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ABSTRACT

Since the 1950s, nonoverlapping batch means (NBM) has been a basis for confidence-interval procedures

(CIPs) for the mean of a steady-state time series. In 1985, overlapping batch means (OBM) was introduced

as an alternative to NBM for estimating the standard error of the sample mean. Despite OBM’s inherent

efficiency, because the OBM statistic does not approach normality via the chi-squared distribution, no

OBM CIP was introduced. We define two fixed-sample-size OBM CIPs. OBM1 is based on the result

that asymptotically OBM has half again as many degrees of freedom as NBM. OBM2 does the same, but

increases degrees of freedom. We argue that OBM’s sampling distribution has skewness and kurtosis closer

to normal than the chi-squared distribution. We show experimentally that for AR(1) processes the OBM

CIPs perform better than NBM CIPs in terms of classic criteria and the VAMP1RE criterion. Finally, we

introduce the concept of VAMP1RE-optimal batch sizes.

1 INTRODUCTION

Output analysis addresses the problem of determining and reporting the precision of point estimates of

performance measures that arise when probability models are analyzed with Monte Carlo simulation. Since

Mechanic and and McKay (1966a, 1966b) through Alexopoulos et al. (2014), confidence intervals have

been the paradigm of simulation output analysis. From the beginning through Law and Kelton (1984), the

focus was on fixed sample sizes and the performance measure was the mean. More recently, the focus has

been on sequential procedures and other performance measures. We return to fixed sample sizes and the

mean to discuss the use of overlapping batch means (OBM) as the basis for creating confidence intervals.

In Section 2, we review simulation output analysis, in Section 3 we state two closely related OBM

confidence-interval procedures (CIPs), and in Section 4 we provide Monte Carlo simulation results of

AR(1) data processes to show that OBM CIPs compare favorably to the NBM CIPs when using the same

batch size. We conclude with the concept the VAMP1RE-optimal batch size, an idea that arose during our

NBM/OBM Monte Carlo experiments.

2 SIMULATION OUTPUT ANALYSIS: REVIEW

A classic use of stochastic simulation is to estimate the mean µ of a time series (Y1,Y2, . . . ,Yn) from a

steady-state stochastic process. After possibly deleting some initial data to avoid initialization bias, the

point estimator of µ is the sample mean Y = n−1 ∑
n
i=1Yi. Asymptotically (as n goes to infinity) Y is

normally distributed with mean µ and variance inversely proportional to n. More precisely, there is a

process parameter τ that is the limiting value of nvar(Y ). The limiting value is τ = γ0σ2; here σ2 is the

variance of any one observation Yi and γ0 = 1+2∑
∞
h=1 ρh is the asymptotic sum of all lag-h autocorrelations.

Because the value of τ is seldom known, using only the data (Y1,Y2, . . . ,Yn) to estimate τ is at the

heart of simulation output analysis for µ . For iid data that are normally distributed, the autocorrelations
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are zero, γ0 = 1, and S2 = (n−1)−1 ∑
n
i=1(Yi − Ȳ )2 estimates σ2. Deviations from the assumptions opens

the research world of simulation output analysis.

2.1 Reporting Precision

Having (somehow) an estimate, τ̂ , of τ , one has an estimate of the standard error of Y . In particular,
ˆste(Y ) =

√

τ̂/n. This value can be used in its own right to report the precision of an observed Y . Estimating

the standard error, rather than developing confidence interval procedures (CIPs), has been followed in the

Purdue dissertations Song (1988), Pedrosa (1994), and Yeh (2002); Song and Schmeiser (2009, 2011)

discuss using the estimated standard error to determine the number of digits to report as well as how to

format them.

The more-traditional approach to simulation output analysis is to calculate a confidence interval for

the performance measure of interest, in our case the mean µ . With few exceptions, the confidence interval

for the mean is

Y ± tν ;α

√

τ̂/n, (1)

where the interval is designed to cover the mean µ with nominal probability 1−α . For independent

and identically distributed (iid) data, the coefficient tν ;α provides good (that is, actual matches nominal)

coverage when it is the α quantile of the Student T distribution with ν degrees of freedom. Because data

are often not independent and often not normally distributed, many CIPs for the mean have been published.

They usually differ in their choice of the estimator τ̂ and the corresponding choice of the value of ν .

2.2 Comparing CIPs

Traditionally multiple CIPs are compared by considering multiple data processes and multiple nominal

probabilities α . In addition to reporting the relationship between actual and nominal coverage probabilities,

the expected interval half widths and standard deviations of the half widths are compared to those of other

CIPs.

Schmeiser and Yeh (2002) and Yeh and Schmeiser (2015) advocate a single criterion to compare CIPs.

The criterion, which we now refer to as VAMP1RE, is E[(∆−Ψ)2], where Ψ is Schruben’s coverage value

for the CIP of interest and ∆ is the coverage value of an ideal CIP. Here our ideal CIP uses τ̂ = τ and

sets ν to infinity. The VAMP1RE criterion combines a CIPs lack of validity (distance between actual and

nominal coverage probabilities) and inability to mimic (the ideal CIP); small VAMP1RE values are good.

In our Monte Carlo experiments below, we report both traditional measures and VAMP1RE values.

2.3 Estimating τ

We review two methods for estimating τ: NBM and OBM. They are the foundation upon which the NBM

and OBM CIPs are built.

The first method, NBM, partitions the data into k = ⌊n/m⌋ batches, where m is the batch size and

Y j = m−1
jm

∑
i=( j−1)m+1

Yi (2)

is the jth batch mean. Typically n is much larger than m, so almost all of the n observations lie in one of

the k batches;we ignore the remaining few. The NBM estimator of τ is

τ̂nbm = d−1
nbm

k

∑
j=1

(Y j −Y )2 (3)

where dnbm = k(k− 1). The NBM estimator assumes that when m grows large the batch means are iid

and normally distributed. Then, after scaling, the distribution of τ̂nbm is chi-squared with ν0 = (n/m)−1
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degrees of freedom. The NBM estimator replaces the original n observations with the k batch means,

estimates the variance of the sample mean as the variance of the batch means divided by k, as is appropriate

if the batch means are independent.

The second method, OBM, is analogous, but it uses all n−m+1 possible batches of m observations,

so now let

Y j = m−1
j+m−1

∑
i= j

Yi (4)

denote the jth batch mean. The OBM estimator of τ is then

τ̂obm = d−1
obm

n−m+1

∑
j=1

(Y j −Y )2 (5)

where dobm = (n−m)(n−m+1)/m. In Meketon and Schmeiser (1985), where OBM was introduced (but

with a slightly different denominator), confidence interval procedures are not discussed.

2.4 Thoughts on OBM CIPs

The reason that Meketon and Schmeiser (1985), and researchers since, have not considered CIPs based on

the OBM estimator of the sample mean is that (for m > 1) the overlapping batches are highly dependent;

therefore, the OBM estimator goes to normality on a path that does not follow the chi-squared distribution

with increasing degrees of freedom. The question that we address is what happens if an OBM-based CIP

assumes, falsely, that the chi-squared distribution is appropriate.

We begin with a quick analysis of the relationship between the NBM and OBM estimators. For now,

ignore end effects. The key is that, for batch size m, the OBM estimator τ̂obm is the simple average of m

identically distributed NBM estimators, τ̂nbm, with the ith NBM estimator beginning with observation i.

Because the overlapping batch means are dependent, the m NMB estimators are dependent with positive

correlation. Based on this relationship, what can we say about the sampling distribution of the OBM

estimator, τ̂obm?

First, the expected values of τ̂obm and τ̂nbm are the same, since dependence does not affect the expected

values of sums; that the m NBM estimators are dependent is irrelevant.

Second, because of the central limit theorem, the shape of the sampling distribution of τ̂obm is closer to

normal than the chi-squared sampling distribution of each of the m NBM estimators τ̂nbm. As a consequence,

and as we show in Section 6, (for the same batch size) the skewness and kurtosis of the OBM sampling

distribution is closer to the normal distribution than to the chi-squared distribution; that is, the higher-order

moments act as if the degrees of freedom where larger.

What remains is the variance of the OBM estimator, τ̂obm. The variance does depend upon the correlations

between the m NBM estimators, which is why asymptotically the variance of τ̂obm is two thirds that of

τ̂nbm, rather than the ratio being 1/m (as would happen if the NBM estimators were independent). For the

chi-squared distribution, variance and degrees of freedom are inversely related. If the variance of τ̂obm were

known, then assuming (again, falsely) the chi-squared distribution impies an number of degrees of freedom

to use. With Monte Carlo experiments, we estimated the OBM variance, and therefore the implied OBM

degrees of freedom, for iid normal data across many batch sizes. Similar in spirit to Schmeiser (1982), we

extrapolate the iid results to auto-dependent data.

3 THREE BATCH-MEAN CIPS

We state three CIPs, one the classic NBM CIP and two new OBM CIPS. All three CIPs use the confidence-

interval form of Equation (1). They differ in their method of estimating τ and in their choice of degrees

of freedom.
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The NBM CIP uses τ̂nbm and ν0 degrees of freedom. In practice, the choice of the number of batches,

k, or equivalently the batch size m, is central. There is always a tradeoff between choosing large values of

m, where the resulting independence and normality provides good coverage probabilities, and small values

of m, where the resulting large degrees of freedom provide short expected interval widths (high apparent

precision) having small standard deviations (stable intervals). Rather than focusing on the batch size m,

Schmeiser (1982) argued that avoiding the extremes by choosing k (the number of batches) greater than

ten and no greater than thirty is a reasonable rule of thumb.

The two OBM CIPS use the OBM estimate of the variance of the sample mean of Equation (5). They

differ only in their degrees of freedom for given run length n and batch size m.

The first CIP, which we refer to as OBM1, uses the asymptotic degrees of freedom, ν1 = 1.5((n/m)−1)
from Meketon and Schmeiser (1985). Our intention was to have only one OBM CIP, but after seeing the

performance of OBM1, we created a modification, which we refer to as OBM2. The degrees of freedom

for OBM2 are

ν2 =−0.4ν2
1 +1.3ν1 +2 (6)

for 0 < ν1 ≤ 2 and otherwise

ν2 = ν1 +4/ν2
1 . (7)

OBM2 has more degrees of freedom, especially when n/m is small. When the OBM1 degrees of freedom

are ν1 = 0, the OBM2 degrees of freedom are ν2 = 2; when the OBM1 degrees of freedom are ν1 = 2,

the OBM2 degrees of freedom are ν2 = 3. Asymptotically (as n/m grows large) the degrees of freedom

are equal, ν1 = ν2. Because they use the same estimator of τ , by construction OBM1 has higher coverage

probability and larger interval widths than OBM2.

The formula for ν2 is our empirical approximation, chosen to balance simplicity and accuracy. But

if accuracy, then what is the target? We considered using the degrees of freedom that matched actual

and nominal coverage probabilities. But that choice would require a different formula for every nominal

probability α . What we did was to appeal to the chi-squared distribution, despite that distribution not

being applicable to OBM (or to NBM when m is too small). Recall that if ντ̂/τ has the chi-squared

distribution with ν degrees of freedom, then its mean is ν and its variance is 2ν . But var[ντ̂/τ] = 2ν

implies that ν var(τ̂) = 2τ2. Both the value of ν and the form of τ̂ depend on the estimation method, while

the right-hand side is a function of only the data process. If both NBM and OBM2 satisfied the chi-squared

conditions, then νnbmvar(τ̂nbm) = νobmvar(τ̂obm) would be true. The implication would be that

νobm = νnbm

[

var(τ̂nbm)

var(τ̂obm)

]

.

We simulated iid normal data (with some large value of n) and various values of m. For each νnbm = (n/m)−1

value, we estimated the ratio var(S2
nbm)/var(S2

obm) to obtain the target OBM degrees of freedom. OBM2

is the CIP that uses ν2 = νobm as approximated by Equations (6) and (7).

The OBM1 and OBM2 degrees of freedom formulas seem inappropriate for small values of m. In the

extreme, when m = 1, the NBM and OBM estimators of the variance of the sample mean are identical;

there is no overlapping. When n is reasonably large, approximately ν1 = ν2, but their value is half again

larger than the value of ν0. But large degrees of freedom all behave like infinite degrees of freedom, so

the mismatch has negligible effect.

4 CIP COMPARISONS

We compare the NBM, OBM1, and OBM2 CIPs with a Monte Carlo experiment that considers only AR(1)

data processes, for which Yi = φ(Yi−1 −µ)+ εi and εi values are iid normal. The processes are at steady

state. Our results do not depend on the values of the mean or variance. The first process has φ = 0, which

provides iid Yi values. The second has φ = 0.9, corresponding to γ0 = (1+φ)/(1−φ) = 19, which implies

that 19 autocorrelated observations contains the same information as one independent observation. Although
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this is a modest amount of autocorrelation, it allows us to investigate departure from independence. Our

Monte Carlo results are precise to within one unit of the least-significant reported digit; the irony that we

don’t use confidence intervals is not lost on us, but they would have negligible width.

For a large value of n and various batch sizes m, we compare coverage probabilities in Section 4.1,

half width moments in Section 4.2, and the VAMP1RE criterion values in Section 4.4. Not surprisingly,

we conclude that OBM2 is performs best in this small experiment.

4.1 Coverage Probabilities

First consider iid normal data. For batch sizes m= 1,2,5,10,20,50,100, NBM’s actual and nominal coverage

probabilities match because the chi-squared distribution holds. Obtained with Monte Carlo simulation with

n = 200, Table 1 shows OBM1 and OBM2 actual coverage probabilities for nominal coverage probabilities

0.5, 0.9, 0.95, and 0.99 for batch sizes ranging from m = 1 to m = 199. Other than for m = 1, where

NBM and OBM are the sample estimator, the chi-squared distribution does not hold. Nevertheless, both

OBM1 and OBM2 provide at least the nominal coverage probability. We created OBM2 because the

OBM1 coverage probabilities were substantially greater than the nominal values for larger sample sizes

(corresponding to fewer degrees of freedom). The bottom row, for m = 199 where only two batchs are

overlapped, is interesting because the actual coverage probabilities for OBM2 are essentially perfect.

Table 1: For nominal coverage probabilities 0.5, 0.9, 0.95, and 0.99, actual coverage probabilities for

OBM1 and OBM2 from iid normal data. Monte Carlo results for n = 200, with negligible sampling error

(affecting only the last reported digit). For NBM, actual equal nominal; not applicable for m > 100.

1−α 0.5 0.9 0.95 0.99

m OBM1 OBM2 OBM1 OBM2 OBM1 OBM2 OBM1 OBM2

1 0.500 0.500 0.900 0.900 0.950 0.950 0.990 0.990

2 0.500 0.500 0.900 0.900 0.950 0.950 0.990 0.990

5 0.500 0.500 0.900 0.900 0.950 0.950 0.990 0.990

10 0.500 0.500 0.900 0.900 0.950 0.950 0.990 0.990

20 0.501 0.501 0.901 0.901 0.951 0.950 0.991 0.991

50 0.505 0.503 0.910 0.910 0.963 0.960 0.996 0.995

100 0.562 0.508 0.983 0.919 0.998 0.969 1.000 0.998

150 0.785 0.511 1.000 0.927 1.000 0.975 1.000 0.999

199 NA 0.501 NA 0.901 NA 0.950 NA 0.990

Table 2 is analogous Table 1 except that the data process is now AR(1; φ = 0.9). Because the NBM

batches are not independent, the chi-squared distribution no longer holds, so NBM results are included.

The Monte Carlo results are now based on run length n = 2000. As m increases to 1000, which corresponds

to two batches and one degree of freedom, NBM’s coverage is essentially perfect. Both OBM1 and OBM2

have results similar to NBM for small batch sizes, but as m increases OBM1’s coverage is substantially

too high; OBM2’s coverage is also too high, but the excess is not as great.

In summary, ignoring some exceptions in the third digit, coverage probabilities favor OBM1, followed

by OBM2, followed by NBM. By construction, because ν1 ≤ ν2, OBM1 has coverage probability no less

than OBM2.

4.2 Expected Interval Half Widths

First consider iid normal data. For NBM, OBM1, and OBM2, Table 3 shows expected interval half widths

for batch sizes m = 1,2,5,10,20,50,100,150,199 with n = 200. For small batch sizes m, all interval half

widths are similar. OBM1 has intervals shorter than NBM everywhere except for m = 100 (that is, two
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Table 2: Actual coverage probabilities for NBM, OBM1, and OBM2 for AR(1; φ = 0.9) data.

1−α 0.5 0.9 0.95 0.99

m NBM OBM1 OBM2 NBM OBM1 OBM2 NBM OBM1 OBM2 NBM OBM1 OBM2

10 0.324 0.324 0.324 0.693 0.692 0.692 0.777 0.777 0.777 0.891 0.891 0.891

20 0.395 0.395 0.395 0.793 0.792 0.792 0.868 0.867 0.867 0.954 0.952 0.952

50 0.458 0.458 0.458 0.864 0.863 0.863 0.925 0.923 0.923 0.981 0.980 0.980

100 0.481 0.48 0.48 0.885 0.883 0.883 0.941 0.938 0.938 0.987 0.986 0.986

200 0.492 0.49 0.49 0.894 0.893 0.892 0.946 0.945 0.945 0.989 0.989 0.989

500 0.498 0.501 0.499 0.899 0.91 0.906 0.95 0.960 0.957 0.990 0.996 0.995

500 0.498 0.501 0.499 0.899 0.91 0.906 0.95 0.960 0.957 0.990 0.996 0.995

1000 0.502 0.557 0.504 0.901 0.980 0.915 0.951 0.998 0.965 0.990 0.999 0.998

1500 NA 0.774 0.502 NA 1.000 0.918 NA 1.000 0.969 NA 1.000 0.999

1990 NA NA 0.296 NA NA 0.742 NA NA 0.856 NA NA 0.974

NBM batches). By construction, OBM2 has intervals shorter than OBM1, because the degrees of freedom

are larger. For large batch sizes, OBM2 has substantially shorter intervals.

Table 3: Expected half widths for NBM, OBM1, and OBM2. Monte Carlo results for iid normal data with

n = 200.

1−α 0.5 0.9 0.95 0.99

m NBM OBM1 OBM2 NBM OBM1 OBM2 NBM OBM1 OBM2 NBM OBM1 OBM2

1 0.675 0.675 0.675 1.65 1.65 1.65 1.97 1.97 1.97 2.60 2.59 2.60

2 0.675 0.675 0.675 1.66 1.65 1.65 1.98 1.97 1.97 2.62 2.60 2.61

5 0.676 0.676 0.676 1.67 1.66 1.66 2.01 1.99 1.99 2.69 2.65 2.65

10 0.679 0.677 0.677 1.71 1.69 1.69 2.07 2.03 2.03 2.82 2.74 2.74

20 0.684 0.681 0.681 1.78 1.74 1.73 2.20 2.11 2.11 3.16 2.94 2.93

50 0.705 0.700 0.697 2.17 1.97 1.94 2.93 2.54 2.49 5.38 4.08 3.95

100 0.798 0.813 0.713 5.04 3.45 2.19 10.14 5.60 2.97 50.8 16.6 5.45

150 NA 1.43 0.723 NA 37.91 2.36 NA 151.7 3.31 NA 3783 6.63

199 NA NA 0.724 NA NA 2.59 NA NA 3.81 NA NA 8.80

Now consider AR(1; φ = 0.9) data. For NBM, OBM1, and OBM2, Table 4 shows expected interval

half widths for batch sizes m = 10,20,50,100,200,500,1000,1990 with n = 2000. The relative results

are similar to those of iid data. For small batch sizes m, all interval half widths are similar. OBM1 has

intervals no wider than NBM intervals everywhere except for m = 1000 (that is, two NBM batches). By

construction, OBM2 has intervals no wider than OBM1, because the degrees of freedom are larger. For

large batch sizes, OBM2 has substantially shorter intervals.

Table 4: Expected half widths for NBM, OBM1, and OBM2. Monte Carlo results for AR(1; φ = 0.9) data

with n = 2000.

1−α 0.5 0.9 0.95 0.99

m NBM OBM1 OBM2 NBM OBM1 OBM2 NBM OBM1 OBM2 NBM OBM1 OBM2

10 0.417 0.417 0.417 1.02 1.02 1.02 1.22 1.21 1.22 1.60 1.60 1.60

20 0.515 0.515 0.515 1.26 1.26 1.26 1.51 1.50 1.51 2.00 1.99 1.99

50 0.609 0.608 0.608 1.51 1.50 1.50 1.81 1.80 1.80 2.42 2.39 2.39

100 0.646 0.643 0.643 1.62 1.60 1.60 1.97 1.93 1.93 2.69 2.60 2.60

200 0.668 0.663 0.663 1.74 1.69 1.69 2.15 2.06 2.05 3.09 2.86 2.85

500 0.669 0.691 0.688 2.15 1.95 1.92 2.91 2.51 2.46 5.34 4.03 3.90

1000 0.800 0.803 0.704 5.05 3.41 2.17 10.16 5.54 2.93 50.9 16.4 5.38

1500 NA 1.401 0.709 NA 37.1 2.31 NA 148 3.23 NA 3700 6.48

1990 NA NA 0.388 NA NA 1.39 NA NA 2.04 NA NA 4.71

Expected interval half width favors OBM2, followed by OBM1, followed by NBM. By construction,

because ν1 ≤ ν2, OBM2 intervals are no wider than the corresponding OBM1 interval.
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4.3 Half-Width Coefficients of Variation

A measure of the stability of a CIP’s intervals is the coefficient of variation (CoV), the ratio of the half

widths’ standard deviation and their expected value. A zero CoV indicates that intervals all have the same

half width; large values indicate that the interval half widths differ greatly data set to data set, in which

case the confidence interval is not a good measure of the precision of the point estimator. For the CIPs

considered here, the Student T multiplier cancels in the definition of CoV. Therefore CoV is a property of

only the estimator of the variance of the sample mean. The result is that (1) when the mean and standard

deviation exist, OBM1 and OBM2 have the same CoV values and (2) CoV values do not depend on the

nominal coverage values.

Table 5: Coefficients of variation for NBM, OBM1, and OBM2 half widths. Monte Carlo results for iid

normal data with n = 200.

m NBM OBM1 OBM2

1 0.050 0.050 0.050

2 0.071 0.062 0.062

5 0.114 0.093 0.093

10 0.163 0.133 0.133

20 0.239 0.191 0.191

50 0.422 0.311 0.311

100 0.755 0.394 0.394

150 NA 0.426 0.426

199 NA NA 0.523

First consider iid normal data. For NBM, OBM1, and OBM2, Table 5 shows CoV values for batch

sizes m = 1,2,5,10,20,50,100,150,199 with n = 200. For m = 1, all CoV values are identical because

the intervals are identical; otherwise OBM CoV values are smaller than the NBM values. The OBM1 and

OBM2 CoV values are identical, except for m = 199, where the OBM1 CoV is undefined.

Now consider AR(1; φ = 0.9) data. For NBM, OBM1, and OBM2, Table 6 shows half-width CoV

values for batch sizes m = 10,20,50,100,200,500,1000,1990 with n = 2000. The relative results, and

inferences, are the same as for iid data.

Table 6: Coefficients of variation for NBM, OBM1, and OBM2 half widths. Monte Carlo results for AR(1;

φ = 0.9) data with n = 2000.

m NBM OBM1 OBM2

10 0.064 0.064 0.064

20 0.078 0.076 0.076

50 0.115 0.106 0.106

100 0.164 0.144 0.144

200 0.239 0.201 0.201

500 0.422 0.321 0.321

1000 0.756 0.403 0.403

1500 NA 0.440 0.440

1990 NA NA 0.534

In summary, the OBM estimator (of the variance of the sample mean) yields confidence intervals that

are substantially more stable than NBM.

4.4 The VAMP1RE Criterion

Again, first consider iid normal data. For NBM, OBM1, and OBM2, Table 7 shows VAMP1RE criterion

values for various batch sizes m with run length n = 2000.
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Table 7: The VAMP1RE criterion for NBM, OBM1, and OBM2. Monte Carlo results for iid normal data

with n = 2000.

m NBM OBM1 OBM2

1 0.000031 0.000031 0.000031

10 0.00031 0.00021 0.00021

20 0.00062 0.00041 0.00041

50 0.0016 0.0010 0.0010

100 0.0032 0.0021 0.0021

200 0.0069 0.0043 0.0043

500 0.021 0.010 0.010

1000 0.054 0.018 0.015

1500 NA NA 0.017

1999 NA NA 0.019

Now consider AR(1; φ = 0.9) data. Table 8 is analogous to Table 7. Again, for small batch sizes,

the three CIPs are essentially the same, so the VAMP1RE values are equal. Also, the OBM1 and OBM2

VAMP1RE values is similar for all batch sizes.

Table 8: The VAMP1RE criterion for NBM, OBM1, and OBM2. Monte Carlo results for AR(1, φ = 0.9)

data with n = 2000.

m NBM OBM1 OBM2

1 0.164 0.164 0.164

10 0.027 0.027 0.027

20 0.0094 0.0095 0.0095

50 0.0029 0.0027 0.0027

100 0.0035 0.0028 0.0028

200 0.0070 0.0048 0.0048

500 0.021 0.011 0.011

1000 0.054 0.018 0.016

1500 NA NA 0.019

1999 NA NA 0.051

In summary, consistent with the traditional measures, all three CIPs have the same VAMP1RE criterion

values for small batch sizes m. Over the entire range of batch sizes, OBM1 and OBM2 have similar

VAMP1RE values, except that OBM2 is defined over a wider range of batch sizes. For larger batch sizes,

OBM1 and OBM2 have smaller VAMP1RE criterion values.

5 VAMP1RE-OPTIMAL BATCH SIZES

Tables 7 and 8 illustrate the concept of VAMP1RE-optimal batch sizes, the batch size that minimizes the

VAMP1RE-criterion value. For iid data, not surprisingly, the VAMP1RE-optimal batch size is m = 1 for

all three CIPs. For AR(1; φ = 0.9) data, the VAMP1RE-optimal batch size for NBM is at about m∗ = 60

whereas the OBM1 and OBM2 optimal batch sizes are a bit larger, because their VAMP1RE values grow

slower for larger batch sizes.

For when the purpose is to estimate the variance of the sample mean, rather than to create a confidence

interval, Song and Schmeiser (1995) discuss the concept of MSE-optimal batch sizes. Pedrosa (1994)

discussed “1-2-1 OBM”, a method to estimate the MSE-optimal batch size in practice. Yeh (2002) improves

storage efficiency. An open research topic, then, is to find a way to determine VAMP1RE-optimal batch

size in practice (rather than as we have done as researchers, knowing the data process).
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6 SAMPLING DISTRIBUTIONS

OBM1 and OBM2 perform well despite using the Student T coefficient while not satisfying the independence

condition for the chi-squared distribution to hold. Both use the same estimator of the variance of the sample

mean, so we compare NBM and OBM.

Consider iid normal data. Table 9 shows mean, variance, skewness, and kurtosis for the NBM and

OBM estimators of the variance of the sample mean. Both NBM and OBM are unbiased estimators of

the variance of the sample mean, so all entries are 1. For the variances, small batch sizes yield similar

results, but as batch sizes increase the asymptotic 2/3 relationship appears. Skewness and kurtosis values

are similar for all batch sizes other than the very large.

Table 9: Moments of the sampling distribution of the NBM and OBM estimators of the variance of the

sample mean. IID data with n = 2000.

Mean Variance Skewness Kurtosis

m NBM OBM NBM OBM NBM OBM NBM OBM

1 1 1 0.010 0.010 0.065 0.065 3.01 3.01

10 1 1 0.010 0.007 0.20 0.20 3.06 3.06

20 1 1 0.020 0.014 0.28 0.29 3.11 3.11

50 1 1 0.051 0.034 0.45 0.46 3.30 3.33

100 1 1 0.105 0.071 0.65 0.66 3.62 3.69

200 1 1 0.223 0.150 0.94 0.98 4.31 4.52

500 1 1 0.671 0.421 1.62 1.72 6.94 7.73

1000 1 1 2.045 0.675 2.81 1.95 14.8 8.75

1500 NA 1 NA 0.830 NA 2.27 NA 11.14

1999 NA 1 NA 0.943 NA 2.44 NA 12.34

Consider AR(1; φ = 0.9) data. Table 10 is analogous to Table 9. Now, until batch sizes grow, NBM

and OBM are biased estimators of the variance of the sample mean, but their biases are equal. For the

variances, again small batch sizes yield similar results, but as batch sizes increase the asymptotic 2/3

relationship appears. NBM and OBM skewness, as well as kurtosis, values are similar for all batch sizes

other than the very large. Maybe surprisingly, introducing autocorrelation in the data causes little change

in the the skewness and kurtosis values.

Table 10: Moments of the sampling distribution of the NBM and OBM estimators of the variance of the

sample mean. AR(1; φ = 0.9) data with n = 2000.

Mean Variance Skewness Kurtosis

m NBM OBM NBM OBM NBM OBM NBM OBM

1 0.052 0.052 0.000026 0.000026 0.29 0.29 3.14 3.14

10 0.38 0.38 0.0024 0.0024 0.31 0.32 3.16 3.16

20 0.58 0.58 0.0082 0.0079 0.35 0.36 3.19 3.21

50 0.81 0.81 0.035 0.030 0.47 0.49 3.33 3.38

100 0.91 0.91 0.087 0.068 0.65 0.68 3.63 3.73

200 0.95 0.95 0.202 0.149 0.94 0.99 4.32 4.54

500 0.99 0.98 0.646 0.424 1.63 1.72 6.94 7.75

1000 1.00 0.99 2.007 0.669 2.81 1.87 14.8 8.10

1500 NA 0.97 NA 0.803 NA 2.26 NA 11.1

1999 NA 0.29 NA 0.095 NA 2.40 NA 12.1
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In summary, the NBM and OBM sampling distributions are similar, except for the variances, which are

equal for small batch sizes and have the 2/3 ratio for large batch sizes. For iid data, the NBM moments are

those of the chi-squared distribution. Therefore, although the OBM estimator goes to normality in a path

other than the chi-squared distribution, in the sense of the first four moments the OBM is more favorable

than the chi-squared distribution.

7 SUMMARY

We show that OBM, despite a false appeal to the chi-squared distribution, can be the foundation for

fixed-sample-size CIPs. We define two OBM CIPs, OBM1 and OBM2, and compare them to the classic

NBM CIP. OBM1, which uses the asymptotic degrees of freedom for all batch sizes, has the disadvantage of

excess coverage probability; nevertheless, its interval half widths are never much larger than those of NBM.

OBM2, which uses more degrees of freedom than OBM1 for small batch sizes, has less (but still some)

excess coverage probability; its interval expected half widths are shorter than those of OBM1. Interval

stability as measured by coefficient of variation, which depends only upon the NBM and OBM estimators

of the variance of the sample mean, favors OBM.

In a single measure, the VAMP1RE criterion summarizes the previous measures; for large batch sizes,

the OBM1 and OBM2 VAMP1RE criterion values are smaller than those of NBM. Finally, we introduce

the concept of the VAMP1RE-optimal batch size, which is applicable to all CIPs based on batching ideas.

Although our Monte Carlo results are from only AR(1) processes, the conclusions are likely to generalize.

The reason is that (ignoring end effects) the OBM estimator is the simple average of m identically distributed,

but dependent, NMB estimators. The central limit theorem says that the OBM sampling distribution will

be closer to normal than NBM’s chi-squared distribution. In that sense, allowing the OBM CIPs to assume

the chi-squared distribution is conservative. The result is that OBM CIPs may dominate NBM CIPs in

general, the “something for nothing?” in the title.
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