthermore,
by using constructs, it is possibleltave one metamodel instead of saljghereby allowing a condensed
presentation and communicationsifinulation behavior and results.

4 CONCLUSION AND FURTHER RESEARCH

We proposed an approach to the analysis of thevier of simulation mods and their subsequent
communication by metamodels using PLS-SEMu@&tral equation metamodels explicitly useriori
information from the conceptual model in combination with the simulation data output. Based on this, we
estimated and evaluated the relatlops and predictive capabilities of the metamodel. The link to theory
considerably increases understanding compared oilter metamodeling approaches. Overall, these
structural equation metamodels may thus foster development of the analytical expositions of
simulation models while keepingaim communicable and understandable.

This paper is a first step in this new direction, and more applications are required to test this
approach’s contribution. Indeed, PLS-SEM has heereasing its capabilities, such as consistent PLS
(Dijkstra and Henseler 2015), which should also kglared by future research. Furthermore, SEM in
general provides additional algorithrasd goodness of fit measures that can be used to achieve other
objectives in structural equation metamouiglisuch as verification and validation.
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