
Proceedings of the 2015 Winter Simulation Conference

L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds.

THE MNO–PQRS POISSON POINT PROCESS: GENERATING THE NEXT EVENT TIME

Huifen Chen

Department of Industrial and Systems Engineering

Chung-Yuan University

Chung-Li, 320 Taoyuan, TAIWAN

Bruce Schmeiser

School of Industrial Engineering

Purdue University

West Lafayette, IN 47907, USA

ABSTRACT

We discuss the problem of generating the time of the next event of a nonhomogeneous Poisson process

with an MNO-PQRS rate function. A PQRS function is piecewise quadratic. At every time point, an

MNO-PQRS rate function is the maximum of zero and a piecewise-quadratic function. We take as given

the three quadratic coefficients of every time interval. In addition, we take as given the time of the previous

event. The problem is then to generate the time of the next event. We review thinning algorithms, but focus

on presenting an efficient inverse-transformation algorithm that converts a single pseudorandom number

to the next-event time.

1 INTRODUCTION

Rate functions arise in probability models of stochastic systems, often to describe the rate of arrivals to

the system. More generally, an event can be any change of state that occurs at a point in time. We use the

term time throughout, even though the parameter of interest might be space. In general a rate function is

nonnegative and its integral from time t1 to time t2 is the expected number of events in the interval (t1, t2).
Because the integral at a time point is zero, the probability of an event at any time t is zero; nevertheless,

an event might occur at any time t for which the rate function is positive.

We assume that the point process of interest is a nonhomogeneous Poisson process. Therefore, the rate

function’s integral between two adjacent events is exponential with a mean of one. Further, these integrals

are independent of each other.

We further assume the particular form of Poisson process rate function, MNO–PQRS, developed in

Chen and Schmeiser (2014, 2015) and reviewed in Section 2. Their purpose in creating the MNO–PQRS rate

function, which we refer to as τ , is to replace a specified piecewise-constant rate function with something

smoother subject to the mean constraint; that is, maintaining the fundamental property that the expected

number of events is unchanged for every interval. In particular, PQRS yields a piecewise-quadratic fit that

might sometimes be negative and the MNO–PQRS rate function is the maximum of zero and a modified

PQRS fit.

Figure 1 is an example based on 24 hours of traffic-count data from New York State Department of

Transportation (2015) for Tuesday, August 30, 2011, Station 118781, Direction 7, Lane 1. The counts are

for ninety-six 15-minute intervals from midnight to midnight. Superimposed over the piecewise-constant

rate function from the count data is the corresponding MNO–PQRS rate function. Middle-of-the-night

counts are low, so the resulting PQRS fit is sometimes negative; therefore the MNO–PQRS rate function

has some zero rates for parts of some time intervals.

Because the count data fluctuate, some smoothing maybe would be reasonable; for example, pairs of

intervals could be combined to create 48 half-hour intervals. Any such preliminary data analysis, though,

is application dependent. The piecewise-quadratic smoothing of MNO–PQRS, which maintains the mean

constraint of each time interval, simply smooths while mimicking the given count-data fluctuations. In

575978-1-4673-9743-8/15/$31.00 ©2015 IEEE

Chen and Schmeiser

time

rate

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90

Figure 1: New York State Department of Transportation traffic-count data and the corresponding MNO–

PQRS rate function.

addition, MNO–PQRS assumes that all time intervals are length one and starting time is zero; the user

needs to make whatever time transformation is necessary, in this case time t = 0 being midnight, time

t = 48 being noon, and t = 96 being the next midnight.

Our purpose here is to develop efficient and exact process-generation logic for MNO–PQRS rate

functions. In Section 3 we develop inverse-transformation logic that converts a sequence of independent

uniform (0,1) random numbers into a sequence of event times t0, t1, t2, . . . from the Poisson process with

specified MNO–PQRS rate function.

The rest of this paper is organized as follows. Section 2 reviews MNO–PQRS rate functions. Section 3

discusses process generation for Poisson processes in general and explains why we don’t pursue thinning.

Section 4 contains our inverse-transformation logic for generating the next event time for MNO–PQRS

rate functions. Section 5 is a discussion.

2 THE MNO–PQRS RATE FUNCTION

The PQRS (Piecewise-Quadratic Rate Smoothing) function is defined on the interval [0,k], partitioned into

intervals (i−1, i], for i = 1,2, . . . ,k. Each interval’s rate function is a quadratic function.

For times x in the unit interval (0,1], define the quadratic function to be

q(x : a,b,c) = ax2 +bx+ c.

The PQRS function is then

τ0(t : a,b,c) = q(x : ai,bi,ci),

where j = ⌊t/k⌋ is the number of completed cycles, i = max{1,⌈t − jk⌉} is the interval number, and

x = t− jk− i+1 is the fractional time within interval i (except that the time intervals are closed on the right,

so x = 1 when t is integer). The function τ0 then has 3k parameters: a = (a1,a2, . . . ,ak), b = (b1,b2, . . . ,bk),
and c = (c1,c2, . . . ,ck).

576

Chen and Schmeiser

The PQRS logic in Chen and Schmeiser (2014) uses O(k2) computation and O(k) storage to choose

the parameters (a,b,c) to make τ continuous, to make its first derivatives continuous, and to maintain a

specified expected number of events for each interval. If τ0(t : a,b,c) is nonnegative for all t ∈ [0,k], τ = τ0

is returned as the smoothed rate function.

If, however, τ0(t : a,b,c) is not nonnegative everywhere, the PQRS function is replaced with the

maximum of zero and a modified piecewise-quadratic function. That is, we replace τ0 with

τ+(t : a+,b+,c+) = max{0,q(x : a+i ,b
+
i ,c

+
i)),

where j, i, and x are defined above. The parameters (a+,b+,c+) are computed using MNO (max nonnegativity

ordering) logic, which maintains the expected number of events and the other conditions to the extent

possible. Computation and storage are O(k). In this case, τ = τ+ is the MNO–PQRS rate function.

Chen and Schmeiser (2014) consider only the cyclic context, where for times t > k the rate is τ(t− jk),
where j is the number of completed cycles, as defined above. Chen and Schmeiser (2015) generalize

to consider also four finite-horizon contexts, for which always t ≤ k. For process generation, the only

difference is that in the finite-horizon context no event is generated after time k.

3 POISSON-PROCESS GENERATION

Although nothing about the rate function τ is specific to Poisson processes, they are the motivating application

of MNO–PQRS. We discuss here the problem of generating events from an MNO–PQRS Poisson process.

Generation algorithms are available for other point processes. For nonhomogeneous non-Poisson

processes with a specified rate function and an asymptotic mean-to-variance (dispersion) ratio, Gerhardt

and Nelson (2009) propose an inverse-transformation method; Liu (2013) proposes a combination of

inverse-transformation and thinning methods. Saltzman et al. (2012) discuss multivariate nonhomogeneous

Poisson processes.

Our approach is to assume that the previous event time, say tp, is known and that the problem is to

generate the next event time, say t. In addition to tp, we are given the MNO–PQRS rate function τ and an

infinite sequence of independent uniform (0,1) random numbers, u1,u2, Two classic approaches (e.g.,

Schmeiser 1980) are available: thinning and the inverse transformation.

3.1 Thinning

Thinning algorithms (e.g., Lewis and Shedler 1979b) from the rate function τ are easy to implement.

The design issue is the choice of a majorizing rate function τ that satisfies τ(t) ≥ τ(t) for every time t.

Algorithm efficiency depends upon two characteristics of τ: (1) keeping the integral of τ not much larger

than the integral of τ and (2) being able to easily generate event times from τ . A simple choice would

be the constant rate function τ(t) = max{τ(t)}. The thinning algorithm, given the previous event time t0,

generates the next event time t1 from τ . The time t1 is returned as the next event time, T , from τ with

probability τ(t1)/τ(t1); otherwise the logic is repeated with t0 replaced by t1.

A disadvantage of thinning algorithms is that, to generate the next event time, they use a random

number of random numbers. Variance-reduction ideas such as common random numbers then do not work

well. More fundamental, however, is that the expected number of random numbers, can be arbitrarily

large. Choosing a more-efficient majorizing function, such as the piecewise-constant function that is

the maximum of each interval’s rates, is tempting. But still the expected number of random numbers

can be arbitrarily large. Still more-efficient majorizing functions could be chosen, such as using multiple

piecewise-linear rates (analogous to Nicol and Leemis 2014a and 2014b). Despite the growing complication

of fitting the more-efficient majorizing function, for a fixed number of linear pieces the expected number

of random numbers remains unbounded over the set of all MNO–PQRS rate functions (although for any

given MNO-PQRS rate function the expected number of random numbers is finite).

577

Chen and Schmeiser

3.2 Inverse Transformation

In contrast, inverse-transformation algorithms generate the next event time using exactly one random

number. Klein and Roberts (1984) discuss the Poisson process inverse transformation with piecewise-linear

rate functions. Chen and Schmeiser (1992) do the same for trigonometric rate functions. Lewis and Shedler

(1976, 1979a) do the same for two specific rate function forms. The inverse transformation is based on the

general result that the area
∫ T

t0
τ(t)dt between adjacent Poisson event times has an exponential distribution

with mean one, independent of previous event times. Therefore, the inverse transformation algorithms

generate an exponential random variate with mean one, typically with Y =− log(1−U) where U ≡U(0,1).

They then do whatever is necessary to solve for the next event time T such that
∫ T

t0
τ(t)dt = Y . In our

application, the integral is a cubic equation, which can be solved either analytically (Abramowitz and

Stegun, 1972) or with Newton search. The piecewise bookkeeping is similar to that used in Klein and

Roberts (1984).

4 MNO–PQRS INVERSE TRANSFORMATION

Our inverse-transformation logic is a bit more general than for MNO-PQRS Poisson process rate functions.

In particular, we don’t require that the rate function is continuous or differentiable at the intervals’ end

points.

We discuss our logic in five parts. Section 4.1 is about partitioning each interval into segments with

zero rates and positive rates. Section 4.2 is about integrating the positive-rate interval segments. Section

4.3 is about numerically inverting the cubic cumulative rate function. Section 4.4 contains an example

driver program. Finally Section 4.5 contains the routine that generates the next event time.

Unless mentioned separately, in the pseudocodes all variables can be thought of as double-precision

variables. Alternatively, variables that begin with the letters i, j, k, l, m, and n can be thought of integers.

4.1 Partitioning

Fundamental to dealing with the MNO–PQRS rate function for interval i is the need to know where the τ
is zero and where it is positive. Our solution is the routine qpartit, which partitions the unit interval with

three points, 0 ≤ α ≤ β ≤ γ ≤ 1. As before, let x denote the fractional part of t. The values of (α,β ,γ)
are chosen so that qi(x : a+i ,b

+
i ,c

+
i) is positive in the intervals (α,β) and (γ,1) and zero in the intervals

(0,α) and (β ,γ). The routine qpartit is also needed for the MNO fitting logic.

provided: (a, b, c), the quadratic coefficients

compute: (alpha, beta, gamma), the segment boundaries

routine qpartit:

alpha = 0

beta = 0

gamma = 1

if (a = 0) then

if (b = 0) then

if (c > 0) beta = 1

else

root = - c / b

if (b < 0) then

beta = min(1, root)

else

gamma = max(0, root)

endif

578

Chen and Schmeiser

endif

else

char = bˆ2 - 4*a*c

if (char < 0) then

if (a > 0) beta = 1

else

schar = sqrt(char)

root1 = (- b - schar) / (2*a)

root2 = (- b + schar) / (2*a)

beta = max(0, min(1, root1))

if (a < 0) then

alpha = max(0, min(1, root2))

else

gamma = max(0, min(1, root2))

endif

endif

endif

return alpha, beta, gamma

4.2 Integration

Each interval has zero, one, or two subintervals of positive rates. We refer to the integral of (α,β) as the

left area and the integral of (γ,1) as the right area. Either or both can be zero. Their sum is the interval’s

mean. Any positive area between the lower bound and upper bound is computed with the routine qarea

provided: (a, b, c), the quadratic coefficients

provided: (boundl, boundu), the lower and upper bounds

compute: qarea, the area between the bounds

routine qarea:

if (boundu <= boundl) then

qarea = 0

else

qarea = (a/3) * (bounduˆ3 - boundlˆ3)

+ (b/2) * (bounduˆ2 - boundlˆ2)

+ c * (boundu - boundl)

endif

return qarea

4.3 Cubic Inversion

The intervals with positive quadratic rates have associated cubic cumulative rates. For a specified interval

with quadratic coefficients (a,b,c) and a specified area v, the routine cubic1 contains inversion logic to

compute the time x so that
∫ x

0 q(y : a,b,c)dy = v. The logic assumes that a lower bound and upper bound

are known; these values are easily available from α , β , and γ . Given these bounds, the root x is unique.

There are four cases for the cumulative rate function: cubic (a 6= 0), quadratic (a = 0,b 6= 0), linear

(a = b = 0,c 6= 0), and zero (a = b = c = 0.) The last three are trivial, but included here for completeness.

The cubic case has multiple analytical solutions; a classic reference is Abramowitz and Stegun (1972).

Because in the general cubic case there are three roots, the logic becomes complicated. We use Newton’s

579

Chen and Schmeiser

method with convergence guaranteed with bisection search (Conte and deBoor 1980), which is simpler to

implement in our situation, because we know that there is a single root between the bounds.

provided: (a, b, c), the quadratic coefficients

provided: v, the random area

provided: (boundl, boundu), bounds on the value of x

compute: x, the fractional time

routine cubic1:

tolerance = 10ˆ(-12)

if (a != 0) then

comment: rewrite as f(t) = tˆ3 + a2*tˆ2 + a1*t + a0 = 0.

a2 = 3*b / (2*a)

a1 = 3*c / a

a0 = -3*v / a

comment: newton’s method

f = 2 * tolerance

x = (boundl + boundu) / 2

do while (abs(f) > tolerance)

f = x * (x *(x + a2) + a1) + a0

d = x * (3 * x + 2 * a2) + a1

xnewton = x - (f / d)

if (xnewton < boundl) then

boundu = x

x = (x + boundl) / 2

elseif (xnewton > boundu) then

boundl = x

x = (x + boundu) / 2

else

x = xnewton

endif

enddo

elseif (b != 0) then

cdb = c / b

x = -cdb + sqrt(cdbˆ2 + (2*v / b))

elseif (c != 0) then

x = v / c

else

x = 1

endif

return x

4.4 Driver Program

An illustrative driver program inputs the number of intervals k, the k-dimensional MNO-PQRS rate vectors

a, b, and c. In addition, its random-number generator is initialized with a seed value and the number of

replications is specified. The first event time is set to t = 0. The random-generation routine poisrvg is called

repeatedly, each time returning the next event time t. This driver program is replaced with user-written

logic for the user’s application.

driver program:

580

Chen and Schmeiser

print: Each interval is length one, starting at zero.

print: Enter number of intervals.

input: k

comment: input 1xk vectors a, b, c

do i=1,k

print: Enter (a, b, c) for interval i.

input: a(i), b(i), c(i)

enddo

print: Enter random-number seed and number of event times.

input: seed, nreps

t = 0

do irep=1,nreps

call poisrvg(k, a, b, c, seed, t)

print: t

enddo

stop

4.5 Generation

We are now ready to discuss the generation routine poisrvg, which is called from some higher-level

program within a simulation. The routine poisrvg requires qpartit, qarea, and cubic1, all discussed above.

In addition, we require a uniform(0,1) random-number generator, which we refer to as rngenerator; in our

implementation we used the generator of L’Ecuyer (1999).

As with all inversion-transformation logic, for a single random number u, the cumulative distribution

function (cdf) P(T ≤ t) = u is inverted to find the value of t. For any Poisson process, the inversion

determines the time t that has an exponential (with mean one) area Y between it and the previous event

time, tp.

To avoid unnecessary re-computation, the logical variable isaved(i) is initially false for every interval i.

Whenever an intervals left and right areas have been computed, they are saved and isaved(i) is set to true.

This strategy allows the code to be used for multiple rate functions, since nothing is saved between calls

to poisrvg. If only one rate function is being used, the initialization of the isaved vector can be omitted.

The logic begins by generating the exponential area y. Then the number of completed cycles j , the

interval number, and the fractional time x of tp is computed; if the left and right areas, and the bounds

of positive rates, of this interval are unknown, they are computed. Always, then, the areas to the left

and right of x are computed, since the area to the left is in the past. Computing the next event time, t,

proceeds interval by interval, subtracting the interval’s mean from y and incrementing j whenever another

cycle is completed, until the interval i containing t is found. Before calling cubic1, the area to the left of

x is added to y. The routine cubic1 then returns the fractional time of t, from which the next event time

t = (j ∗ k)+(i−1)+ x is computed.

required routines: qarea, qpartit, cubic1, nrgenerator

provided: k, number of time intervals

provided: (a,b,c), 1xk vectors of quadratic coefficients

provided: seed, random-number seed

provided: t, the previous event time

compute: seed, updated random-number seed

compute: t, the next event time

comment: intermediate variables...

comment: j, the number of completed cycles (j=0,1,2,...)

581

Chen and Schmeiser

comment: i, the interval in which t lies (i=1,2,...,k)

comment: x, the fractional time of t in interval i

comment: area(i), the area of interval i

comment: area1(i), the left-most positive area of interval i

comment: start1(i), the left bound of left-most positive area

comment: end1(i), the right bound of left-most positive area

comment: start2(i), the left bound of right-most positive area

comment: isaved(i), "true" indicates interval-i constants computed

routine poisrvg:

define 1xk arrays: a, b, c, area, area1, start1, end1, start2

define 1xk logical array: isaved

comment: set isaved to indicate that no interval is initialized.

do i=1,k

isaved(i) = "false"

enddo

comment: generate a mean-one exponential random variate, y

u = rngenerator(seed)

y = - log(1-u)

comment: for previous time t, compute the location in the cycle

j = t / k

i = max(1, ceiling(t - j*k))

x = t - j*k - (i - 1)

comment: compute constants for interval i (if first time)

if (isaved(i) = "false") then

call qpartit(a(i), b(i), c(i), start1(i), end1(i), start2(i))

area1(i) = qarea(a(i), b(i), c(i), start1(i), end1(i))

area(i) = area1(i) + qarea(a(i), b(i), c(i), start2(i), 1)

isaved(i) = "true"

endif

comment: compute the areas to the left and right of x.

if (x < start2(i)) then

sleft = qarea(a(i), b(i), c(i), start1(i), x)

else

sleft = area1(i) + qarea(a(i), b(i), c(i), start2(i), x)

endif

sright = area(i) - sleft

comment: compute the next time, t

if (y <= sright) then

comment: in the same interval

y = sleft + y

else

comment: in a future interval

sarea = sright

do while (y > sarea)

y = y - sarea

i = i + 1

582

Chen and Schmeiser

if (i > k) then

j = j + 1

i = 1

endif

if (isaved(i) = "false") then

call qpartit(a(i),b(i),c(i), start1(i),end1(i),start2(i))

area1(i) = qarea(a(i), b(i), c(i), start1(i), end1(i))

area(i) = area1(i) + qarea(a(i),b(i),c(i), start2(i),1)

isaved(i) = "true"

endif

sarea = area(i)

enddo

endif

comment: to ignore negative rates, add back negative area

if (y < area1(i)) then

y = y + qarea(a(i), b(i), c(i), 0, start1(i))

boundl = start1(i)

boundu = end1(i)

else

y = y - area1(i) + qarea(a(i), b(i), c(i), 0, start2(i))

boundl = start2(i)

boundu = 1

endif

comment: find the fractional time x and return the next time, t

call cubic1(a(i), b(i), c(i), y, boundl, boundu, x)

t = (j * k) + (i - 1) + x

return seed, t

5 DISCUSSION

A disadvantage of the MNO-PQRS method of smoothing piecewise-constant rate functions is that generating

the next event time is more difficult than for piecewise-constant and piecewise-linear rate functions. The

generation logic developed here is conceptually straightforward, being an implementation of the usual

inverse-transformation logic.

Nevertheless, seeking a balance of storage efficiency, computational efficiency, and coding simplicity

is a challenge. The logic could be written to compute and save all intermediate variables as a preliminary

step. The value of each interval’s integral could be made available. In the cyclic context when the rates

are small, code that could jump ahead to future cycles would be efficient.

The routine poisrvg illustrates that MNO–PQRS random-process generation is reasonable, addressing

the concern that smoothing rate functions via MNO–PQRS results in slower random-process generation.

Piecewise-constant, piecewise-linear, and piecewise-quadratic rate functions have the same order of random-

process computation (in terms of the number of intervals). Both piecewise-linear and piecewise-quadratic

logics, however, need to determine interval segments with zero rates. In addition, the inversion logic is

more difficult as the order of the rate function increases.

ACKNOWLEDGMENTS

The research was aided by Chung-Yuan University, Taiwan, which supported the second author as an

adjunct chaired professor. We thank two referees for comments that improved presentation.

583

Chen and Schmeiser

REFERENCES

Abramowitz, M. and Stegun, I.A. 1972. Handbook of Mathematical Functions: with Formulas, Graphs,

and Mathematical Tables (AMS55). Dover Publications, Inc., New York.

Chen, H. and Schmeiser, B.W. 1992. Simulation of Poisson Processes with Trigonometric Rates. Proceedings

of the 1992 Winter Simulation Conference, J.J. Swain, D. Goldsman, R.C. Crain, and J.R. Wilson, eds.,

Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc., 609–617.

Chen, H. and Schmeiser, B.W. 2014. Piecewise-Quadratic Rate Functions: The Cyclic Context. Proceedings

of the 2014 Winter Simulation Conference, A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley,

and J. A. Miller, eds., Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.,

486–497.

Chen, H. and Schmeiser, B.W. 2015. MNO–PQRS: Max Nonnegativity Ordering—Piecewise-Quadratic

Rate Smoothing. Working paper. Available by contacting the first author with email address

huifen@cycu.edu.tw.

Conte, S.D. and deBoor, C. 1980. Elementary Numerical Analysis: An Algorithmic Approach. New York,

NY: McGraw-Hill, Inc.

Gerhardt, I. and Nelson, B.L. 2009. Transforming Renewal Processes for Simulation of Nonstationary

Arrival Processes. INFORMS Journal on Computing 21(4): 630–640.

Klein, R.W. and Roberts, S.D. 1984. A Time-Varying Poisson Arrival Process Generator. Simulation 42:

193–195.

L’Ecuyer, P. 1999. Good parameters and implementations for combined multiple recursive random number

generators. Operations Research 47, 159–164.

Lewis, P.A.W. and Shedler, G.S. 1976. Simulation of non-homogeneous Poisson processes with log-linear

rate function. Biometrika 63, 501–505.

Lewis, P.A.W. and Shedler, G.S. 1979a. Simulation of nonhomogeneous Poisson processes with degree-two

exponential polynomial rate function. Operations Research 27(5): 1026–1040.

Lewis, P.A.W. and Shedler, G.S. 1979b. Simulation of nonhomogeneous Poisson processes by thinning.

Naval Logistics Research Quarterly 26(3): 403–413.

Liu, R. 2013. Modeling and Simulation of Nonstationary Non-Poisson Processes. Ph.D. Dissertation,

Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University.

New York State Department of Transportation. 2015. Available via

https://www.dot.ny.gov/divisions/engineering/technical-services/highway-data-services/hdsb/albany [ac-

cessed June 27, 2015].

Nicol, D.M. and Leemis, L.M. 2014a. Continuous Piecewise-Linear Intensity Function Estimation for

Nonhomogeneous Poisson Process Count Data. Technical Report, Department of Mathematics, The

College of William & Mary.

Nicol, D.M. and Leemis, L.M. 2014b. A Continuous Piecewise-Linear NHPP Intensity Function Estimator.

Proceedings of the 2014 Winter Simulation Conference, A. Tolk, S.D. Diallo, I.O. Ryzhov, L. Yilmaz,

S. Buckley, and J.A. Miller, eds., Piscataway, New Jersey: Institute of Electrical and Electronics

Engineers, Inc., 498–509.

Saltzman, E.A., Drew, J.H., Leemis, L.M. and Henderson, S.G. 2012. Simulating Multivariate Nonhomoge-

neous Poisson Processes Using Projections. ACM Transactions on Modeling and Computer Simulation

(TOMACS) 22(3): 1–13.

Schmeiser, B.W. 1980. Random Variate Generation: A Survey. Proceedings of the 1980 Winter Simulation

Conference, T. I. Oren, C.M. Shub, and P. F. Roth, eds., Piscataway, New Jersey: Institute of Electrical

and Electronics Engineers, Inc., 79–104.

584

https://www.dot.ny.gov/divisions/engineering/technical-services/highway-data-services/hdsb/albany

Chen and Schmeiser

AUTHOR BIOGRAPHIES

HUIFEN CHEN is a Professor in the Department of Industrial and Systems Engineering at Chung-Yuan

University, Taiwan. She completed her Ph.D. in Industrial Engineering at Purdue University in 1994 and

master in statistics at Purdue University in 1990. Her research interests include statistical process control,

public health, and stochastic root finding. Her email address is huifen@cycu.edu.tw.

BRUCE SCHMEISER is a Professor Emeritus in the School of Industrial Engineering at Purdue University.

His research interests center on developing methods for better simulation experiments. He is a fellow of

INFORMS and IIE, as well as recipient of the Informs Simulation Society’s 2014 Lifetime Professional

Achievement Award. A long-time participant in the WSC, he served as the 1983 Program Chair and the

1988–1990 President of the Board of Directors. His e-mail address is bruceschmeiser@gmail.com.

585

mailto://huifen@cycu.edu.tw
mailto://bruceschmeiser@gmail.com

