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ABSTRACT

When simulating a complex stochastic system, the behavior of the output response depends on the input

parameters estimated from finite real-world data, and the finiteness of data brings input uncertainty to

the output response. The quantification of the impact of input uncertainty on output response has been

extensively studied. However, most of the existing literature focuses on providing inferences on the

mean output response with respect to input uncertainty, including point estimation and confidence interval

construction of the mean response. To the best of our knowledge, risk assessment of input uncertainty has

been rarely considered. In the present paper, we will introduce risk measures for input uncertainty, study

a nested Monte Carlo estimator and construct an asymptotically valid confidence interval for a specific

risk measure—Conditional Value-at-Risk of the mean response. We further study the associated budget

allocation problem for more efficient nested simulation of the estimator.

1 INTRODUCTION AND MOTIVATION

For a complex real-world stochastic system, simulation is a powerful tool to analyze its behavior when

real experiments on the system are expensive or difficult to conduct. For example, consider the system

of a typical hospital emergency room (ER). When the administrators of the ER determine the number

of on-call doctors, one of the main criteria is the expected number of waiting patients or the expected

waiting time of an individual customer. An M/M/n (Poisson patient arrival, Exponential treatment time,

n doctors) queue is often used to simulate the system and provide inferences on the real system behavior.

During the simulation experiments, the uncertainty on the simulation input parameters (e.g., the patient

arrival rate and the treatment time for an individual patient) may need to be taken into account, since they

are typically estimated from finite ER patient records. In general, there are two sources of uncertainty

for a typical stochastic simulation experiment: the extrinsic uncertainty on input parameters (referred as

to input parameter uncertainty) that reflects our belief on input parameters, and the intrinsic uncertainty

on output response (referred to as stochastic uncertainty) that reflects the inherent stochastic variability of

output. Many papers also consider a third source of uncertainty—model uncertainty, which refers to the

uncertainty of the input probabilistic model.

The variability of simulation output response clearly depends on both stochastic uncertainty and input

uncertainty. An important question to address is how to quantify the impact of input uncertainty on output

response variability. A widely used procedure for such quantification is the point estimation of the mean

response with respect to (w.r.t.) input uncertainty, combined with construction of the associated confidence

interval (CI). Within this framework, the two main branches of approaches are the frequentist methods

and the Bayesian methods. The frequentist methods include the Direct and Bootstrap Sampling methods

by Barton and Schruben (1993), Barton and Schruben (2001), etc. The Bayesian methods include the

Bayesian Model Averaging (BMA) methods by Chick (2001), Zouaoui and Wilson (2003), etc. In these
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methods, the Bayesian updating rule is applied on a chosen prior distribution of input parameters to obtain

a posterior parameter distribution, which will be used as the sampling distribution of input parameters in

the simulation experiment. In addition to the two aforementioned methods, Cheng and Holland (1997) also

developed the δ -method, which is based on Taylor’s Theorem to decompose the variance of simulation

output response into two components that are caused by parameter uncertainty and stochastic uncertainty,

respectively. Song and Nelson (2015) developed a method for quickly assessing the relative contribution

of each input distribution to the overall variance due to input uncertainty. In recent years, with the rise

of Stochastic Kriging meta-modeling method in stochastic simulation (e.g., Ankenman et al. (2010)),

meta-model assisted methods have been developed for quantifying input uncertainty, see Barton et al.

(2013), Xie et al. (2014), etc. Henderson (2003) provided an early review on the importance of input

uncertainty and the common methods to deal with it. Barton (2012) provided a concise review on popular

methods in output analysis with input uncertainty and highlighted some remaining challenges in this area.

Most of the aforementioned literature focuses on providing inferences on the mean response w.r.t.

input uncertainty, i.e., the average behavior of the mean response, including point estimation and CI

construction. The “quantification” of extreme behavior of the mean response w.r.t. input uncertainty is

often overlooked. Such quantification could provide inferences on system sensitivity or stability, and thus

is critical for risk assessment/control of the system. Consider the ER example previously mentioned, the

risk assessment/control of the mean response (e.g., the expected number of waiting patients) w.r.t. input

uncertainty is quite necessary, because the behavior of the system output under extreme input models

indicates a large number of expected waiting patients, which might lead to delayed treatment of patients

and possibly serious consequences in life-threatening situations.

Risk measures for input uncertainty are of great importance, because they provide rigorous quantifications

of the behavior of the mean response under extreme input models. To the best of our knowledge, they

have rarely been systematically studied in input uncertainty modeling. In some papers, the quantile of the

mean response that is closely related to the risk measure Value-at-Risk(VaR), is used when percentile-type

CIs are constructed. But it is rarely the main focus of analysis in the literature.

Common risk measures such as VaR and Conditional Value-at-Risk (CVaR) have been extensively

studied in the financial industry, due to their great importance for financial organizations. Loosely speaking,

VaR characterizes the extreme (e.g., 99%) quantile of the output distribution and CVaR characterizes the

conditional mean of the very tail portion of the output distribution. An abundant literature has dedicated to

studying the estimation and optimization of risk measures under various settings, see Hong et al. (2014)

for an elegant review of Monte Carlo methods for VaR and CVaR.

Risk assessment of input certainty exhibits some overlaps with risk assessment in portfolio/credit risk

management. In a broader sense, they both deal with simulating certain conditional expectations. Among

the literature, Lee (1998) studied the point estimation of a quantile (VaR) of the distribution of a conditional

expectation via a two-level simulation. Steckley (2006) considered estimating the density of a conditional

expectation using kernel density estimation. In portfolio risk management, the risk assessment of a portfolio

of securities at a given future date (risk horizon) is to re-evaluate the portfolio at the risk horizon for thousands

of realizations of risk factors, and computing the portfolio value at each realization may further require the

simulation of risk factors beyond the risk horizon by up to years. Common approaches for risk assessment

in portfolio risk management include the delta-gamma method by Glasserman et al. (2000), etc; the nested

simulation method by Gordy and Juneja (2010), Broadie et al. (2011), etc; the stochastic kriging method

by Liu and Staum (2010), etc.

In the present paper, we will introduce risk measures for input certainty and their estimation. In particular,

we study nested Monte Carlo estimator for CVaR of the mean response w.r.t. input uncertainty. Furthermore,

we show some asymptotic properties of the estimator and use them to construct an (asymptotically valid) CI

for CVaR of the mean response. Due to space limit, we choose CVaR over VaR because CVaR is a coherent

risk measure (see, e.g., Artzner et al. (1997)) and exhibits nice properties such as convexity for optimization

(see, e.g., Rockafellar and Uryasev (2000)). Our work can be viewed as a starting point for research on
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more general risk measures or more sophisticated estimators of risk measures for input uncertainty. In

particular, the contributions of this paper are three-folds: 1) for output analysis with input uncertainty, this

paper is among the first to systematically study risk measures for input uncertainty, which is an important

topic that has been largely overlooked in the literature; 2) we show some asymptotic properties of nested

Monte Carlo estimator of CVaR, which are guarantees for constructing an (asymptotically valid) CI for

CVaR of the mean response; 3) we develop a novel approach to solve the associated budget allocation

problem for nested simulation of CVaR estimator, in order to improve the simulation efficiency.

The work most relevant to ours is probably Lan et al. (2010). They developed a procedure for

constructing CIs of Expected Shortfall Risk (equivalent to CVaR) measurement via nested simulation

in financial risk management, in which they use screening, a ranking and selection type technique, to

improve the simulation efficiency. The differences between their work and ours are evident. First, their CI

construction procedure is based on the empirical likelihood method, while our CI construction procedure is

based on the asymptotic properties of the estimator; second, the budget allocation problem in their setting

is more difficult to model and solve than ours. In fact, the budget allocation problem in our setting is

straightforward to formulate and easy to solve with the proposed novel method.

The rest of the paper is organized as follows. In section 2, we will introduce risk measures for input

uncertainty, describe the nested Monte Carlo estimation and CI construction of a specific risk measure—

CVaR for input uncertainty. We formulate and solve the associated budget allocation problem in section 3.

In section 4, we conduct numerical experiments to demonstrate the theoretical results in previous sections.

Finally, conclusion and promising directions of future research are provided in section 5.

2 CVAR OF THE MEAN OUTPUT RESPONSE

2.1 Formulation

Let us first rigorously define the risk measures VaR and CVaR of the mean response w.r.t. input uncertainty.

In a stochastic simulation experiment, consider an output response function in the form of H(θ ;ξ ), where

θ denotes the input parameter(s) and ξ represents the noise (stochastic uncertainty) in the output response.

Furthermore, suppose there is a probability distribution on θ that reflects our belief on input uncertainty,

since θ needs to be inferred from historical data. Therefore, θ can be treated as a random variable, and

we assume it is independent from ξ . From a Bayesian perspective, our belief on input uncertainty will be

updated with new observations of parameters. Specifically, suppose there exists a prior distribution p(θ)
on θ . The prior can be either non-informative or informative depending on subjective experiences, and

the hyper-parameters of the prior can be estimated from historical data. With new observations x of θ , a

posterior distribution p(·|x) on θ can be obtained via standard Bayesian updating. To facilitate the analysis,

let us assume for fixed θ , H(θ ;ξ ) = η(θ)+ e(θ ;ξ ), η(θ) = Eξ [H(θ ;ξ )] is the mean response, e(θ ;ξ )

is the output noise such that E[e(θ ;ξ )|θ ] = 0 and Var[e(θ ;ξ )|θ ] = τ2
θ , where we assume τ2

θ is a finite

deterministic function of θ and τ2 △
=
∫

τ2
θ p(θ |x)dθ is finite. Furthermore, to account for input uncertainty,

we assume that η(θ) = ηx +δ (θ), where the posterior mean ηx = Ep(·|x)[η(θ)] =
∫

η(θ)p(θ |x)dθ , δ (θ)

is the input “noise” such that Ep(·|x)[δ (θ)] = 0 and Varp(·|x)[δ (θ)] = σ2, where σ2 may depend on the

observations x.

Suppose 0 < α < 1 is a certain large probability level (usually, α = 0.95 or α = 0.99) of interest.

VaRα

(
Eξ [H(θ ;ξ )]

)
is defined by the α-quantile of the mean response η(θ), i.e.,

VaRα

(
Eξ [H(θ ;ξ )]

)
:= inf{t : F(t)≥ α}, (1)

where F(·) is the cumulative distribution function (c.d.f.) of η(θ). Further assume θ is a continuous

random variable, the function η(·) is continuous and η(θ) is a continuous random variable. It follows that

F(·) is continuous, and VaR defined in (1) can be simplified as VaRα

(
Eξ [H(θ ;ξ )]

)
= F−1(α). Intuitively,

VaR represents the cut-off level for the α-tail of the mean response. CVaR, on the other hand, is defined
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by the conditional mean of the α-tail distribution of the mean response. In particular, given that η(θ) is a

continuous random variable,

CVaRα

(
Eξ [H(θ ;ξ )]

)
:=

1

1−α
Ep(·|x)

(
Eξ [H(θ ;ξ )]I{Eξ [H(θ ;ξ )]≥VaRα}

)
, (2)

where the indicator function I{A} equals 1 when the statement A is true and 0 otherwise. With slight abuse

of notations, we use VaRα as an abbreviation for VaRα

(
Eξ [H(θ ;ξ )]

)
and CVaRα as an abbreviation for

CVaRα

(
Eξ [H(θ ;ξ )]

)
occasionally for convenience.

2.2 A Nested Monte Carlo Estimator

CVaR, as one of the mostly used risk measures in financial applications, has been extensively studied.

Calculating CVaR for input uncertainty can be straightforward when the system is simple. For example,

when the mean response w.r.t. stochastic uncertainty can be evaluated exactly and the mean response (as a

random variable due to input uncertainty) admits an explicit density function, CVaR of the mean response

w.r.t. input uncertainty can be easily calculated via numerical integration. For complex real-world stochastic

systems, numerical calculation of CVaR might not be applicable, especially when the mean output cannot

be evaluated exactly or the mean output distribution is complex. In this case, Monte Carlo simulation

is a powerful alternative approach to obtain good estimates of CVaR. To gain more intuition, let us first

consider the estimation of CVaRα in (2) without stochastic uncertainty. That is, η(θ) can be evaluated

exactly given any θ . Now that the probabilistic model is one-layer, a natural approach to an estimator of

CVaRα is by naive Monte Carlo sampling described as follows. First, draw N i.i.d. scenarios θ1, ...,θN from

the posterior distribution p(θ |x); second, evaluate the response η(θi) for i = 1, ...,N and sort the resulting

response scenarios η(θ1), ....,η(θN) in ascending order, denoted by η(θ(1)) ≤ η(θ(2)) ≤ · · · ≤ η(θ(N));
finally, a naive Monte Carlo estimator of CVaRα is given by

ĈVaRα (η(θ)) =
1

(1−α)N +1

N

∑
i=αN

η(θ(i)), (3)

where we assume αN is an integer. Intuitively, ĈVaRα in (3) is the average of “effective” response scenarios

that are greater than or equal to V̂aRα , where V̂aRα is defined by the α-quantile of the empirical distribution

of the response scenarios that functions as an approximation of VaRα . The properties of ĈVaRα have been

well studied. For example, although ĈVaRα is biased, it is proven to be consistent under mild regularity

conditions by Sun and Hong (2010). We will elaborate more on this point later.

Now back to the original model with input uncertainty that we are interested in, where stochastic

uncertainty needs to be taken into account as well. Since the mean response η(θ) now cannot be evaluated

exactly, it is estimated from samples of the response. To obtain an estimator of CVaRα , we can extend

the sampling procedure by replacing η(θi)’s with the corresponding sample average estimates η̂(θi)’s.

Specifically, for i = 1, ...,N, draw M i.i.d. samples ξi1, ...,ξiM from the distribution of ξ and evaluate the

responses H(θi;ξi j), j = 1, ...,M, approximate the mean response η(θi) by η̂(θi) =
1
M ∑

M
j=1 H(θi;ξi j) and

sort them in ascending order, denoted by η̂(θ (1))≤ η̂(θ (2))≤ ·· · ≤ η̂(θ (N)). Here note that (θ (1), ...,θ (N))
and (θ(1), ...,θ(N)) are different order sequences due to sampling error. In fact, for fixed scenarios θ1, ...,θN ,

(θ(1), ...,θ(N)) is a constant vector, while (θ (1), ...,θ (N)) is a random vector that depends on the sample

realizations of ξ . Finally, a nested Monte Carlo estimator of CVaRα is given by

C̃VaRα

(
Eξ [H(θ ;ξ )]

)
=

1

(1−α)N +1

N

∑
i=αN

η̂(θ (i)). (4)

With the complication of stochastic uncertainty, the properties of C̃VaRα in (4) become more difficult to

analyze. Nevertheless, we will show that it remains to be consistent under mild regularity conditions, and

thus using it as an inference for CVaRα is still reasonable.
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2.3 Consistency of CVaR Estimator

In this subsection, we will analyze the asymptotic behavior of C̃VaRα in (4). In particular, we will prove

the consistency of the estimator. To facilitate the analysis, let us ignore the stochastic uncertainty first, and

the problem reduces to standard CVaR estimation. Some well-established results on the analysis of ĈVaRα

in (3) will be useful. In particular, Sun and Hong (2010) have the following proposition on the asymptotic

representation of ĈVaRα .

Proposition 1 Assume η(θ) admits a positive and continuously differentiable density around VaRα . Then

ĈVaRα (η(θ))−CVaRα =

(
1

N

N

∑
i=1

[
VaRα +

1

1−α
(η(θi)−VaRα)

+

]
−CVaRα

)

︸ ︷︷ ︸
error of an unbiased estimator of CVaRα

+AN , (5)

where AN = Oa.s.(N
−1 logN), (x)+

△
= max{x,0}. Here note that the statement f (N) = Oa.s.(g(N)) means

that f (N)≤C ·g(N) for some constant C almost surely.

Reformulate (2) as

CVaRα =VaRα +
1

1−α
Ep(·|x)

[
(η(θ)−VaRα)

+] . (6)

Therefore, 1
N ∑

N
i=1

[
VaRα + 1

1−α (η(θi)−VaRα)
+]

is an unbiased estimator of CVaRα . Hence, Proposition

1 implies that the bias of ĈVaRα , E[AN ], is asymptotically insignificant compared with the error of the

unbiased estimator. By Strong Law of Large Numbers (SLLN) and Central Limit Theorem (CLT), Sun and

Hong (2010) have the following corollary on the strong consistency and asymptotic normality of ĈVaRα .

Corollary 2 Under the assumptions in Proposition 1, and Var
[
(η(θ)−VaRα)

+]
is finite, the estimator

ĈVaRα (η(θ)) is strongly consistent and asymptotic normally distributed. In particular, ĈVaRα
N→∞→

CVaRα , w.p.1, and

√
N
(

ĈVaRα −CVaRα

)
⇒

√
Var

[
(η(θ)−VaRα)

+]

(1−α)
N (0,1), as N → ∞, (7)

where N (0,1) represents the standard normal distribution.

When stochastic uncertainty also needs to be taken into account, the error of estimator C̃VaRα in (4)

becomes more complicated. Nevertheless, we will show that the estimator remains to be strongly consistent.

In particular, we have the following theorem on the asymptotic consistency of C̃VaRα .

Theorem 3 Under the same assumptions in Proposition 1, we have

lim
N→∞

lim
M→∞

C̃VaRα

(
Eξ [H(θ ;ξ )]

)
=CVaRα , w.p.1. (8)

In particular, C̃VaRα

(
Eξ [H(θ ;ξ )]

)
is a strongly consistent estimator of CVaRα .

We refer to Zhu and Zhou (2015) for the proof, and same for the rest of theorems in this paper. We

also point out that right now the order of N and M in (8) cannot be interchanged or relaxed such that N and

M go to infinity simultaneously. Relaxing such restriction on the limit is the direction of future research.
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2.4 Confidence Interval

Now let us describe the procedure to construct a CI for CVaRα and prove its asymptotic validity. A natural

idea is to establish the asymptotic normality of C̃VaRα by providing an asymptotic representation of C̃VaRα

similar to the one in (5). In view of the following error decomposition

C̃VaRα −CVaRα =
(

C̃VaRα −ĈVaRα

)
+
(

ĈVaRα −CVaRα

) △
= Err1 +Err2, (9)

it is quite challenging to do so because Err1, the error component mainly accounts for stochastic uncertainty,

also depends on input uncertainty and thus not independent from Err2. Alternatively, we can establish the

asymptotic normality result for Err1. Combining with a similar result for Err2 in Corollary 2, we could

construct CIs for Err1 and Err2 respectively, and integrate the two CIs into a wider CI for CVaRα . It

remains to show that Err1 is asymptotic normally distributed. In particular, we have the following theorem.

Theorem 4 Assume η(θ) is a continuous random variable. Then for any finite N and conditional on

θ1, ...,θN , √
[(1−α)N +1]M

(
C̃VaRα −ĈVaRα

)
M→∞⇒ τIN (0,1), (10)

where τI
△
=
√

∑
N
i=αN τ2

(i)/ [(1−α)N +1] and τ2
(i) is used to denote τ2

θ(i)
with slight abuse of notations.

We refer to Zhu and Zhou (2015) for the proof. Basically, Theorem 4 implies that the disruption on

the order statistics (η(θ(1)),η(θ(2)), · · ·,η(θ(N))) caused by stochastic uncertainty vanishes asymptotically.

With Corollary 2 and Theorem 4, let us construct a two-sided CI [C̃L, C̃U ] for CVaRα with confidence

level 1−β . Following the error decomposition (9), the error level β is decomposed into βO and βI (hence

β = βO+βI) as well, representing the errors due to input uncertainty (outer-layer simulation) and stochastic

uncertainty (inner-layer simulation), respectively.

By Corollary 2, the two-sided (unknown variance) CI for ĈVaRα −CVaRα with confidence level 1−βO

is

ĈVaRα −CVaRα ∈
[

tβO/2,N−1σ̂cvar√
N

,
t1−βO/2,N−1σ̂cvar√

N

]
, (11)

where σ̂cvar is the sample estimate of σcvar
△
=
√

Var
[
(η(θ)−VaRα)

+]/(1−α), tβO/2,N−1 and t1−βO/2,N−1

represent the βO/2-level and (1−βO/2)-level quantiles of the t-distribution with degree of freedom N−1,

respectively. Note that here using the estimate σ̂cvar instead of σcvar is necessary because σcvar is usually

unknown and can be obtained using the same samples generated in the simulation experiment.

Similarly, by Theorem 4, the two-sided (unknown variance) CI for C̃VaRα −ĈVaRα with confidence

level 1−βI is

C̃VaRα −ĈVaRα ∈
[

tβI/2,[(1−α)N+1]M−1τ̂I√
[(1−α)N +1]M

,
t1−βI/2,[(1−α)N+1]M−1τ̂I√

[(1−α)N +1]M

]
, (12)

where τ̂I is the sample estimate of τI , tβI/2,[(1−α)N+1]M−1 and t1−βI/2,[(1−α)N+1]M−1 represent the βI/2-level

and 1−βI/2-level quantiles of the t-distribution with degree of freedom [(1−α)N+1]M−1, respectively.

By integrating the CIs in (11) and (12), the two-sided (unknown variance) CI for CVaRα with confidence

level 1−β is

CVaRα ∈
[

1

(1−α)N +1

N

∑
i=αN

η̂(θ (i))+
tβO/2,N−1σ̂cvar√

N
+

tβI/2,[(1−α)N+1]M−1τ̂I√
[(1−α)N +1]M

,

1

(1−α)N +1

N

∑
i=αN

η̂(θ (i))+
t1−βO/2,N−1σ̂cvar√

N
+

t1−βI/2,[(1−α)N+1]M−1τ̂I√
[(1−α)N +1]M

]
. (13)
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The following theorem shows the asymptotic validity of the CI constructed above. The proof can be found

in Zhu and Zhou (2015).

Theorem 5 Under the assumptions in Corollary 2 and Theorem 3, the CI defined in (13) is asymptotically

valid, i.e.,

lim
N→∞

lim
M→∞

P{C̃L ≤CVaRα ≤ C̃U} ≥ 1−β , (14)

where C̃L, C̃U are the corresponding low-up CI boundaries for CVaRα in (13), respectively.

Right now the restriction of iterated limits cannot be relaxed so that N and M in (14) is interchangeable,

or N and M go to infinity simultaneously. This is a direct result of the restriction of iterated limits in

(8). Furthermore, it seems to be difficult to obtain a narrower CI that remains to be asymptotically valid.

The reason is that the error components Err1 and Err2 are not independent from each other. Therefore,

we choose to split the overall error level into two error levels corresponding to the two error terms and

constructing CI for each error term, which results in a wider CI than a typical result in CI construction.

3 BUDGET ALLOCATION

In a practical simulation experiment, there is usually a budget limit on the total computation consumption

that is mainly influenced by the experiment parameters N and M. Intuitively, the number of outer-layer

simulation N determines the error of CVaR estimator from sampling input uncertainty, while the number

of inner-layer simulation M determines the error of CVaR estimator from sampling stochastic uncertainty.

Therefore, choosing appropriate values for N and M is critical to balance the trade-off between capturing

input uncertainty and capturing stochastic uncertainty, and improve the overall experiment performance. A

natural criterion for evaluating the experiment performance is the (half) width of the CI, and a smaller CI

width indicates better performance. Ideally, we want to choose values for N and M such that the resulted

CI has the smallest width. Notice that the CI width is a random variable that depends on the realizations

of scenarios and samples generated in the simulation experiment. Therefore, optimizing the expected CI

width w.r.t. the parameters N and M before the experiment will provide us the guideline to determine a

good budget allocation scheme for the simulation experiment. The key question is how to formulate and

solve the CI width minimization problem.

Let us use Wcvar(M,N) to denote the (approximate) expected half width of the CI in (13), i.e.,

Wcvar(N,M) :=
t1−βO/2,N−1σcvar√

N
+

t1−βI/2,[(1−α)N+1]M−1τcvar√
[(1−α)N +1]M

, (15)

where τ2
cvar

△
= E[τ2

θ |η(θ)≥VaRα ] is approximately equal to E[τ2
I ]. Wcvar(M,N) is the objective function

in the budget allocation problem. Notice that there are four experiment parameters βO,βI,N,M to be

determined. To reduce the number of decision variables and ease the optimization, we pre-select βO and βI

(a typical selection is βO = βI = β/2). Next, let us describe the constraints in the minimization problem.

We use ∆(N,M) to denote the total computation time S(N)+ c ·NM, where S(N) is the time for sorting

a vector of length N in ascending order, and c ·NM is the time for generating and evaluating NM output

response samples. Of course, there could be other criteria such as computation complexity and these can

be minimized in a similar manner. CB is used to denote the total computation budget. Furthermore, there

are lower bound constraints on N and M such that the statistical properties of the estimators are valid. To

this end, let us consider the following minimization problem for CVaR estimation

min
N,M

Wcvar(N,M)

s.t. ∆(N,M)≤CB

N ≥ Γ0, M ≥ Γ0, [(1−α)N +1]M ≥ Γ0

N,M ∈ Z+

(16)
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The constraints N ≥ Γ0, M ≥ Γ0 and [(1−α)N + 1]M ≥ Γ0 are imposed to ensure the validity of the

t-statistics, and a typical choice for Γ0 is 30.

The practical challenge in solving the minimization problem (16) is the lack of information for the

“variance parameters” σcvar and τcvar in the representation of Wcvar(M,N). This challenge is not unique

to our problem. In fact, for general computation budget allocation problems in simulation, the lack of

knowledge for some important parameters is quite common. A natural fix is to run a pilot experiment with

a small fraction of the budget, obtain crude approximations of those unknown parameters, and replace the

unknown parameters with the corresponding approximations in the optimization problem. Finally, solving

the approximate version of the budget allocation problem instead of the original one.

We will adopt this procedure in our problem. That is, we will perform a pilot run with a few samples

to obtain crude approximations of σcvar and τcvar, denoted by σ̃cvar and τ̃cvar, respectively, and then solve

the approximate version of budget allocation problem (16). Theoretically, these approximations of variance

parameters can be the corresponding Monte Carlo estimates. However, the estimates might be extremely

inaccurate or unstable because the Monte Carlo estimation in this case is a rare-event type simulation with

few samples. For example, recall that σcvar
△
=
√

Var
[
(η(θ)−VaRα)

+]/(1−α), and its square can be

reformulated as

σ2
cvar =

Var
[
(η(θ)−VaRα)

+]

(1−α)2

=
1

(1−α)2

{
E

[
(η(θ)−VaRα)

2
I{η(θ)≥VaRα}

]
−
(
E
[
(η(θ)−VaRα)

+])2
}
. (17)

By definition we have CVaRα =VaRα + 1
1−αE

[
(η(θ)−VaRα)

+]
. Hence, estimation of σ2

cvar is at least as

difficult as estimation of CVaRα—the initial goal in our model. If we use the naive Monte Carlo estimation

to approximate the two expectation terms in (17), most of samples will be ineffective. In fact, theoretically

only 100(1−α) percent of the total samples will be effective. Therefore, the approximation might be

extremely inaccurate because the total number of samples in the pilot run is very limited. To put it into

perspective, suppose α = 0.99 and 100 scenarios of mean response (N = 100) are generated in the pilot

run. Then theoretically only one scenario will be used to estimate σo since the rest 99 scenarios result in a

simple value of 0. Obviously, the one-scenario approximation is very likely to be far from the true value.

Intuitively, the naive Monte Carlo estimation is problematic because the information about the distribution

carried by the ineffective samples is not used. When the number of samples is small, the problem become

even more severe because the inference on the very tail of the distribution is negligible with little/no

information used. Therefore, in theory, a good approximation will try to make use of the information

carried by all the samples. For example, using (adaptive) importance sampling will turn most of ineffective

samples to effective samples, and therefore improve the accuracy of the estimation. This approach is not

readily applicable in our model because we lack the knowledge for the density function of the mean response

distribution and the number of total available samples is too limited to be used to learn the distribution.

Next, we will describe a new approach to approximations of the variance parameters, denoted by σ̃cvar

and τ̃cvar, that exploits the information carried by all the generated samples. In view of the definitions of

the variance parameters, i.e.,

σcvar
△
=
√

Var
[
(η(θ)−VaRα)

+]/(1−α), τcvar
△
=
√

E[τ2
θ |η(θ)≥VaRα ],

the challenges in computing these variance parameters are two folds: (i) The lack of explicit formula for

the density of η(θ) in computing σcvar. (ii) The lack of functional representation of τ2 in η(θ), i.e.,

τ2(y)
△
= E[τ2

θ |η(θ) = y], in computing τcvar.

To address the first challenge, we apply the “density projection” technique to project the empirical

distribution of the mean response η(θ) onto a parameterized family of distributions. To be more specific, a
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projection mapping from a space of probability distributions P to another space consisting of a parameterized

family of densities F , denoted as Pro jF : P → F , is defined by

Pro jF (g)
△
= arg min

f∈F
DKL(g ‖ f ), ∀g ∈ P, (18)

where DKL(g ‖ f ) denotes the Kullback-Leibler (KL) divergence (or relative entropy) between g and f ,

which is

DKL(g ‖ f )
△
=
∫

g(x) log
g(x)

f (x)
dx. (19)

Here note that the densities g and f are assumed to have the same support space. Hence, the projection

of g on F has the minimum KL divergence from g among all the densities in F . Loosely speaking, the

projection of g on F is the “best” approximation of g one can find in F . When F is an exponential family

of densities, the minimization problem (18) has an analytical solution and can be carried out easily. The

exponential families include many common families of densities, such as Gaussian, Binomial, Poisson,

Gamma, etc. Therefore, by choosing an exponential family of densities as the target space in projecting the

empirical distribution of η(θ), the resulting density admits an explicit formula and it can be regarded as an

approximation of the probability density function of η(θ). This significantly facilitates the computation of

σcvar by simple numerical calculation instead of Monte Carlo sampling. More importantly, this technique

makes use of the information carried by all the samples.

As for the second challenge, i.e., τ2(y)
△
= E[τ2

θ |η(θ) = y] is not available in computing τcvar. We can

apply regression for τ2(y) onto η(θ) to construct the response surface of τ2(y) with sample responses

of τ2(y) (which can be easily computed from the scenarios generated in the pilot run). For example, a

polynomial regression with basis functions consisting of polynomial functions of η(θ) is sufficient for a

good approximation of τ2(y). Finally, τ̃cvar is computed via numerical integration since τ2(y) admits an

(approximate) explicit formula and η(θ) admits an (approximate) explicit probability density function.

After plugging in the approximated variance parameters σ̃cvar and τ̃cvar into problem (16), the remaining

challenge is how to solve the optimization problem efficiently. Obviously, solving it analytically to

optimality is very unlikely because the objective function does not exhibit structure properties (e.g.,

convexity). Alternatively, one can enumerate a reasonable amount of candidate solutions (for examples,

a two-dimensional grid of feasible solutions) easily based on the constraints, and evaluating the objective

function at these candidate solutions can be carried out straightforwardly. Finally, among the candidate

solutions, we can choose the best parameter design that yields the smallest expected CI width.

Note that, due to the special structure of the CI width minimization problem (16), if the total budget

limit is instead defined by CB = N ×M, then the objective function Wcvar(N,M) is independent of M and

decreases in N. It follows that the optimal solution is to take N as large as possible. Mathematically, it

means the optimal allocation scheme is (N,M) = (⌊CB/Γ0⌋,Γ0) such that the t-statistics are valid as well.

Our numerical experiments (not included in this paper due to space limit) demonstrate that this indeed is

the case. Nevertheless, here we consider a more general problem formulation and a more sophisticated

solution technique because they could be readily generalized for risk measures other than CVaR.

4 NUMERICAL RESULTS

We will use the M/M/1 queueing system considered in Zouaoui and Wilson (2003) to illustrate the

theoretical results in previous sections. In particular, we will consider the estimation of CVaR of the

mean sojourn time w.r.t. input uncertainty. In the M/M/1 queueing system, assume the “true” Poisson

customer arrival rate is λo, which means the inter-arrival times between customers are independently

sampled from an exponential distribution with rate λo. Further assume the “true” Exponential service rate

is µo, which means the service time for each customer is sampled from an exponential distribution with

rate µo. Here “true” means that the values of λo and µo are known to us (the judges) but unknown to the
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experimenter. Specifically, we choose µo = 500 and λo = 50,250,450—a range of values corresponding to

increasing levels of “true” arrival intensity. Assuming non-informative priors for both the Poisson arrival

rate λ and the Exponential service rate µ , i.e., p(λ ) ∝ 1/λ and p(µ) ∝ 1/µ . The experimenter takes a

Bayesian approach towards the construction of the posterior distributions of λ and µ . That is, based on

n = 10,100,10000 historical observations of λ and µ (drawn from the corresponding distributions with

“true” parameters), standard Bayesian updating is applied to obtain the posterior distributions of λ and µ ,

which are the experimenter’s belief on input uncertainty. In particular, assume the historical observations

of λ are x = (x1, ...,xn). Then the Bayesian updating of the posterior distribution of λ can be carried

out analytically and results in p(λ |x) = λ n−1 exp(−λ ∑
n
i=1 xi), which is a Gamma distribution with shape

parameter n and scale parameter 1/(∑n
i=1 xi). Similarly, let y = (y1, ...,yn) denote the historical observations

for µ . Then the posterior distribution of µ is p(µ|y) = µn−1 exp(−µ ∑
n
i=1 yi), which is also a Gamma

distribution with shape parameter n and scale parameter 1/(∑n
i=1 yi).

The objective is to use nested Monte Carlo simulation to estimate CVaRα (α = 0.90,0.95,0.99) of

the mean sojourn time w.r.t. the posterior distributions p(λ |x) and p(µ|y), and construct the associated

100(1−β )% CIs (β = 0.05). Specifically, we draw N = 5000 scenarios from the posterior distributions of

the parameters such that every parameter scenario results in a stable queue (λ < µ), and for each scenario

of the parameters, we further draw M = 200 samples by simulating the first 200 sojourn cycles of that queue

to estimate the mean sojourn time. Finally, the CVaRα estimator and the associated CIs are computed via

(4) and (13), in which σ̂cvar and τ̂I are computed using the same samples generated. Note that we choose

a large value for N since CVaR estimation is a rare-event type simulation.

Table 1: CVaR (with 95% CI) for the mean sojourn time in an M/M/1 queue.

λ0 n Mean ± CVaRα1
± CVaRα2

± CVaRα3
±

Half CI Width Half CI Width Half CI Width Half CI Width

50 10 2.4×10−3 ∓ 5.0×10−3 ∓ 6.0×10−3 ∓ 9.0×10−3 ∓
3.4×10−5 2.8×10−4 4.7×10−4 1.6×10−3

50 100 2.2×10−3 ∓ 2.8×10−3 ∓ 2.9×10−3 ∓ 3.2×10−3 ∓
9.7×10−6 4.9×10−5 6.9×10−5 1.6×10−4

50 10000 2.2×10−3 ∓ 2.6×10−3 ∓ 2.6×10−3 ∓ 2.8×10−3 ∓
6.9×10−6 3.3×10−5 4.7×10−5 9.8×10−5

250 10 5.2×10−3 ∓ 2.1×10−2 ∓ 3.1×10−2 ∓ 5.3×10−2 ∓
2.1×10−4 2.4×10−3 4.2×10−3 9.6×10−3

250 100 4.2×10−3 ∓ 7.0×10−3 ∓ 7.8×10−3 ∓ 1.0×10−2 ∓
4.1×10−5 3.3×10−4 5.6×10−4 2.0×10−3

250 10000 3.9×10−3 ∓ 4.8×10−3 ∓ 4.9×10−3 ∓ 5.3×10−3 ∓
1.8×10−5 9.7×10−5 1.4×10−4 3.2×10−4

450 10 9.9×10−3 ∓ 3.8×10−2 ∓ 4.7×10−2 ∓ 6.8×10−2 ∓
3.3×10−4 3.0×10−3 4.6×10−3 1.1×10−2

450 100 1.8×10−2 ∓ 4.3×10−2 ∓ 4.9×10−2 ∓ 5.8×10−2 ∓
3.6×10−4 2.4×10−3 3.3×10−3 7.8×10−3

450 10000 2.1×10−2 ∓ 3.5×10−2 ∓ 3.8×10−2 ∓ 4.4×10−2 ∓
2.6×10−4 1.7×10−3 2.4×10−3 5.7×10−3

The numerical results are summarized in Table 1, and based on which we have the following observations.

• In general, there is a significant gap between mean of the mean sojourn time (values in column 3)

w.r.t. input uncertainty and CVaR of the mean sojourn time (values in columns 4 to 6) w.r.t. input
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uncertainty. That implies using the risk estimators instead of mean estimators is quite necessary

for accurate risk assessment/control.

• As the number of historical observations increases, CVaR of the mean sojourn time is decreasing,

which indicates that the effect of input uncertainty on the extreme behavior of the mean sojourn

time is reducing. Intuitively, the posterior distribution of the input parameter will put more weights

on values close to the “true” parameter and less weights on the values far from the “true” parameter

as the number of historical observations increases. Therefore, loosely speaking, the posterior

distribution of the mean response will also put more weights on the values close to “true” mean

response and essentially reduce the risk of input uncertainty.

• As the arrival traffic intensifies (λo increases) and approaches the service rate µo, the “true” mean

sojourn time (equals 1/(µo−λo)) is increasing, and the effect of input uncertainty on the extremely

behavior of the mean sojourn time is more significant. Intuitively, it indicates that, as the arrival

rate λo approaches the service rate µo, the mean system output response becomes more and more

sensitive to input uncertainty.

In conclusion, the primary numerical results from simulating the simple M/M/1 queueing system provide

empirical evidences for the importance/neccessity of investigating CVaR (or other risk measures) of the

mean response w.r.t. input uncertainty in a stochastic system. We will further conduct numerical experiments

with budget allocation scheme on more complex systems in future study.

5 CONCLUSION

In the present paper, we introduce risk measures for input certainty, which rigorously quantify the extreme

behavior of the mean output response under all possible input models. In particular, we propose nested

Monte Carlo estimator for CVaR of the mean response w.r.t. input uncertainty. We show some asymptotic

properties of the estimator and use them to construct an (asymptotically valid) CI. The work in this paper

can be viewed as a starting point of research on more general risk measures for input uncertainty. On the

other hand, the naive estimator considered could be very restrictive for risk assessment of input uncertainty

for large-scale systems, due to the fact that most of the scenarios generated for the input parameters will

fall into the non-tail portion of the mean response distribution and essentially become ineffective. The

budget allocation problem we considered and solved partially addresses this issue in the sense that it leads

to good budget allocation schemes. Developing more sophisticated estimators of various risk measures and

budget allocation schemes will be a promising direction of future research.
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