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ABSTRACT

Consider a system that is subjected to a random load and having a corresponding random capacity to

withstand the load. The system fails when the load exceeds capacity, and we consider efficient simulation

methods for estimating the failure probability. Our approaches employ various combinations of stratified

sampling, Latin hypercube sampling, and conditional Monte Carlo. We construct asymptotically valid

upper confidence bounds for the failure probability for each method considered. We present numerical

results to evaluate the proposed techniques on a safety-analysis problem for nuclear power plants, and the

simulation experiments show that some of our combined methods can greatly reduce variance.

1 INTRODUCTION

Consider a system that is subjected to a random load L and has a random capacity C to withstand the load.

The system fails when the load exceeds capacity, and we define θ = P(L ≥C) as the failure probability.

Our goal is to devise efficient Monte Carlo methods to estimate θ .

This problem framework encompasses many practical applications. For example, civil and mechanical

engineers design devices, systems and structures that encounter random loads and have random capacities,

with the aim of ensuring only a very small chance of failure (Wunderlich 2005). Catastrophe modeling

plays a critical role in the insurance industry to assess the likelihood of infrastructure failures caused by

hurricanes, floods, and earthquakes (Grossi and Kunreuther 2005).

Nuclear engineers perform risk assessments and safety analyses of nuclear power plants (NPPs) to

determine if their facilities have acceptably low risks during hypothesized accidents. An international effort

of the Nuclear Energy Agency Committee on the Safety of Nuclear Installations (2007) recently developed

a Safety Margin Action Plan, introducing a framework called risk-informed safety-margin characterization

(RISMC). The basic RISMC problem is to ensure that the failure probability θ of an NPP is acceptably

small. In this setting, the model complexity leads to extremely long simulation run times, making it crucial

to apply variance-reduction techniques (VRTs).

To efficiently estimate θ , we consider applying various combinations of stratified sampling (SS),

Latin hypercube sampling (LHS), and conditional Monte Carlo (CMC); see Chapter V of Asmussen and

Glynn (2007) and Chapter 4 of Glasserman (2004) for overviews of these and other VRTs. In addition to

constructing a point estimator for θ , we also want a confidence interval (CI) or upper confidence bound

(UCB) to assess the statistical error in the point estimator. Indeed, current regulations of the Nuclear

Regulatory Commission (NRC) require performing safety analyses of NPPs at a 95% confidence level;

e.g., see Section 2.b of U.S. Nuclear Regulatory Commission (1995) and Section 24.9 of U.S. Nuclear

Regulatory Commission (2011).

Sherry, Gabor, and Hess (2013) and Dube et al. (2014) carry out initial RISMC studies of postulated

accidents in NPPs using combined SS+LHS. But these papers do not provide confidence intervals nor do

they apply CMC, both of which we do. Our numerical experiments show that further incorporating CMC
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in a RISMC analysis can greatly reduce variance. Avramidis and Wilson (1996) examine combinations of

different VRTs, including LHS, CMC, and control variates, but they do not consider SS, which plays a

fundamental role in a RISMC analysis. Moreover, Avramidis and Wilson (1996) do not develop CIs, as

needed in NRC licensing analyses, for their integrated methods.

The rest of the paper unfolds as follows. Section 2 develops the mathematical framework of the problem.

Sections 3 and 4 review the uses of simple random sampling and stratified sampling to estimate the failure

probability θ . We show how to combine SS+LHS in Section 5, further adding in CMC in Section 6.

Section 7 presents numerical results of a stylized RISMC analysis, demonstrating the tremendous gains

that may be obtained with our approaches. Finally, we provide concluding remarks in Section 8.

2 MATHEMATICAL FRAMEWORK

Let L denote the random load of a system, and let C be its corresponding random capacity. We initially

allow L and C to be dependent, but we later will assume in Section 6 that they are independent. Define

the joint CDF of (L,C) as H, which we assume is unknown. Let F and G denote the marginal CDFs of L

and C, respectively. We assume that we have a simulation model that produces output (L,C)∼ H.

The system fails when L ≥ C, and we want to determine if the failure probability θ = P(L ≥ C) is

acceptably small, i.e., that θ < θ0, for some given constant θ0. As H is unknown, we do not know the

value of θ nor if θ < θ0, and we use simulation to try to determine this. Because Monte Carlo simulation

produces only noisy estimates of θ , we can not be certain that θ < θ0 when our estimate of θ lies below

θ0. Thus, we further require the following:

given constants 0 < θ0 < 1 and 0 < β < 1, determine with confidence level β if θ < θ0. (1)

For example, if θ0 = 0.05 and β = 0.95, we need to determine with 95% confidence if the failure probability

θ is less than 0.05. In certain applications, the values of θ0 and β are specified by a regulator.

We can analyze (1) through a one-sided hypothesis test at significance level α = 1−β . To do this,

specify the null hypothesis H0 : θ ≥ θ0 and alternative hypothesis H1 : θ < θ0. The null hypothesis states

that the failure probability is unacceptably high, and rejecting H0 in favor of the alternative H1 requires

significant evidence supporting H1. We carry out a hypothesis test by simulating the model n times, and

we use the outputs to construct an asymptotic β -level upper confidence bound (UCB) B(n), which has the

property that

P(θ < B(n))→ β as n → ∞. (2)

One typically establishes that a UCB B(n) satisfies (2) by showing that the point estimator of θ obeys a

central limit theorem (CLT). With such a UCB, we then define the decision rule:

at confidence level β , conclude that θ < θ0 if and only if the β -level UCB B(n)< θ0. (3)

This then asymptotically satisfies (1). The particular form of the UCB depends on the simulation method

applied, and we will examine several approaches, imposing additional assumptions as needed.

3 SIMPLE RANDOM SAMPLING

We first review how to apply simple random sampling (SRS), which is also known as naive simulation or

crude Monte Carlo, to construct a UCB satisfying (2). For SRS, we run the simulation model n independent

and identically distributed (i.i.d.) times to obtain a sample (Li,Ci), i = 1,2, . . . ,n, of n i.i.d. replicates of

(L,C)∼ H. We then compute the SRS (point) estimator

θ̂SRS(n) =
1

n

n

∑
i=1

I(Li ≥Ci)
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of the failure probability θ , where I(·) denotes the indicator function, which takes value 1 (resp., 0) when its

argument is true (resp., false). The I(Li ≥Ci), i = 1,2, . . . ,n, are i.i.d. with finite variance σ2
SRS = θ(1−θ),

which we can consistently estimate by σ̂2
SRS(n) = θ̂SRS(n)[1− θ̂SRS(n)]. We then have the following CLT:

√
n

σ̂SRS(n)
(θ̂SRS(n)−θ)⇒ N(0,1)

as n → ∞, where ⇒ denotes convergence in distribution (Billingsley 1995, Chapter 5) and N(a,b2) is a

normal random variable with mean a and variance b2.

Now let zβ = Φ−1(β ) be the β -level critical point of a N(0,1) random variable, where Φ is its CDF,

and Q−1(p) = inf{x : Q(x)≥ p} for a CDF Q and 0 < p < 1. Unfolding the above CLT then leads to the

SRS β -level UCB for θ as

BSRS(n) = θ̂SRS(n)+ zβ σ̂SRS(n)/
√

n,

which satisfies (2), resulting in the decision rule (3) to (asymptotically) fulfill (1).

4 STRATIFIED SAMPLING

We next review how to apply stratified sampling to estimate θ ; see Section 4.3 of Glasserman (2004) for

further details on SS. Suppose that the simulation producing the output (L,C) also generates an auxiliary

variable Z. We will use Z as a stratification variable as follows. Partition the support R of Z as R =∪t
s=1Rs,

where Rs ∩Rs′ = /0 for s 6= s′. We call Rs the sth stratum, and we assume that λs ≡ P(Z ∈ Rs) is known for

each s = 1,2, . . . , t. Using the law of total probability, we then express the failure probability as

θ =
t

∑
s=1

P(L ≥C,Z ∈ Rs) =
t

∑
s=1

λsP(L ≥C|Z ∈ Rs) =
t

∑
s=1

λsθ
′
s, (4)

where θ ′
s = P(L′

s ≥C′
s) and (L′

s,C
′
s) has the conditional distribution of (L,C) given that Z ∈ Rs.

Now assuming that we can generate observations of (L′
s,C

′
s) for each stratum s, the representation of

θ in (4) forms the basis of stratified sampling, which estimates each θ ′
s via simulation. Specifically, define

SS sampling weights γ = (γ1,γ2, . . . ,γs), where each γs ∈ [0,1] with ∑t
s=1 γs = 1. For a total sample size n,

define the sample size for stratum s as ns = ⌊γsn⌋. For simplicity, we assume that γsn is integer-valued, so

ns = γsn and ∑t
s=1 ns = n. Let (L′

s,i,C
′
s,i), i = 1,2, . . . ,ns, be a sample of ns i.i.d. observations of (L′

s,C
′
s),

and we estimate θ ′
s by

θ̂ ′
SS,s(ns) =

1

ns

ns

∑
i=1

I(L′
s,i ≥C′

s,i). (5)

Assuming that samples across strata are independent, we then define the SS estimator of θ as

θ̂SS(n) =
t

∑
s=1

λsθ̂
′
SS,s(ns).

The variance of θ̂SS(n) is σ 2
SS/n, where σ 2

SS = ∑t
s=1 λ 2

s θ ′
s(1−θ ′

s)/γs.

The SS estimator satisfies the following CLT:

√
n

σ̂SS(n)
(θ̂SS(n)−θ)⇒ N(0,1),

as n → ∞, where σ̂2
SS(n) = ∑t

s=1 λ 2
s θ̂ ′

SS,s(ns)[1− θ̂ ′
SS,s(ns)]/γs, which consistently estimates σ 2

SS. We thus

obtain the SS β -level UCB

BSS(n) = θ̂SS(n)+ zβ σ̂SS(n)/
√

n, (6)

which satisfies (2), resulting in the decision rule (3) to fulfill (1).
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5 COMBINED SS AND LATIN HYPERCUBE SAMPLING

We now combine SS with Latin hypercube sampling (SS+LHS), which Sherry, Gabor, and Hess (2013) and

Dube et al. (2014) use in their initial RISMC studies. McKay, Conover, and Beckman (1979) originally

developed LHS as a way to efficiently extend stratified sampling to higher dimensions, and it reduces

variance by producing negatively correlated outputs. Stein (1987) further analyzes the approach and shows

that the LHS estimator of a mean has asymptotic variance that is no larger than its SRS counterpart. Owen

(1992) proves a CLT for the LHS estimator of a mean of bounded outputs, which Loh (1996) extends to

outputs having a finite absolute third moment. LHS is perhaps the most commonly used VRT in certain

fields, such as nuclear engineering; e.g., Helton and Davis (2003) survey works on LHS, with an emphasis

on nuclear applications, and cites over 300 references.

For SS+LHS, we need to assume additional structure for the problem. Let H ′
s denote the joint CDF of

(L′
s,C

′
s) for stratum s, and we now require the following:

Assumption 1 For each stratum s = 1,2, . . . , t, there is a vector-valued function ws : ℜds → ℜ2 such that

if U j, j = 1,2, . . . ,ds, are i.i.d. unif[0,1] random variables, then

ws(Q
−1
s,1 (U1),Q

−1
s,2 (U2), . . . ,Q

−1
s,ds

(Uds
))∼ H ′

s, (7)

where Qs, j, j = 1,2, . . . ,ds, are CDFs.

Under Assumption 1, we can generate (L′
s,C

′
s) ∼ H ′

s using (7) as follows. First transform ds i.i.d.

uniforms U j, j = 1,2, . . . ,ds, into

Xs, j = Q−1
s, j (U j)∼ Qs, j, j = 1,2, . . . ,ds, (8)

which are independent but not necessarily identically distributed. Then feed the Xs, j into the function ws,

and its output (L′
s,C

′
s) has joint distribution H ′

s. For example, this is exactly the setting of the RISMC studies

in Sherry, Gabor, and Hess (2013) and Dube et al. (2014), where ws represents a detailed nuclear-specific

computer code modeling the progression of a hypothesized accident in a NPP; see Hess et al. (2009) for

a survey of widely used codes in the nuclear industry. In general, a code run involves numerically solving

a system of differential equations, which can require enormous computational effort, making variance

reduction crucial to reduce the number of runs needed to achieve an acceptable precision.

Before describing the approach to apply LHS, we first explain how to generate ns i.i.d. outputs of (L′
s,C

′
s)

under Assumption 1 when using SRS for each stratum s. We begin by generating Us,i, j, i = 1,2, . . . ,ns,

j = 1,2, . . . ,ds, as nsds i.i.d. unif[0,1] random numbers, which we arrange in an ns ×ds grid:

Us,1,1 Us,1,2 · · · Us,1,ds

Us,2,1 Us,2,2 · · · Us,2,ds

...
...

. . .
...

Us,ns,1 Us,ns,2 · · · Us,ns,ds

. (9)

Applying the function ws from (7) to each row leads to ns pairs of outputs

(L′
s,1,C

′
s,1) = ws(Q

−1
s,1 (Us,1,1), Q−1

s,2 (Us,1,2), . . . , Q−1
s,ds

(Us,1,ds
)),

(L′
s,2,C

′
s,2) = ws(Q

−1
s,1 (Us,2,1), Q−1

s,2 (Us,2,2), . . . , Q−1
s,d2

(Us,2,ds
)),

...
...

...
...

. . .
...

(L′
s,ns

,C′
s,ns

) = ws(Q
−1
s,1 (Us,ns,1), Q−1

s,2 (Us,ns,2), . . . , Q−1
s,ds

(Us,ns,ds
)).

For each i = 1,2, . . . ,ns, the independence of the ds uniforms in row i of (9) ensures that (L′
s,i,C

′
s,i)∼ H ′

s

by (7). Moreover, the independence of the rows in (9) leads to (L′
s,i,C

′
s,i), i = 1,2, . . . ,ns, being mutually
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independent. Thus, (L′
s,i,C

′
s,i), i = 1,2, . . . ,ns, are i.i.d. with distribution H ′

s. We further assume that (9) for

different strata s = 1,2, . . . , t, are independent.

Now we explain how to apply LHS to obtain a dependent sample of ns outputs of (L′
s,C

′
s) for stratum s.

For each j = 1,2, . . . ,ds, let πs, j = (πs, j(1),πs, j(2), . . . ,πs, j(ns)) be a random permutation of (1,2, . . . ,ns);
i.e., πs, j(i) is the number to which i is mapped in permutation πs, j, and the distribution of πs, j assigns

probability mass 1/(ns!) to each of the ns! permutations of (1,2, . . . ,ns). Assume that πs, j, j = 1,2, . . . ,ds,

are ds independent permutations. Then for each i = 1,2, . . . ,ns, and j = 1,2, . . . ,ds, define

Vs,i, j =
πs, j(i)−1+Us,i, j

ns

, (10)

which we arrange in an ns ×ds grid

Vs,1,1 Vs,1,2 · · · Vs,1,ds

Vs,2,1 Vs,2,2 · · · Vs,2,ds

...
...

. . .
...

Vs,ns,1 Vs,ns,2 · · · Vs,ns,ds

. (11)

It is easy to show that each row i of (11) consists of ds i.i.d. unif[0,1] random variables. Applying the

function ws from (7) to each row leads to ns pairs of outputs

(L′
s,1,C

′
s,1) = ws(Q

−1
s,1 (Vs,1,1), Q−1

s,2 (Vs,1,2), . . . , Q−1
s,ds

(Vs,1,ds
)),

(L′
s,2,C

′
s,2) = ws(Q

−1
s,1 (Vs,2,1), Q−1

s,2 (Vs,2,2), . . . , Q−1
s,d2

(Vs,2,ds
)),

...
...

...
...

. . .
...

(L′
s,ns

,C′
s,ns

) = ws(Q
−1
s,1 (Vs,ns,1), Q−1

s,2 (Vs,ns,2), . . . , Q−1
s,ds

(Vs,ns,ds
)).

(12)

Because each row i of (11) consists of ds i.i.d. unif[0,1] random variables, we have that (L′
s,i,C

′
s,i)∼ H ′

s by

(7) for each i = 1,2, . . . ,ns. But all entries in column j of (11) share the same permutation πs, j, making

the ns pairs (L′
s,i,C

′
s,i), i = 1,2, . . . ,ns, dependent. We call the ns pairs an LHS sample of size ns.

We estimate the failure probability θ ′
s for stratum s using SS+LHS (abbreviated SL) by

θ̂ ′
SL,s(ns) =

1

ns

ns

∑
i=1

I(L′
s,i ≥C′

s,i), (13)

for (L′
s,i,C

′
s,i) from (12). We assume the t LHS samples across strata s = 1,2, . . . , t, are independent. Then

we define the SS+LHS estimator of the failure probability θ based on an overall sample size of n = ∑t
s=1 ns

as

θ̂SL(n) =
t

∑
s=1

λsθ̂
′
SL,s(ns).

The CLT of Owen (1992) for bounded LHS outputs applies to the indicator functions in (13), so

(
√

n/σ ′
SL,s)(θ̂

′
SL,s(ns)−θ ′

s)⇒ N(0,1) as ns → ∞, where we provide an expression for σ ′2
SL,s below. Because

the t estimators θ̂ ′
SL,s(ns), s = 1,2, . . . , t, are independent, the overall SS+LHS estimator of θ satisfies a

CLT, √
n

σSL

(θ̂SL(n)−θ)⇒ N(0,1)

as n → ∞, where σ2
SL = ∑t

s=1 λ 2
s σ ′2

SL,s/γs.

The dependence of I(L′
s,i ≥C′

s,i), i = 1,2, . . . ,ns, complicates the exact form of σ ′2
SL,s, which we next

provide. Define Xs, j as in (8), and for (L′
s,C

′
s)=ws(Xs,1,Xs,2, . . . ,Xs,ds

), let vs(Xs,1,Xs,2, . . . ,Xs,ds
)= I(L′

s ≥C′
s),
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whose mean is θ ′
s . Also, let vs, j(Xs, j) = E[vs(Xs,1,Xs,2, . . . ,Xs,ds

)|Xs, j]− θ ′
s be the jth main effect of vs,

which has mean 0. Then Owen (1992) (see also Stein 1987) gives an additive approximation v′s to vs as

v′s(Xs,1,Xs,2, . . . ,Xs,ds
) = θ ′

s +
ds

∑
j=1

vs, j(Xs, j). (14)

This is the best additive approximation to vs in the sense that if v′′s is another additive approximation to vs,

then

E[(v′′s (Xs,1,Xs,2, . . . ,Xs,ds
)− vs(Xs,1,Xs,2, . . . ,Xs,ds

))2]≥ E[(v′s(Xs,1,Xs,2, . . . ,Xs,ds
)− vs(Xs,1,Xs,2, . . . ,Xs,ds

))2].

Now define εs = vs(Xs,1,Xs,2, . . . ,Xs,ds
)−v′s(Xs,1,Xs,2, . . . ,Xs,ds

) as the residual of the additive approximation

v′s. Then the asymptotic variance in the CLT for the SS+LHS estimator θ̂ ′
SL,s(ns) for stratum s is σ ′2

SL,s =Var[εs].

In contrast, for the estimator θ̂ ′
SS,s(ns) of θs for stratum s using SS-alone (i.e., without LHS) from (5), the

CLT asymptotic variance is

θ ′
s(1−θ ′

s) = Var[εs]+
ds

∑
j=1

Var[vs, j(Xs, j)];

see Owen (1992) and Stein (1987). Hence, LHS removes the variability of the additive part of vs = v′s+εs.

In general, for an arbitrary output function vs, LHS can greatly reduce variance when vs is nearly an additive

function of its inputs.

Consistently estimating σ ′2
SL,s is nontrivial, so instead we consider using replicated LHS (rLHS), as

developed by Iman and Conover (1980) and Stein (1987). For each stratum s, rather than generating a

single LHS sample of size ns as in (12), we instead generate r ≥ 2 independent LHS samples, each of size

ms = ns/r, which we assume is integer-valued. (Stein 1987 suggests choosing r so that ms/ds is “large,”

and for our numerical results in Section 7, we set r = 10.) Specifically, for k = 1,2, . . . ,r, let (L
(k)
s,i ,C

(k)
s,i ),

i = 1,2, . . . ,ms, be an LHS sample of size ms as in (12) except with ms replacing ns in (10) and in each

random permutation πs, j of (1,2, . . . ,ms). Assume that the r LHS samples for k = 1,2, . . . ,r, are mutually

independent. For each k = 1,2, . . . ,r, let

θ̂
(k)
SL,s(ms) =

1

ms

ms

∑
i=1

I(L
(k)
s,i ≥C

(k)
s,i )

be an estimator of θ ′
s from replicate k, and define an estimator of θ using each replicate k across strata as

θ̂
(k)
SL (m) =

t

∑
s=1

λsθ̂
(k)
SL,s(ms)

for m = ∑t
s=1 ms = n/r. Now θ̂

(k)
SL (m), k = 1,2, . . . ,r, are mutually independent, so we can construct a UCB

by computing their sample mean and sample variance. Specifically, define the SS+rLHS (abbreviated SrL)

estimator of θ as the sample average

θ̄SrL(n,r) =
1

r

r

∑
k=1

θ̂
(k)
SL (m),

where n = ∑t
s=1 ns = ∑t

s=1 rms, and define the sample variance

σ̂ 2
SrL(n,r) =

1

r−1

r

∑
k=1

[θ̂
(k)
SL (m)− θ̄SrL(n,r)]

2.
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Let τr−1,β be the β -level critical point of a Student t random variable Tr−1 with r−1 degrees of freedom;

i.e., P(Tr−1 ≤ τr−1,β ) = β . Then the SS+rLHS β -level UCB for θ is

BSrL(n,r) = θ̄SrL(n,r)+ τr−1,β σ̂SrL(n,r)/
√

r, (15)

which satisfies (2) as n → ∞ with r ≥ 2 fixed. We then use BSrL(n,r) in the decision rule (3) to fulfill (1).

6 COMBINED SS, LHS, AND CONDITIONAL MONTE CARLO

We now want to combine SS, rLHS and conditional Monte Carlo to further increase statistical efficiency;

e.g., see Section V.4 of Asmussen and Glynn (2007) for an overview of CMC. CMC reduces sampling

error by analytically integrating out some of the variability. To apply CMC, we assume the following:

Assumption 2 For each stratum s = 1,2, . . . , t, there exist scalar-valued functions ws,1 : ℜds,1 → ℜ and

ws,2 : ℜds,2 → ℜ such that ds,1 +ds,2 = ds and the ℜ2-valued function ws in (7) satisfies

ws(Q
−1
s,1 (u1),Q

−1
s,2 (u2), . . . ,Q

−1
s,ds

(uds
)) = (ws,1(Q

−1
s,1 (u1),Q

−1
s,2 (u2), . . . ,Q

−1
ds,1

(uds,1
)),

ws,2(Q
−1
ds,1+1(uds,1+1),Q

−1
ds,1+2(uds,1+2), . . . ,Q

−1
ds,1+ds,2

(uds,1+ds,2
)))

for every (u1,u2, . . . ,uds
) ∈ [0,1]ds .

In other words, we can generate the load L′
s with function ws,1 and the capacity C′

s with function ws,2:

L′
s = ws,1(Q

−1
s,1 (U1),Q

−1
s,2 (U2), . . . ,Q

−1
s,ds,1

(Uds,1
)), (16)

C′
s = ws,2(Q

−1
s,ds,1+1(Uds,1+1),Q

−1
s,ds,1+2(Uds,1+2), . . . ,Q

−1
s,ds,1+ds,2

(Uds,1+ds,2
)), (17)

with U1,U2, . . . ,Uds
as i.i.d. unif[0,1] random numbers. Thus, L′

s and C′
s are independent because they

use disjoint sets of uniforms. In the RISMC application discussed in Section 1, it is reasonable to have

independent load and capacity since the load depends on the way in which the hypothesized accident

evolves, whereas the variability in manufacturing and material properties determine the capacity. Indeed,

the initial RISMC studies of Sherry, Gabor, and Hess (2013) and Dube, Sherry, Gabor, and Hess (2014)

assume the load and capacity are independent.

We further require the following:

Assumption 3 For each stratum s = 1,2, . . . , t, the marginal CDF G′
s of C′

s can be computed analytically

or numerically.

Because of the independence of L′
s and C′

s under Assumption 2, we have that

θ ′
s = E[I(L′

s ≥C′
s)] = E[E[I(L′

s ≥C′
s)|L′

s]] = E[P(C′
s ≤ L′

s|L′
s)] = E[G′

s(L
′
s)]. (18)

This suggests that rather than estimating θ ′
s by averaging copies of I(L′

s ≥ C′
s), we can instead average

copies of G′
s(L

′
s), which we can compute by Assumption 3; this is the basic idea of CMC. In more detail,

we generate an ms ×ds,1 grid of Vs,i, j using LHS as in (11) but with ms rows and ds,1 columns instead of

ns and ds, respectively. Applying the load function ws,1 from (16) to each row of the Vs,i, j leads to

L′
s,1 = ws,1(Q

−1
s,1 (Vs,1,1), Q−1

s,2 (Vs,1,2), . . . , Q−1
s,ds,1

(Vs,1,ds,1
)),

L′
s,2 = ws,1(Q

−1
s,1 (Vs,2,1), Q−1

s,2 (Vs,2,2), . . . , Q−1
s,ds,1

(Vs,2,ds,1
)),

...
...

...
...

. . .
...

L′
s,ms

= ws,1(Q
−1
s,1 (Vs,ms,1), Q−1

s,2 (Vs,ms,2), . . . , Q−1
s,ds,1

(Vs,ms,ds,1
)).

(19)

Hence, L′
s,i, i = 1,2, . . . ,ms, is an LHS sample of size ms of loads, where each L′

s,i ∼ F ′
s , the marginal CDF

of L′
s. The LHS+CMC estimator Ḡ′

s,ms
≡ (1/ms)∑

ms

i=1 G′
s(L

′
s,i) of θ ′

s is unbiased by (18).
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Moreover, a variance decomposition implies

Var[I(L′
s ≥C′

s)] = Var[E[I(L′
s ≥C′

s)|L′
s]]+E[Var[I(L′

s ≥C′
s)|L′

s]]≥ Var[E[I(L′
s ≥C′

s)|L′
s]] = Var[G′

s(L
′
s)]

since variance is always nonnegative. Thus, G′
s(L

′
s) has no greater variance than I(L′

s ≥ C′
s), so we are

guaranteed a variance reduction (compared to SS-alone) by applying CMC to estimate θ ′
s . Also, Avramidis

and Wilson (1996) show that the asymptotic variance of LHS+CMC is less than that for either LHS-alone

or CMC-alone. In addition, CMC has the further computational advantage that capacities do not need to be

generated. Another benefit of combining CMC with LHS is that an additive approximation for the output

Gs(L
′
s) can be more accurate than the one in (14) for the indicator output I(L′

s ≥C′
s) for LHS alone. As

a consequence, the combination of LHS and CMC may reduce variance significantly more than either by

itself, as we will see in our numerical results in Section 7.

To construct a UCB using combined SS, rLHS, and CMC, we replicate (19) r ≥ 2 times independently,

where on each replicate k = 1,2, . . . ,r, we have L
(k)
s,i , i = 1,2, . . . ,ms, as the LHS sample of size ms of loads,

and the r LHS samples across the r replicates are independent. For each replicate k = 1,2, . . . ,r, let

Ḡ
(k)
s,ms

= (1/ms)
ms

∑
i=1

G′
s(L

(k)
s,i ) (20)

for each scenario s = 1,2, . . . , t, and the SS+LHS+CMC (abbreviated SLC) estimator of θ from replicate

k is

θ̂
(k)
SLC(m) =

t

∑
s=1

λsḠ
(k)
s,ms

.

The θ̂
(k)
SLC(m), k = 1,2, . . . ,r, are mutually independent, and we compute their sample average and sample

variance as

θ̄SrLC(n,r) =
1

r

r

∑
k=1

θ̂
(k)
SLC(m),

σ̂2
SrLC(n,r) =

1

r−1

r

∑
k=1

[θ̂
(k)
SLC(m)− θ̄SrLC(n,r)]

2,

where SrLC denotes SS+rLHS+CMC. Then the SS+rLHS+CMC β -level UCB is

BSrLC(n,r) = θ̄SrLC(n,r)+ τr−1,β σ̂SrLC(n,r)/
√

r, (21)

which satisfies (2) as n → ∞ with r ≥ 2 fixed. Thus, using BSrLC(n,r) in the decision rule (3) fulfills (1).

7 NUMERICAL RESULTS

We now present numerical results from running simulation experiments for the setting of (16) and (17)

with the following model. We consider a RISMC analysis of a hypothesized station blackout (SBO) in an

NPP having the event tree in Figure 1, which is taken from Dube et al. (2014). The load represents the

peak cladding temperature (PCT) of the material surrounding the core during the SBO, and the capacity

is the temperature at which core damage occurs. In the tree, E1, E2, and E3 denote intermediate events

that determine how the SBO progresses; e.g., the lower (resp., upper) branch of E2 corresponds to a safety

relief valve being stuck open (resp., not being stuck open). From engineering analysis and prior experience,

the probabilities of the branches of each intermediate event are known, as depicted in the figure. The

intermediate events result in t = 4 scenarios, each corresponding to a path from left to right through the

event tree. Let Z be a random variable for the scenario observed, and we use Z as a stratification variable
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Scenario

1

3

4

2

Initiating
Event E E E

SBO 0.99938

6.2E-4

1.9E-3

0.9981

0.919

8.1E-2

1 2 3

Intermediate Events

Figure 1: An event tree for a station blackout.

for SS with each scenario as a stratum. We compute the probability λs of scenario s by multiplying the

branch probabilities of the intermediate events along the path; e.g., λ4 = 0.99938×0.0019.

As in Sherry, Gabor, and Hess (2013) and Dube et al. (2014), we will assume that load and capacity

are independent in each scenario, as in Assumption 2. Also, while the distribution of the load depends

on the scenario observed, the capacity’s distribution does not. These are reasonable assumptions since

the load depends on how the hypothesized SBO unfolds, whereas the capacity is determined by material

properties and manufacturing variability. Sherry, Gabor, and Hess (2013) and Dube et al. (2014) further

assume the capacity’s distribution is triangular with support [a,b] = [1800,2600] and mode c = 2200, and

we work with the same. Thus, the marginal CDF G of the capacity C is

G(x) =

{

(x−a)2/[(b−a)(c−a)] for a ≤ x ≤ c,
1−2(b− x)2/[(b−a)(c−a)] for c < x ≤ b,

(22)

with G(x) = 0 for x < a and G(x) = 1 for x > b, and we use G′
s = G in computing (20) for CMC.

While Sherry, Gabor, and Hess (2013) and Dube et al. (2014) use detailed nuclear-specific computer

codes to generate random loads for each stratum, we instead assume that loads follow lognormal distributions.

We chose lognormal distributions because histograms of loads, e.g., in Sherry, Gabor, and Hess (2013),

often exhibit heavy right tails. To generate an observation of the lognormal load L′
s for stratum s as

in (16), we exponentiated the sum of ds,1 independent normals. Specifically, for s = 1,2, . . . , t, and

j = 1,2, . . . ,ds,1, let Xs, j ∼ N(µs, j,σ
2
s, j) in (8), and set L′

s = exp(∑
ds,1

j=1 Xs, j) for the function ws,1 in (16),

where Xs, j, j = 1,2, . . . ,ds,1, are independent. Hence, L′
s has a lognormal distribution with parameters µs =

∑
ds,1

j=1 µs, j and σ 2
s =∑

ds,1

j=1 σ2
s, j; i.e., E[L′

s] = exp(µs+σ 2
s /2) and Var[L′

s] = exp(2µs+σ 2
s )[exp(σ 2

s )−1]. In our

experiments, we set ds,1 = 10 for each stratum s = 1,2, . . . , t. In stratum 1, the d1,1 independent normals X1, j,

j = 1,2, . . . ,d1,1, have monotonically increasing means µ1, j = 7.5 j/[d1,1(d1,1 +1)/2] and equal variances

(EV) σ 2
1, j = (0.02)2/d1,1. In stratum 2, the d2,1 independent normals have equal means (EM) µ2, j = 7.6/d2,1

and monotonically increasing variances σ 2
2, j = (0.03)2 j/[d2,1(d2,1+1)/2] for j = 1,2, . . . ,d2,1. In stratum 3,

the d3,1 independent normals have monotonically decreasing means µ3, j = 7.7(d3,1− j+1)/[d3,1(d3,1+1)/2]
and EV σ 2

3, j = (0.04)2/d3,1 for j = 1,2, . . . ,d3,1. In stratum 4, the d4,1 independent normals have EM

µ4, j = 7.8/d4,1 and monotonically decreasing variances σ 2
4, j = (0.05)2(d4,1 − j+1)/[d4,1(d4,1 +1)/2] for

j = 1,2, . . . ,d4,1. We thus have µ1 = 7.5, µ2 = 7.6, µ3 = 7.7, µ4 = 7.8, σ2
1 = (0.02)2, σ2

2 = (0.03)2,

σ 2
3 = (0.04)2, and σ 2

4 = (0.05)2. We then numerically computed the failure probability as θ = 0.0465 using

MATLAB (2015). In our requirement (1), we set θ0 = 0.05 and β = 0.95, so θ < θ0 for our particular

parameter values. In our experiments, we suppose that we do not know the value of θ and instead estimate

it via simulation, and we apply the decision rule (3) to try to determine with 95% confidence if θ < θ0.

Our experiments varied the total sample size n = 4q ×100 for q = 1,2,3,4. We applied the methods

SS alone; combined SS and CMC (SS+CMC), which we did not describe in the paper; SS+rLHS; and

SS+rLHS+CMC. For each method, we constructed a UCB, which is given by (6), (15), and (21) for
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SS-alone, SS+rLHS and SS+rLHS+CMC, respectively. We set the SS sampling weights γs = 0.25 for each

stratum s = 1,2,3,4. For rLHS, we used r = 10 replicated LHS samples within a stratum, so for each

stratum s, we generate an LHS sample of size ms = γsn/r for each replicate. For SS-alone and SS+CMC,

we do not use replications, so r = 1.

Table 1 contains the results from running 104 independent experiments for each method and total

sample size. The column labeled “AHW” gives the average half-width across the 104 experiments, where

the half-width is the difference between the UCB and the point estimate of θ . For a UCB B(n) and overall

sample size n, the coverage is the probability P(θ < B(n)). We noted throughout the paper that for each

method, its UCB satisfies (2), so the coverage converges to the nominal level β = 0.95 as n → ∞. But for

fixed n, the coverage may differ from β . We estimate the coverage as the fraction of the 104 experiments

in which θ < B(n). The probability of correct decision (PCD) is estimated as the fraction of the 104

experiments that the decision rule in (3) correctly determined that θ = 0.0465 < 0.05 = θ0. The column

“Sample Var” gives the sample variance of the point estimator of θ across the 104 experiments. For each

particular method x, the last column presents the variance-reduction factor (VRF), which for a given overall

sample size n is the ratio of the sample variance for SS-alone over the sample variance for method x.

Table 1: We compare SS, SS+CMC, SS+rLHS, SS+rLHS+CMC for different total sample sizes n in

terms of average half-width (AHW), coverage, probability of correct decision (PCD), sample variance, and

variance-reduction factor (VRF).

Method n r AHW Coverage PCD Sample Var VRF SS/x

SS 400 1 9.44E −03 0.868 0.336 4.21E −05 1.00

1600 1 5.08E −03 0.882 0.387 1.00E −05 1.00

6400 1 2.60E −03 0.919 0.701 2.54E −06 1.00

25600 1 1.31E −03 0.935 0.995 6.37E −07 1.00

SS+CMC 400 1 2.58E −03 0.949 0.727 2.42E −06 17.39

1600 1 1.29E −03 0.949 0.999 6.08E −07 16.47

6400 1 6.45E −04 0.949 1.000 1.57E −07 16.15

25600 1 3.22E −04 0.948 1.000 3.84E −08 16.59

SS+rLHS 400 10 7.58E −03 0.782 0.612 2.83E −05 1.49

1600 10 4.39E −03 0.785 0.402 6.68E −06 1.50

6400 10 2.21E −03 0.927 0.791 1.53E −06 1.66

25600 10 1.09E −03 0.935 0.999 3.80E −07 1.68

SS+rLHS+CMC 400 10 8.56E −04 0.937 1.000 2.38E −07 176.82

1600 10 3.42E −04 0.938 1.000 3.68E −08 271.86

6400 10 1.63E −04 0.943 1.000 8.36E −09 303.15

25600 10 8.08E −05 0.948 1.000 2.06E −09 309.68

We make the following observations about the results in Table 1. Each combined method SS+CMC,

SS+rLHS and SS+rLHS+CMC has smaller sample variances and smaller AHWs than SS alone for the

same n. The value of the VRF for a combined method corresponds to the approximate factor by which

the sample size for SS-alone would need to be increased to obtain an AHW that is comparable to that for

the combined method. For example, since the VRF for SS+rLHS is 1.68 for n = 25600, using SS-alone

would require about a 68% larger sample size to have roughly the same AHW as SS+rLHS. While this is

attractive, the VRFs for SS+CMC and SS+rLHS+CMC are much larger, with VRF for SS+CMC around 16

and the VRF for SS+rLHS+CMC over 300 for large n. Thus, SS-alone would require orders of magnitude

larger sample sizes than these combined CMC methods to achieve a comparable AHW.
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To explain the apparent reason that SS+rLHS+CMC so vastly outperforms SS, SS+CMC and SS+rLHS

in our experiments, recall that we previously noted in Section 5 that LHS can greatly reduce variance when

the output function vs is nearly an additive function of its inputs Xs, j; see the paragraph containing (14).

When CMC is not applied, as in (5) and (13), the output function I(L′
s ≥C′

s) is highly non-additive; thus,

SS+rLHS does not provide an immense improvement over SS-alone. But employing CMC corresponds to

the output function G(L′
s) (see (20) and (22)), so an additive approximation as in (14) seems to be much

more accurate, which leads to SS+rLHS+CMC having tremendously smaller variance than SS+CMC and

SS+rLHS.

For each method, coverage approaches β = 0.95 as n grows large, demonstrating the asymptotic

validity of our UCBs. Including CMC with other methods leads to improved coverage for each n; thus,

the asymptotics for the CLTs based on combining CMC with other approaches seem to require smaller

sample sizes to hold.

As n grows large, the PCD for each method approaches 1, as expected. But for a fixed n, all of the

combined methods have higher PCD than SS-alone, demonstrating the benefits of the smaller variances

with combinations of VRTs.

8 CONCLUDING REMARKS

We presented various methods for estimating a failure probability θ = P(L ≥C), where L represents a load

and C denotes the capacity, both random. The approaches we considered are simple random sampling;

stratified sampling; combined SS and replicated Latin hypercube sampling; and combined SS, rLHS and

conditional Monte Carlo. For each we showed how to construct an asymptotically valid upper confidence

bound for θ .

We also presented numerical results for the RISMC framework for safety analyses of nuclear power

plants. Using a stylized version of a problem considered in Dube et al. (2014), we showed that the combined

methods can greatly outperform SS-alone, in terms of variance, coverage and probability of correct decision.

Sherry, Gabor, and Hess (2013) and Dube et al. (2014) carry out an analysis with SS+LHS using nuclear-

specific computer codes, but these papers do not consider the construction of UCBs, as needed for (1) to

account for statistical variability. Nor did these studies apply CMC, which our experiments showed can

further greatly reduce variance. We plan on testing our combined methods using nuclear-specific computer

codes.

Our UCBs using LHS employ replicated LHS with r ≥ 2 independent LHS samples, which leads to a

slight loss in statistical efficiency compared to single-sample LHS (i.e., without replicating). Owen (1992)

develops single-sample estimators of the LHS asymptotic variance, and we plan to further adapt this idea

for our combined VRTs using LHS.
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