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ABSTRACT

Simulation used for the performance assessment of stochastic systems is usually driven by input models

estimated from real-world data, which introduces both input and simulation uncertainty to the performance

estimates. For many complex systems, because the components of input models are mutually dependent, an

efficient estimation of dependence could improve the system performance assessment. Since the dependence

could be caused by underlying common factors, we explore Gaussian copula factor models to characterize

input models with dependence. We propose a Bayesian framework to quantify both input and simulation

uncertainty. The input uncertainty is quantified by the posterior of input models and then propagated

to output means by direct simulation, with the simulation estimation error characterized by the posterior

distributions of system mean responses. This Bayesian framework delivers credible intervals that quantify

the overall uncertainty of system performance estimates. Our approach is supported by both asymptotic

theory and empirical study.

1 INTRODUCTION

When simulation is used to assess the behavior of complex stochastic systems, it is usually driven by

the input models estimated from finite real-world data. There exist two sources of errors: the simulation

and the input estimation errors. Ignoring either source of error could lead to unfounded confidence in

the simulation assessment of system performance, see Xie, Nelson, and Barton (2014a). Therefore, it is

necessary to have a statistical uncertainty analysis that could efficiently use the real-world data and the

computational resource to quantify the overall uncertainty of system performance estimates, assuming the

logic of the simulation model is valid.

The choice of input models has direct impact on the system performance estimates. Since it is typically

difficult to construct a joint distribution and further generate samples from it to drive the simulations,

especially as the dimension of the distribution increases, the prevalent practice is to have the input models

composed of independent univariate distributions. However, this assumption does not always faithfully

represent the underlying physical distributions. For example, in a project planning network, the activity

durations for different tasks could be correlated if they are affected by the same nuisance factors, e.g.,

weather conditions. In the automobile industry, if the products are different models of cars and they are

sold in several geographically-distinct markets, the joint distribution of their demands would likely be

impacted by the local gas price and by other micro-economic conditions. In maintenance planning, the life

times of different components could be simultaneously impacted by the operation temperature. Therefore,

to correctly assess the performance of stochastic systems, we should faithfully capture the dependence

structure in the input models.

Considering the amount of information required to specify a joint distribution, most input modeling

research focuses on methods that characterize the input models by some key properties, including marginals
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and dependence (Biller and Ghosh 2006). Given the partial information, various approaches were introduced

to construct a full joint distribution, including NORmal-To-Anything (NORTA) and Gaussian copula.

NORTA proposed by Cario and Nelson (1997) could represent and generate random vectors with flexible

marginal distributions and a correlation matrix. Given finite real-world data, the estimation error of NORTA

could be quantified by either frequentist approaches, e.g., the bootstrap, or Bayesian posterior distributions.

Then, the impact of input uncertainty could be propagated to output means by either a metamodel or direct

simulations; see Xie, Nelson, and Barton (2014b) and Akcay and Biller (2014).

Since NORTA is based on moment-matching, some feasible combination of marginals and a correlation

matrix may not have a feasible NORTA representation, called NORTA infeasible. This issue could become

worse as the dimension of joint input distribution increases (Ghosh and Henderson 2002). Biller and

Corlu (2011) used the Gaussian copula to model dependent input models. For any feasible combination

of continuous marginals and a correlation matrix, we can find a Gaussian copula representation. It could

avoid NORTA infeasible issue.

In this paper, we assume that dependent input models are characterized by marginal distributions and

correlation matrices. Given the partial information, we could build full joint distributions by Gaussian

copula. Since for many practical problems, e.g., automobile and maintenance examples we mentioned

above, the component-wise dependence is typically caused by underlying common factors, we further

explore a factor structure to characterize the dependence. Motivated by Murray et al. (2013), we represent

unknown input models by the Gaussian copula factor models. As the dimension of the input distribution

increases, with finite amount of data, the correlation matrix in Gaussian copula can be better represented

by a few important common factors plus some noise. In such situation, the Gaussian copula factor model

is expected to produce more efficient estimation for the dependence in the input models.

We propose a unified Bayesian framework to quantify the input and simulation estimation uncertainty.

Posterior distributions of the input models are used to quantify the input model and parameter estimation

error, called input uncertainty. Then, we propagate the input uncertainty to outputs by direct simulation

with the simulation estimation error quantified by the posterior of system mean responses. This Bayesian

framework delivers a credible interval (CrI) that quantifies the overall uncertainty of the system mean

performance estimate.

It is usually intractable to do fully Bayesian inference that characterizes both the marginal uncertainty

and the dependence uncertainty simultaneously (Joe 2005). Therefore, a two-stage estimation is commonly

employed in the copula literature, which is also used in our paper. This approximation quantifies the

marginal and dependence estimation uncertainty separately. Specifically, in the first stage, the marginal

uncertainty is estimated based on the data for each component of the input model. In the second stage, we

only quantify the dependence uncertainty. According to the marginal likelihood approach in Section 8.3

Severini (2000), we could take marginal distributions as nuisance “parameters” and only make inference

for the dependence based on a summary statistic that is independent of the marginals. Motivated by Hoff

(2007) and Murray et al. (2013), the extended rank likelihood can be taken as such a summary statistic and

we do Bayesian inference for the dependence structure with the estimation error quantified by a posterior

distribution. Since our Bayesian inference for the dependence is based only on the extended rank likelihood

instead of the full original data, the two-stage approach simplifies the estimation problem at the cost of only

using partial information in the data. However, when the true marginals are all continuous, Hoff (2007)

demonstrates that this estimation over the dependence is asymptotically efficient.

Our main focus in this paper is on quantifying the estimation error of the dependence structure. Following

the idea of two-stage estimation, we take the empirical marginals as the true distributions and ignore the

marginal uncertainty. Developing Bayesian approaches to quantify both marginals and the dependence

uncertainty is our on-going research.

The main contributions of this paper are as follows. First, since the component-wise dependence is

typically caused by some underlying common factors in many situations, we explore the factor structure

in the input models with dependence. In particular, we use the Gaussian copula factor model to represent
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flexible input joint distributions. Second, we make Bayesian inference on input models by the Gibbs

sampling algorithm, prove the consistency of input distributions drawn from the posterior, and compare its

empirical performance with the usual Gaussian copula model without factors. Third, a unified Bayesian

framework is proposed to quantify the overall uncertainty of system performance estimates. Input uncertainty

quantified by the posteriors of input models is propagated to outputs by direct simulation with the simulation

estimation error quantified by posterior distributions of system mean responses.

The next section describes the problem statement and our objective. This is followed by a unified

Bayesian framework supported by asymptotic study in Section 3. We then report results from an empirical

study in Section 4 and conclude the paper in Section 5.

2 PROBLEM STATEMENT AND PROPOSED APPROACH

Suppose the simulation output is a function of input distributions F and random numbers. The output from

the rth replication can be written as

Yr(F) = µ(F)+ εr(F)

where, µ(F) = E[Yr(F)] denotes the unknown output mean and εr(F) represents the simulation error with

εr(F)∼ N(0,σ2
ε (F)). Notice that the simulation outputs depend on the choice of input distributions F that

could be composed of mutually independent univariate and multivariate joint distributions. For notation

simplification, we focus on the case where there is only one multivariate joint distribution in F with the

dimension, denoted by d.

We assume that the input distribution F is characterized by marginals and a correlation matrix.

Suppose the marginals, denoted by {F1,F2, . . . ,Fd}, are continuous distributions. For an arbitrary feasible

combination of marginals and a correlation matrix, there exists a Gaussian copula representation. Gaussian

copula can be interpreted as a transformation from the domain of a (d×1) random vector X ∼ F to another

domain where the dependence is easier to model, denoted by Z, (Smith 2011)

X
U j=Fj(X j)−→ U

Z j=Φ−1(U j)−→ Z (1)

for j = 1,2, . . . ,d, where U follows a multivariate uniform distribution and Z follows a multivariate normal

distribution, Z ∼ Nd(0,C) with C denoting the correlation matrix. The Gaussian copula representation for

F could be written as

F(x1,x2, . . . ,xd) = Φd

(
Φ−1

[
F1(x1)

]
,Φ−1

[
F2(x2)

]
, . . . ,Φ−1

[
Fd(xd)

]
;C
)

(2)

where, Φd(·) and Φ(·) denote the d-dimensional multivariate and univariate standard normal distributions.

Therefore, F could be specified by marginals F1,F2, . . . ,Fd and a correlation matrix C. We have the unknown

true input joint distribution, denoted by Fc, with the corresponding Gaussian copula representation specified

by (Fc
1 ,F

c
2 , . . . ,F

c
d ,C

c).

Given m real-world data, denoted by a (m×d) matrix X
(0)

m ≡
(
X
(0)
1 ,X

(0)
2 , . . . ,X

(0)
m

)⊤
, with X

(0)
i

i.i.d.∼ Fc

for i = 1,2, . . . ,m, the input uncertainty can be characterized by the posterior distribution P(F |X (0)
m ). Since

the input distribution could be specified by (F1,F2, . . . ,Fd ,C), the posterior distribution could be written as

P
(
F1,F2, . . . ,Fd ,C|X (0)

m

)
. We could generate B samples of input distribution from the posterior distribution

to quantify the input uncertainty, denoted by {F̃(1), F̃(2), . . . , F̃(B)}, where F̃(b) ≡
(
F̃
(b)

1 , F̃
(b)

2 , . . . , F̃
(b)

d , C̃(b)
)

with b = 1,2, . . . ,B. Notice that ·̃ denotes the sample from corresponding posterior distribution.

By the two-stage estimation, we quantify the marginal and dependence uncertainty separately. In this

paper, we ignore the marginal uncertainty and mainly focus on estimating the uncertainty for dependence

that is characterized by the posterior P
(
C|X (0)

m

)
. Let F̂j represent the empirical distribution for the jth

marginal distribution and it is constructed based on data {X
(0)
1 j ,X

(0)
2 j , . . . ,X

(0)
m j }. By plugging in the point
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estimator for marginals, we have the samples F̃(b) =
(
F̂1, F̂2, . . . , F̂d , C̃

(b)
)

with C̃(b) i.i.d.∼ P
(
C|X (0)

m

)
for

b = 1,2, . . . ,B quantifying the dependence estimation uncertainty.

To quantify the impact of input uncertainty on the system mean performance estimate, we need to

propagate it to output means. If the mean response surface µ(·) is known, a two-sided equal probability

(1−α)100% CrI, denoted by [qα/2,q1−α/2], could be used to quantify the impact of input uncertainty,

where qγ ≡ inf{q : FU(q)≥ γ} and FU(t)≡ P(µ(F̃)≤ t|X (0)
m ) with γ = α/2,1−α/2. Since we typically

do not have the closed form for the quantile qγ , a Monte Carlo sampling approaches could be used to build

a percentile CrI quantifying the impact of input uncertainty. To get a precise estimation on the quantile, B

is recommended to be a few thousands.

However, the true mean response µ(·) is typically unknown for many complex stochastic systems. At

any F , we could estimate µ(F) by the simulation. Suppose each simulation run could be expensive. If

the parametric families of marginal distributions are known, instead of running simulations at all samples

of input distribution, F̃(1), F̃(2), . . . , F̃(B), to estimate the system mean responses, we could construct a

metamodel based on simulation outputs at a few samples of input distribution and then use it to propagate

the input uncertainty to outputs, while reducing the simulation estimation uncertainty (Xie, Nelson, and

Barton 2014a).

Since the parametric families of F1,F2, . . . ,Fd are typically unknown, the input distribution F could

not be specified by finite parameters. It is hard to build a metamodel for µ(F). In this paper, the direct

simulation is used to propagate the input uncertainty to output means. Specifically, at each sample F̃(b), the

direct simulation is used to estimate µb ≡ µ(F̃(b)) and the estimation error is quantified by the posterior of

system mean response estimate µ̃b. Suppose the number of replications allocated to F̃(b) is nb and we have

the simulation outputs, denoted by Y(b) ≡ {Y
(b)
1 ,Y

(b)
2 , . . . ,Y

(b)
nb

} with Y
(b)
r |F̃(b) i.i.d.∼ N(µb,σ

2
ε (F̃

(b))). Then,

the posterior P(µ̃b|Y(b), F̃(b)) could be used to quantify the simulation estimation uncertainty .

We are interested in µc ≡ µ(Fc). Since µ(·) and Fc are unknown, the input uncertainty is quantified

by F̃ ∼ P(F |X (0)
m ) and at any F, the simulation uncertainty is quantified by µ̃(F)∼ P(µ(F)|Y(F)) with

Y(F) representing the simulation outputs at F. Therefore, the estimation uncertainty for µc is quantified

by the posterior of µ̃ ≡ µ̃(F̃). Our goal is to efficiently use the information in real-world data and the

simulation resource to accurately estimate the input model and reduce the estimation uncertainty of µ̃ .

3 A BAYESIAN FRAMEWORK

In this section, we propose a unified Bayesian framework to quantify both input and simulation uncertainty.

In Section 3.1, we explore the factor structure for modeling the dependence. Our asymptotic study shows

that as the amount of real-world data increases to infinity, the estimated input distribution converges to

underlying true distribution Fc. In Section 3.2, the input uncertainty is propagated to output means by

direct simulation with simulation estimation uncertainty quantified by the posteriors of mean responses. In

Section 3.3, a procedure is constructed to account for both input and simulation uncertainty, which delivers

a CrI quantifying the overall uncertainty for the system performance estimate. We show that as the amount

of real-world data and the computational resource go to infinity, the system mean performance estimate

converges to the true response µc.

3.1 Bayesian Quantification for Input Uncertainty

Given m real-world data, X
(0)

m =
(
X
(0)
1 ,X

(0)
2 , . . . ,X

(0)
m

)⊤
, we would like to make inference about the

dependence of the input distribution characterized by the correlation matrix C. If the marginals F1,F2, . . . ,Fd

are known, we could have the corresponding data on latent variables Z by applying the transformation

Z
(0)
i j = Φ−1

[
Fj(X

(0)
i j )
]

for i = 1,2, . . . ,m and j = 1,2, . . . ,d. For continuous marginals F1,F2, . . . ,Fd , there

exists a one-to-one mapping between X
(0)
i and Z

(0)
i . Since Z

(0)
i

i.i.d.∼ Nd(0,C) for i = 1,2, . . . ,m, the posterior

670



Xie, Li, and Sun

distribution P
(
C|Z(0)

1 ,Z
(0)
2 , . . . ,Z

(0)
m

)
is straightforward to calculate; see Gelman et al. (2004). It is equivalent

to the posterior P(C|X (0)
m ) used to quantify the input uncertainty.

However, in general the marginal distributions F1,F2, . . . ,Fd are unknown. The only information for

the transformation Φ−1
[
Fj(·)] is an increasing function. Based on the marginal likelihood (Severini 2000),

the extended rank likelihood proposed by Hoff (2007) could be used to generate a set of a (m×d) data

matrix Zm ≡
(
Z1,Z2, . . . ,Zm

)⊤
that is consistent with real-world data in terms of the relative order. We

denote this set by D
(
X

(0)
m

)
,

D
(
X

(0)
m

)
≡ {Zm : X

(0)
i j < X

(0)
i′ j

⇒ Zi j < Zi′ j}.

Thus, Zm ∈ D(X
(0)

m ) is a statistic that is independent on the marginals F1,F2, . . . ,Fd and only depends on

the correlation C. Given data Zm ∈ D(X
(0)

m ), the posterior P(C|Zm ∈ D(X
(0)

m )) could be used to quantify

the uncertainty of C. Since the marginals distributions are unknown, Zm consistent with X
(0)

m is not unique.

To account for the impact from unknown marginals on the dependence estimation, we further generate

samples of Zm from D
(
X

(0)
m

)
. Therefore, the uncertainty of correlation matrix could be characterized by

P(C|X (0)
m ) = E

Zm∈D(X
(0)

m )

[
P
(
C|Zm ∈ D(X

(0)
m )

)]
.

Since the dependence between different components of Xi is often caused by some underlying common

factors in many practical problems, we explore a factor model to characterize the dependence in the latent

random vector Zi so that we could efficiently estimate C. Our modeling is motivated by Murray et al.

(2013). Let Mi denote the scaled (d × 1) latent variables with Mi ∼ Nd(0,Σ) and it has a simple factor

model

Mi = Ληηη i + ei (3)

where, Λ is a (d × k) loading matrix; ηηη is a (k× 1) vector of common factors with ηηη ∼ Nk(0,Ik×k); e

is a (d × 1) vector of noise with e ∼ Nd(0,Id×d); ηηη and e are independent. Therefore, the covariance

matrix of M has a factor structure, Σ = ΛΛ⊤+ Id×d . To make the factor loadings comparable to each

other and also consistent with the Gaussian copula in Equation (2), we set Zi to be equal to the scaled Mi,

Zi j = Mi j/
√

∑
k
h=1 λ 2

jh +1, with Zi ∼ Nd(0,C), where λi j represents the element in the loading matrix Λ.

Both the covariance matrix Σ and the correlation matrix C have factor structure.

Given X
(0)

m , the input uncertainty is characterized by the posterior P(C|X (0)
m ). Theorem 1 shows that

as the amount of real-world data goes to infinity, the estimate of the input distribution F̃ converges to the

true distribution Fc in probability.

Theorem 1 Suppose the prior of correlation matrix, denoted by P(C), has positive mass on the neighborhood

of Cc. Suppose Cc has a factor decomposition in k0 factors. Let Xm ≡
(
X1,X2, . . . ,Xm

)⊤
with Xi

i.i.d.∼ Fc

for i = 1,2, . . . ,m and let F̂j be the empirical distribution for the jth marginal distribution Fj. Given a

sample Zm ∈ D(Xm), C̃ is a correlation matrix randomly drawn from the posterior P(C|Zm ∈ D(Xm)),
with a factor decomposition in k factors, where d ≥ k ≥ k0. Let F̃ be a distribution with the Gaussian

copula factor representation

F̃(x1,x2, . . . ,xd) = Φd

(
Φ−1

[
F̂1(x1)

]
,Φ−1

[
F̂2(x2)

]
, . . . ,Φ−1

[
F̂d(xd)

]
; C̃
)
.

Then, as m → ∞, F̃(x1,x2, . . . ,xd) converges to Fc(x1,x2, . . . ,xd) uniformly for all (x1,x2, . . . ,xd) ∈ R
d in

probability, i.e. ‖F̃ −Fc‖∞
p→ 0, where ‖F̃ −Fc‖∞ = sup(x1,x2,...,xd)∈Rd

∣∣F̃(x1,x2, . . . ,xd)−Fc(x1,x2, . . . ,xd)
∣∣.

Proof: For any generic matrix A, let ‖A‖=
√

tr(AA⊤) be the Frobenius norm of A. We first show that

as m → ∞, the correlation matrix estimate is consistent in the Frobenius norm, i.e. ‖C̃−Cc‖ p→ 0.
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For any δ > 0, by Theorem 1 in Murray et al. (2013), we have

lim
m→∞

P(‖C̃−Cc‖ ≤ δ |Zm ∈ D(Xm)) = 1 (4)

Then, by accounting for the finite sampling uncertainty for Xm and the impact of marginal uncertainty,

we have

lim
m→∞

P(‖C̃−Cc‖ ≤ δ ) = lim
m→∞

(
EXm

EZm∈D(Xm)|Xm

)[
P(‖C̃−Cc‖ ≤ δ |Zm ∈ D(Xm))

]

=
(

EXm
EZm∈D(Xm)|Xm

)[
lim

m→∞
P(‖C̃−Cc‖ ≤ δ |Zm ∈ D(Xm))

]
= 1.

The second step follows by applying the dominated convergence theorem, and the third step follows by

applying Equation (4). Therefore, as m→∞, the correlation matrix estimate converges to the true correlation

matrix in probability, C̃
p→ Cc.

By the Glivenko-Cantelli Theorem in Van Der Vaart (1998), we have

‖(F̂1, F̂2, . . . , F̂d)− (Fc
1 ,F

c
2 , . . . ,F

c
d )‖∞

a.s.→ 0 as m → ∞.

Then, for any (x1,x2, . . . ,xd) in the domain of Fc, by applying the continuous mapping theorem (Van

Der Vaart 1998), we have

F̃(x1,x2, . . . ,xd) = Φd

(
Φ−1

[
F̂1(x1)

]
,Φ−1

[
F̂2(x2)

]
, . . . ,Φ−1

[
F̂d(xd)

]
; C̃
)

p→ Φd

(
Φ−1

[
Fc

1 (x1)
]
,Φ−1

[
Fc

2 (x2)
]
, . . . ,Φ−1

[
Fc

d (xd)
]
;Cc
)
= Fc(x1,x2, . . . ,xd).

Since both F̃ and Fc are distribution functions and Fc(x1,x2, . . . ,xd) is continuous for all (x1,x2, . . . ,xd)∈R
d ,

the input distribution F̃ uniformly converges to Fc in probability, i.e. ‖F̃ −Fc‖∞
p→ 0, as m → ∞. ✷

For finite samples, the posterior distribution P
(
C|X (0)

m

)
could be used to characterize the input

uncertainty. Since there is no closed form P
(
C|X (0)

m

)
, we use the Gibbs sampler to generate samples of

C̃ from P
(
C|X (0)

m

)
to quantify the input uncertainty. Let H = (ηηη1,ηηη2, . . . ,ηηηm). Let λλλ j denote the jth row

of Λ with prior defined by Nk(0,Ψ j) and Z j denote the jth column of Z . Since ei ∼ Nd(0,Id×d), the

conditional distributions involved in Gibbs sampling are

λλλ j|H,Z j ∼ N(Z jH
⊤(HH⊤+Ψ−1

j )−1,(HH⊤+Ψ−1
j )−1) for j = 1,2, . . . ,d (5)

ηηη i|Λ,Zi ∼ N((Λ⊤Λ+ Ik×k)
−1Λ⊤Zi,(Λ

⊤Λ+ Ik×k)
−1) for i = 1,2, . . . ,m (6)

Zi j|Λ,ηηη i ∼ TN

(
k

∑
h=1

λ jhηhi,1,Z
ℓ
i j,Z

u
i j

)
for i = 1,2, . . . ,m and j = 1,2, . . . ,d (7)

C̃ j j′ =
∑

k
h=1 λ jhλh j′√

1+∑
k
h=1 λ 2

jh

√
1+∑

k
h=1 λ 2

h j′

for j 6= j′ and j, j′ = 1,2, . . . ,d (8)

where, TN(u,σ2,a,b) denotes the normal with mean u, variance σ2 and truncated to (a,b); Zℓ
i j = max{Zi′ j :

X
(0)
i′ j

< X
(0)
i j } and Zu

i j = min{Zi′ j : X
(0)
i′ j

> X
(0)
i j }. Based on Equations (5)-(8), we could use the Gibbs sampler

to iteratively generate samples of (Λ,H,Z , C̃); see Gelman et al. (2004) for the detailed description of

the Gibbs sampling algorithm.
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3.2 Bayesian Quantification for Simulation Estimation Uncertainty

By applying the Gibbs sampler, we could generate B samples of input distribution, F̃(b)=
(
F̂1, F̂2, . . . , F̂d , C̃

(b)
)

with b = 1,2, . . . ,B to quantify the input uncertainty. At any F̃(b), the mean response µ(F̃(b)) is unknown

and estimated by direct simulations. Denote the number of replications allocated to B samples of input

distribution by (n1,n2, . . . ,nB). Let Y(b) ≡
(
Y1(F̃

(b)),Y2(F̃
(b)), . . . ,Ynb

(F̃(b))
)

denote the simulation outputs

with Yr(F̃
(b))|F̃(b) i.i.d.∼ N

(
µ(F̃(b)),σ2

ε (F̃
(b))
)

for r = 1,2, . . . ,nb. Suppose there is no prior knowledge about

µ(·). Let µ̃b ≡ µ̃(F̃(b)). By DeGroot (1970), the posterior for µ̃b|Y(b), F̃(b) is N
(
Ȳb,σ

2
ε (F̃

(b))/nb

)
, where

Ȳb = ∑
nb

j=1Yj(F̃
(b))/nb. The unknown σ2

ε (F̃
(b)) could be estimated by the sample variance of simulation

outputs Y(b), denoted by S2
b. Therefore, the simulation estimation uncertainty for the mean response at

F̃(b) could be characterized by the posterior N(Ȳb,S
2
b/nb).

In the empirical study, when we propagate the input uncertainty to output mean, for simplification,

we use the direct simulation with equal allocation, n1 = n2 = · · ·= nB. The sequential experiment design

proposed in Yi, Xie, and Zhou (2015) could assign more computational budget to the samples of input

distributions that contribute most to estimating the CrI, [qα/2,q1−α/2]. Therefore, it could efficiently use the

simulation resource to propagate the input uncertainty to output mean and reduce the simulation estimation

uncertainty.

3.3 Procedure to Construct a CrI

In this section, we propose a procedure to account for both input and simulation uncertainty and deliver a

CrI quantifying the overall uncertainty of µ̃ = µ̃(F̃). Then, we show this CrI is asymptotically consistent.

The procedure to construct the CrI mainly includes following steps.

(1) Specify the prior for Λ.

(2) Apply Gibbs sampling to generate B samples of (Λ,H,Z , C̃) by using Equations (5)-(8).

(3) Allocate nb replications to F̃(b) = (F̂1, F̂2, . . . , F̂d , C̃
(b)) for b = 1,2, . . . ,B.

(4) Loop b = 1,2, . . . ,B

(a) Generate Z
(b)
i

i.i.d.∼ Nd(0, C̃
(b)) and do transformation to obtain X

(b)
i : X

(b)
i j =

(
F̂j

)−1
[
Φ

(
Z
(b)
i j

)]
.

(b) Repeat Step 4.(a) to generate samples of X
(b)
i . Use them to drive the simulations and obtain

simulation outputs Y
(b)
1 ,Y

(b)
2 , . . . ,Y

(b)
nb

. Calculate the sample mean Ȳb and sample standard

deviation Sb.

(c) Generate µ̃b ∼ N(Ȳb,S
2
b/nb).

End loop

(5) Report the (1−α) percentile CrI to quantify both input and simulation uncertainty:

CrI = [µ̃(⌈Bα/2⌉), µ̃(⌈B(1−α/2)⌉)]

where, α ∈ (0,1) and µ̃(b) is the bth order statistic with µ̃(1) ≤ µ̃(2) ≤ ·· · ≤ µ̃(B).

Theorem 2 describes the limiting behavior of the CrI obtained from the procedure above. As the

number of real-world data and the computational resource increase to infinity, the CrI shrinks to the true

mean response µc. This indicates that our CrI provides a valid Bayesian quantification of the uncertainty

for the unknown system performance.

Theorem 2 Suppose the conditions in Theorem 1 and the following conditions hold. Let nmin = minb nb.

(1) The simulation variability is bounded around Fc: There exist finite constants ε0 > 0 and C > 0,

such that for any distribution F with ‖F −Fc‖∞ ≤ ε0, σ2
ε (F)≤C holds.
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(2) The mean response µ(·) is continuous at Fc: For any δ1 > 0, there exists δ2 > 0 such that if

‖F −Fc‖∞ ≤ δ2, then |µ(F)−µ(Fc)| ≤ δ1.

Then, as m → ∞ and nmin → ∞, the CrI [µ̃(⌈Bα/2⌉), µ̃(⌈B(1−α/2)⌉)] shrinks to µc = µ(Fc) in probability.

Proof: By Theorem 1, for any F̃ randomly drawn from the posterior P(F |X (0)
m ), we have ‖F̃ −Fc‖∞

p→ 0

as m → ∞. By applying Condition (2) and the continuous mapping theorem, we have |µ(F̃)−µ(Fc)| p→ 0

as m → ∞. Since Ȳb|F̃(b) ∼ N(µ(F̃(b)),σ2
ε (F̃

(b))/nb), for any δ > 0,

P(|Ȳb −µ(F̃(b))|> δ ) = EF̃(b)

[
P(|Ȳb −µ(F̃(b))|> δ |F̃(b))

]

= EF̃(b)

[
2
(

1−Φ

( √
nbδ

σε (F̃(b))

))]
≤ 2

[
1−Φ

(√
nbδ√
C

)]
→ 0 as nb → ∞

where, the third step follows by applying Condition (1). Therefore, |Ȳb−µ(F̃(b))| p→ 0 as nb → ∞. Similarly,

since µ̃b|Yb, F̃
(b) ∼ N(Ȳb,S

2
b/nb), for any δ > 0,

P(|µ̃b − Ȳb|> δ ) = EF̃(b)EYb|F̃(b)

[
P

( |µ̃b − Ȳb|
Sb/

√
nb

>
δ
√

nb

Sb

∣∣∣∣Yb, F̃
(b)

)]

≤ EF̃(b)EYb|F̃(b)

[
2P
(

Tnb−1 >
δ
√

nb√
2C

∣∣∣Yb, F̃
(b)
)]

→ 0 as nb → ∞

where, Tnb−1 denotes a random variable having t-distribution with degrees of freedom nb − 1, and the

second step follows by applying Sb
a.s.→ σ(F̃(b)) as nb → ∞, Condition (1) and the dominated convergence

theorem. Therefore, we have |µ̃b − Ȳb|
p→ 0 as nb → ∞. Therefore, by triangular inequality,

|µ̃b −µ(Fc)| ≤ |µ̃b − Ȳb|+ |Ȳb −µ(F̃(b))|+ |µ(F̃(b))−µ(Fc)|,

which implies that |µ̃b−µc| p→ 0 as m → ∞ and nb → ∞. Since B is finite, this convergence holds uniformly

over all b ∈ {1,2, . . . ,B} if m → ∞ and nmin → ∞.

Finally we show that uniformly for all b ∈ {1,2, . . . ,B}, the bth order statistic µ̃(b) converges in

probability to µc. For any δ > 0 and any b ∈ {1,2, . . . ,B},

P(|µ̃(b)−µc| ≥ δ )≤ P(µ̃(b) ≥ µc +δ )+P(µ̃(b) ≤ µc −δ )

≤ P(µ̃(B) ≥ µc +δ )+P(µ̃(1) ≤ µc −δ )

≤
B

∑
i=1

P(µ̃i ≥ µc +δ )+
B

∑
i=1

P(µ̃i ≤ µc −δ )→ 0 as m → ∞,nmin → ∞.

Thus, for all b ∈ {1,2, . . . ,B}, |µ̃(b)− µc| p→ 0 as m → ∞ and nmin → ∞. Specifically, both µ̃(⌈Bα/2⌉) and

µ̃(⌈B(1−α/2)⌉) converge in probability to µc. Therefore, the CrI [µ̃(⌈Bα/2⌉), µ̃(⌈B(1−α/2)⌉)] shrinks to µc = µ(Fc)
in probability as m → ∞ and nmin → ∞. ✷

4 EMPIRICAL STUDY

In this section, we use a simple example to illustrate the finite sample performance of our Bayesian

framework. A logistic company wants to estimate its utility cost, e.g., electricity, for next winter. The

company has d/2 warehouses at different sites located in the northeast part of the US. Suppose d/2 is an

integer. The electricity is served by different companies. Let Ci and Di denote the unit cost of the electricity

and the amount of electricity demand at site i with i = 1,2, . . . ,d/2. Both Ci’s and Di’s are affected by

some underlying common factors. For example, Ci’s are affected by the price of the fossil fuels and Di’s
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are affected by the climate. When the electricity demand becomes high, the electricity suppliers tend to

increase the unit price to encourage energy saving. Therefore, Ci’s and Di’s are also dependent. The cost

function is Y = ∑
d/2

i=1CiDi. We are interested in the expected cost E(Y ).

Let X ≡ (C1,C2, . . . ,Cd/2,D1,D2, . . . ,Dd/2)
⊤ and X ∼ Fc. Suppose Fc has a Gaussian copula repre-

sentation specified by (Fc
1 ,F

c
2 , . . . ,F

c
d ,C

c). The marginal distribution Fc
j is exp(2) for j = 1,2, . . . ,d. The

correlation matrix Cc has Cc
j′ j = 0.6 for j′ 6= j and j′, j = 1,2, . . . ,d. Note that this correlation matrix can

be decomposed into a factor structure as in Section 3.1 with the number of factors equal to 1. In the

experiments we assume that all marginals and the correlation matrix are unknown. They are estimated

from m real-world data X
(0)

m = (X
(0)
1 ,X

(0)
2 , . . . ,X

(0)
m )⊤ with X

(0)
i

i.i.d.∼ Fc for i = 1,2, . . . ,m.

Given finite real-world data, we compare the performance of Gaussian copula with and without the

factor model on Cc. Specifically, for the Gaussian copula without factor model, the Bayesian inference

on the correlation matrix C is obtained by using the extended rank likelihood (Hoff 2007). We specify

the prior on C to be an inverse-Wishart (d +2,Id×d). For Gaussian copula factor model in Equation (3),

we use the generalized double pareto prior GDP(α,β ) with α = 3 and β = 1 on loading parameter λi j

(Murray et al. 2013). This prior tends to shrink λi j to zero if its absolute value is very small and keep the

large values of λi j unchanged.

To quantify the input uncertainty characterized by P(C|X (0)
m ), we use the Gibbs sampling algorithm to

generate samples of C̃ for Gaussian copula with and without factor model. In each Markov Chain Monte

Carlo (MCMC) simulation, the warmup contains 5000 iterations. Then we continue the chain for another

105 iterations, and save one sample of C̃ every 100 iterations, which results in 1000 sampled C̃ from

the chain. For the Gaussian copula factor model, a parameter-expanded approach is used to improve the

MCMC mixing rate for Gaussian copula factor model; see Murray et al. (2013) and Liu and Wu (1999).

The mean and standard deviation of relative error of correlation matrix, defined as err= ‖C̃−Cc‖/‖Cc‖,

are used to measure the estimation efficiency of Gaussian copula with and without factor model. Here ‖ ·‖
denotes the Frobenius norm. Specifically, to estimate E[err], we use 10 macro-replications and generate

real-world data X
(0)

m in each macro-replication. Conditional on X
(0)

m , we draw 1000 Markov chain samples

of C̃ from the posterior distribution P(C|X (0)
m ) and calculate the relative error, denoted by erri j, where

i=1,2,. . . ,10 and j = 1,2, . . . ,1000. We estimate the mean E[err] and the standard deviation SD[err] by

Ê[err] =
1

10

10

∑
i=1

[
1

1000

1000

∑
j=1

erri j

]

ŜD[err] =
1

10

10

∑
i=1

SD[erri]√
999

where, SD[erri] represents the sample deviation for the samples from the ith chain.

When d = 10,20,30, the correlation matrix estimation errors are shown in Figure 1 and Table 1. Let

errF and errG denote the estimation errors from Gaussian copula with and without factor model. In Figure 1,

the horizontal axis is the size of real-world data m and the vertical axis gives the relative estimation errors

of the correlation matrix. The dashed lines represent the results obtained by the usual Gaussian copula

model without factor structure. The solid lines represent the results from Gaussian copula factor model. In

general, as the sample size m increases, the estimation errors decrease. In all cases, the Gaussian copula

model with factors has lower estimation errors on average than the model without factors, which indicates

that the correlation matrix can be estimated more accurately by the factor model. This advantage becomes

more obvious when the dimension d becomes large. When d = 30 and m = 30, the Gaussian copula model

without factors fails to produce results because C̃ drawn from its posterior is singular, while the factor

model still works even for cases with larger d since it has fewer number of parameters and does not have

the singularity problem.
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Figure 1: Relative error ‖C̃−Cc‖/‖Cc‖ obtained by Gaussian copula with and without factor model when

d = 10,20,30. Solid lines give results from Gaussian copula factor model and dashed lines give results of

Gaussian copula without factor model.

Table 1: The relative error for Gaussian copula with and without factor model when d = 10,20,30.

d = 10 m = 30 m = 50 m = 80 m = 100 m = 200 m = 500

Ê[errF ] 0.206 0.181 0.14 0.131 0.089 0.054

Ê[errG] 0.266 0.238 0.174 0.158 0.104 0.065

Ê[errG]− Ê[errF ] 0.06 0.057 0.034 0.027 0.015 0.011

ŜD[errF ] 0.002 0.0019 0.0015 0.0014 0.001 0.0007

ŜD[errG] 0.002 0.0019 0.0013 0.0012 0.0009 0.0006

d = 20 m = 30 m = 50 m = 80 m = 100 m = 200 m = 500

Ê[errF ] 0.224 0.18 0.148 0.137 0.093 0.062

Ê[errG] 0.314 0.247 0.2 0.181 0.116 0.071

Ê[errG]− Ê[errF ] 0.089 0.067 0.052 0.043 0.023 0.008

ŜD[errF ] 0.002 0.0016 0.0016 0.0015 0.0004 0.001

ŜD[errG] 0.002 0.002 0.0014 0.0012 0.0004 0.0006

d = 30 m = 30 m = 50 m = 80 m = 100 m = 200 m = 500

Ê[errF ] 0.245 0.19 0.15 0.143 0.103 0.066

Ê[errG] — 0.268 0.218 0.197 0.125 0.07

Ê[errG]− Ê[errF ] — 0.079 0.0665 0.054 0.021 0.008

ŜD[errF ] 0.001 0.0015 0.0015 0.0014 0.001 0.001

ŜD[errG] — 0.0018 0.0015 0.0013 0.0009 0.0006

For d = 20 and d = 30, we further build a CrI to quantify both input and simulation estimation uncertainty

with results shown in Table 2. These results are obtained based on 500 macro-replications. Each macro-

replication uses m real-world data X
(0)

m and B = 1000 Markov chain samples of correlation matrices C̃

from P(C|X(0)
m ) to quantify the input uncertainty. Given the empirical marginals F̂j with j = 1,2, . . . ,d and

the sampled C̃, we generate X by Equation (2) to drive the simulation. To control the simulation estimation
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error, we set the number of replications at each sampled input distribution to be n = 105. The results of

CrI accounting for both input and simulation errors are shown in Table 2, where qα/2 and q1−α/2 denote

the percentile bounds for the credible intervals obtained from either Gaussian copula (GC) or Gaussian

copula with factor model (GCF). We also calculate the means and standard deviations of the width of CrIs,

denoted by |CrI|, based on the results from 500 macro-replications. The marginal distributions typically

have a large impact on the system performance estimate. Since we take the empirical marginals as the true

distributions, there is no clear trend in the results.

Table 2: The credible intervals of system mean response with α = 0.1.

d = 20 m = 30 m = 50 m = 100

[qα/2,q1−α/2] [54.27, 60.81] [55.76,62.54] [57.20, 63.44]

GCF |CrI| mean 6.55 6.77 6.23

|CrI| sd 0.086 0.128 0.052

[qα/2,q1−α/2] [52.88,61.73] [55.09,62.07] [57.25, 63.32]

GC |CrI| mean 8.19 6.98 5.07

|CrI| sd 0.113 0.132 0.038

d = 30 m = 30 m = 50 m = 100

[qα/2,q1−α/2] [81.06, 89.78] [82.71,91.68] [84.88,90.09]

GCF |CrI| mean 8.71 8.97 9.20

|CrI| sd 0.104 0.091 0.075

[qα/2,q1−α/2] — [81.05,90.54] [84.81,92.15]

GC |CrI| mean — 9.49 7.34

|CrI| sd — 0.101 0.056

5 CONCLUSION

We explore the Gaussian copula factor model for the input distribution with dependence, when the dependence

between input components is caused by some underlying common factors. A unified Bayesian framework

is proposed to quantify both the input and simulation estimation uncertainty by the posterior distributions

with theoretical guarantee. Our empirical study shows that the Gaussian copula factor model provides more

efficient estimation of the dependence structure and outperforms the usual Gaussian copula model in finite

sample, which could be further used to reduce the overall uncertainty of system performance estimate.
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