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ABSTRACT 

Several modeling, simulation and experimental research works in computer science and engineering 
depend on correctly measuring the execution time of computer programs. It is observed that not everyone 
takes into account that repeated executions of the program with the same input can result in execution 
times statistically significant different. The lack of rigor in the analysis of execution times of computer 
programs has been investigated in several studies in the literature. In this work, we first reproduce 
experiments from the literature in order to analyze the statistical properties of their results in terms of 
execution times, as well as to assess the effects of different variability sources in influencing the 
execution times. Particularly, we consider variability sources related to the operating system. We also 
propose a protocol to systematize the comparison of programs’ execution times in order to identify the 
significant differences in samples obtained from experiments with multiple treatments. 

1 INTRODUCTION 

In computer science and engineering, several research works depend on the analysis of execution times of 
computer programs (Touati, Worms, and Briais 2013). For instance, by experimentally evaluating the 
performance of two algorithms in a given computer system, the researcher compares the execution times 
of their implementations. In this case, it is crucial to consistently reproduce the experiments so as to 
obtain statistical confidence on the results. 

In computer systems, not always do successive executions of the same program with the same input 
produce the same execution times. Actually, what is often seen in practice is a significant variation in 
execution times of the same program in successive executions. In experimental research, this variation is 
known as experimental error and is caused by uncontrollable factors (Montgomery 2000). In computing 
experiments, these factors may be related to hardware or software, such as the influence of hardware 
interrupt mechanisms, the cache memory architecture, or the different interferences caused by operating 
system (OS) routines known as OS jitter (Vicente and Matias Jr. 2013), among other factors. In this 
paper, we study the software factors related to OS.  

The stochastic nature of the variations caused by the factors mentioned above makes their magnitude 
hard to predict. Consequently, several experimental works, particularly those that depend on the correct 
analysis of program execution times, fail when dealing with this issue. It is not uncommon to find 
research works that report results of computing experiments based on a single run of the experiment. Due 
to the variation problem above-mentioned, it is evident that analyzing the results of a single run is not a 
reliable approach, since the single execution time observed may significantly deviate from the most 
frequent values. The lack of rigor when dealing with experimental errors in computing experiments has 
been investigated in several studies in the literature (e.g., Georges, Buytaert, and Eeckhout 2007; 
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Mytkowicz et al. 2009; Mazouz, Touati, and Barthou 2010; Mazouz, Touati, and Barthou 2011a; Mazouz, 
Touati, and Barthou 2011b; Pusukuri, Gupta, and Bhuyan 2012; Touati, Worms, and Briais 2013). 

In this paper, we present an experimental study on the variation of execution times of computer 
programs. We consider different sources of OS-related variation in execution times, namely: runlevel 
(Vicente and Matias Jr. 2013), size of environment variables (Mytkowicz et al. 2009), and thread affinity 
strategies (Mazouz, Touati, and Barthou 2011a). Complementarily, we improve the method of execution 
time analysis proposed in (Touati, Worms, and Briais 2013), offering better precision in the analysis of 
data from multiple experimental settings (treatments). The remaining of this paper is structured as 
follows. Section 2 presents the related works. Section 3 describes the method and materials used, as well 
as the experimental study planning. Section 4 discusses the experimental results, and Section 5 presents 
our conclusion and final remarks.  

2 RELATED WORKS 

According to Touati, Worms, and Briais (2013), different research areas in computer science have 
difficulties in reproducing experimental results when it comes to program execution times. The authors 
proposed a statistical approach to compare the execution times of two version of the same program with 
the same input. The proposal yields positive results, being more precise than previous works in the 
literature (e.g.,  Lilja 2005; Georges, Buytaert, and Eeckhout 2007). 

Georges, Buytaert, and Eeckhout (2007) reviewed several methods to assess execution times of Java 
applications using metrics proposed in different studies. By using a more rigorous statistical analysis, the 
results of the previous studies were not confirmed. The authors also assessed prevailing methods in the 
literature and verified that their results could be wrong in up to 16% of the cases. 

In (Mytkowicz et al. 2009; Mazouz, Touati, and Barthou 2010; Mazouz, Touati, and Barthou 2011a; 
Pusukuri, Gupta, and Bhuyan 2012), the authors observed that different factors of the operating system 
cause significant variability in program execution times, thus impacting result reproducibility. Mytkowicz 
et al. (2009) changed the linking order of object files and also the size of UNIX environment variables in 
order to assess their influences on program execution times. They found that the first change significantly 
impacted the magnitude of the variations in execution times. They also observed that increasing the size 
of OS environment variables degraded the execution times of the programs analyzed. Mazouz, Touati, 
and Barthou (2010) assessed the variability in execution times of sequential and parallel programs. The 
results showed that parallel programs were significantly more susceptible to variable execution times. 
Mazouz, Touati, and Barthou (2011a) assessed the use of different thread affinity strategies and found a 
notable variability in execution times when threads migrate across the processors, corroborating the 
results presented in Mazouz, Touati, and Barthou (2011b). Pusukuri, Gupta, and Bhuyan (2012) showed 
that execution times in multi-core systems are highly sensitive to the OS’s processor management policy. 
They showed that changing such OS policy can reduce the variability of execution times in up to 98%. 

As it can be seen in the literature, there are several OS-related factors that impact the experimental 
result in terms of execution time. Unlike from previous works, in this study we use a rigorous 
experimental method to confirm these influences. We analyze the variability of execution times through a 
protocol that considers experiments with multiple treatments and deals with the familywise error rate 
(FWER) problem, different from Touati, Worms, and Briais (2013) that did not cover these two important 
issues. 

3 EXPERIMENTAL PLANNING 

3.1 Method 

In this study, we adopted the DOE (Design of Experiment) statistical method (Montgomery 2000) to plan 
and carry out our experiments as well as to analyze their results. This method requires controlled changes 
on the factors under study, so that the effects of these changes on the response variable can be accurately 
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measured. The response variable of interest in this study was the execution time of programs chosen for 
each test scenario (treatment). Each factor (source of execution time variability) was evaluated under 
different operation levels. A type of treatment is defined as a given combination of factors and levels 
(Montgomery 2000). In order to define the treatments to be evaluated, the signal matrix method (Jain 
1991) configured according to Yates’s order (Montgomery 2000) was used. To keep the execution of a 
treatment from influencing the results of the subsequent treatment, we restarted the OS for each new 
treatment execution. 

Denote by Xit the sample of execution times of program i executed for the experimental condition 
defined in the treatment t, where Xit is a random variable with mean ݔҧ it and median ݔ it. Given that n is the 
sample size, then Xit = {x1it, ..., xnit}. Hence, for each pair of different treatments of a given experiment, 
e.g., t1 and t2, we compare their means and medians through hypothesis tests, where the null hypothesis, 
H0, is respectively ݔҧ it1 = ݔҧ it2 and ݔ it1 = ݔ it2, and the alternative hypothesis, H1, is respectively ݔҧ it1 ് ݔҧ it2 and ݔ it1 ് ݔ it2. This procedure is performed for all pairs of treatments for each experiment. 

If a given hypothesis test shows a significantly statistical difference, then this indicates that one or 
more factors being controlled in the corresponding treatments exert an important influence on the 
execution times of the program under test. This shows that the experimental conditions of the evaluated 
treatments must be carefully considered when analyzing the execution times of computer programs under 
these same conditions, otherwise their results might be misinterpreted. We used the widely adopted 
program time (Kerrisk 2010) to measure the execution times of the programs under test. All experiments 
were executed in the Linux OS. 

3.2 Design of Experiment #1 

This experiment aimed to assess the effect of the factors runlevel and compiler optimization on the 
execution time of the NPB’s benchmarks (NASA Advanced Supercomputing Divison 2014). The NPB is 
a set of benchmark programs that mimic the computation and data movement in typical CFD 
(computational fluid dynamics) applications. We used the NPB version 3.3.1, which is composed of 10 
benchmark applications. More details about each NPB application can be obtained in (NASA Advanced 
Supercomputing Divison 2014). Table 1 summarizes the factors and levels adopted in this experiment. 

Table 1: Factors and levels evaluated in Exp #1. 

  Level (-) Level (+) 

F
ac

to
rs

  

Runlevel (RL) 5 3 

Optimization (O) O2 O3 

 
The runlevel defines a given configuration setup for the OS. In our experiments, at level (-), the 

runlevel factor assumed the value 5, which indicates a larger number of OS administrative processes 
(services) running in background. On the opposite, the level (+) sets this factor to 3, which results in a 
lower number of administrative processes. By varying this factor, we want to verify the effect of the OS 
administrative processes on the NPB’s execution time. The optimization factor refers to the compiler 
optimization applied to each NPB benchmark. In this study, we used the gcc compiler version 4.7.2 
(Stallman and The GCC Developer Comunity 2012). At level (-), the compiler was set to optimization 
O2, while at level (+) it used optimization O3, which has a more aggressive optimization than O2 and 
results in an larger binary code due to the extensive use of inline functions, among other optimizations 
(Stallman and The GCC Developer Comunity 2012). 

In this experiment, each treatment was replicated 31 times, and the first replication was discarded so 
that the analysis was carried out with reduced or none influence of disk buffer/cache. The replications 
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aimed to provide a large enough sample that yields an appropriate estimate of experimental errors, thus 
helping to determine whether the differences among the treatments are statistically significant or not. 

3.3 Design of Experiment #2 

This experiment reproduced the experiment carried out in (Mytkowicz et al. 2009), whose goal was to 
assess the effect of OS environment variable size (EVS) on the execution time of NPB’s benchmarks. In 
general, this is a non-considered factor when experimenters plan and analyze computing experiments. In 
(Mytkowicz et al. 2009), the authors reported that changes in the size of OS environment variables impact 
the program stack alignment and, consequently, the alignment of structures allocated in the process’ heap, 
which influences the execution time of programs. 

In our study, each NPB benchmarks ran 31 times, for each OS environment variable size evaluated. 
For the same reason as in the previous experiment, the first run of each EVS treatment was discarded. The 
OS environment variable used was created for this purpose and received a string value whose size varied 
as follows: 0, 64, 128, 256, 512, 1024, 2048, and 4096 bytes. The Linux feature of initial memory stack 
address randomization (Shacham et al. 2004) was disabled in order to individually assess only the effects 
of different EVS. All NPB benchmarks were compiled with optimizations O2 and O3, as in Exp. #1. In 
terms of OS runlevel, we adopted the value 1 so as to have the lowest possible number of administrative 
processes running in background during the treatments, aiming at reducing their influence on the results. 

3.4 Design of Experiment #3 

Experiment #3 was performed to assess the thread affinity factor, which represents the OS allocation 
strategy of multiple threads across the machine processors (or cores). This experiment reproduced the one 
carried out in (Mazouz, Touati, and Barthou 2011a), aiming to analyze the influence of thread affinity on 
the variation of the programs’ execution times. In (Mazouz, Touati, and Barthou 2011a), the compiler icc 
(INTEL 2014) was used, which implements the following strategies: no affinity, compact, and scatter. In 
the first strategy, the OS is free to allocate threads among the processors according to their availability. In 
the second strategy, the OS is instructed to allocate the threads in each core sequentially, as close as 
possible, in order to increase the chances of sharing the processors’ cache. In the third, the OS is 
instructed to distribute the threads among the processors as uniformly as possible. 

In this study, we could reproduce these three thread affinity strategies by using the features 
implemented by libgomp (OpenMP) (GNU 2014) and gcc. In this case, the thread affinity strategy was 
chosen using the environment variable GOMP_CPU_AFFINITY. The setting of gcc+libgomp compatible 
with icc-compact is “GOMP_CPU_ AFFINITY=0-7”. To implement icc-scatter, we used “GOMP_ 
CPU_AFFINITY=0 4 2 6 1 5 3 7”. We compiled the OpenMP version for each NPB benchmark and ran 
each one 31 times at runlevel 1, and the first execution was discarded as in the other experiments. Table 2 
shows the levels and factors for this experiment. Since each factor was assessed at three levels, 32 
treatments were carried out. 

Table 2: Factors and levels evaluated in Exp. #2. 

  Levels 

F
ac

to
rs

 Number of 
Threads (NT) 

2, 4, and 6 

Strategies of 
Affinity (SA)  

No Affinity, Compact, 
and Scatter 
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3.5 Protocol for Analysis of Execution Times 

Examining the approach described in (Touati, Worms, and Briais 2013), which assesses the statistical 
significance of the variation of two execution time samples, we verified that the proposed method is 
inappropriate to deal with experiments in which the samples of execution times are obtained from 
multiple treatments, i.e., to compare samples from different experimental settings. This occurs because 
the tests used in (Touati, Worms, and Briais 2013) to assess the statistical significance of the differences 
in execution times, using mean and median, the Student’s t-test and Wilcoxon-Mann-Whitney test 
(Sheskin 2003), respectively, are appropriate to compare only two samples. 

Employing these tests to compare samples from multiple treatments may lead to the problem known 
as familywise error rate (Howell 2010), which increases the likelihood of Type I error (Sheskin 2003), 
i.e., the probability of rejecting the null hypothesis (H0) when it is true. In the two above-mentioned 
statistical tests, H0 indicates that there is no statistically significant difference in execution times; so any 
difference observed would be due to experimental errors. Hence, increasing the likelihood of Type I error 
implies rejecting H0 in favor of the alternative hypothesis, H1; this means that it is assumed the existence 
of significant difference among the execution times. In an experimental design in which there is a group 
of treatments, the intent is to compare them in pairs in order to identify if there is a significant difference 
between them. The results of these comparisons are a set which is known as family (Howell 2010). When 
comparing only two treatments, the obtained result is due to an alpha value (e.g., Į=0.05) that is the 
probability of obtaining a Type I error for this comparison. However, when evaluating a family in which 
the number of comparisons is greater than two, it is necessary to evaluate the probability of rejecting 
incorrectly, at least, one of the null hypotheses that comprise this family (Howell 2010).  

In face of the problem exposed above, in this study we changed the protocol described in (Touati, 
Worms, and Briais 2013), so as to enable analyzing samples from multiple treatments with no FWER 
influence. Note that dealing with experimental plans composed of multiple treatments is a reality in many 
practical experimental studies. 

Figure 1 shows the execution time samples comparison protocol hereby proposed. A first difference 
between our protocol proposal and the one presented in (Touati, Worms, and Briais 2013) is that our 
version adjusts the p-values (Glantz 2011) at the end of the comparisons, in order to mitigate the influence 
of the FWER problem, thus dealing with the problem of comparing multiple treatments. In both 
protocols, the execution time samples are considered statistically different when the assessment of the 
test’s statistics yields a p-value below 0.05 (Į = 5%).  

In Figure 1, different execution time samples, Xit, are obtained by executing the treatments of interest. 
Based on a given significance level, Į, the protocol uses the Student’s t-test to assess whether the mean of 
Xit is higher than the mean of each one of the other treatments’ samples. Note that Student’s t-test requires 
that both tested samples follow a Gaussian distribution and have the same variance (Sheskin 2003). 
Therefore, these assumptions must be previously verified using, respectively, Shapiro-Wilk test (Shapiro 
and Wilk 1965) and Fisher’s F-test (Sheskin 2003). If the samples do not have the same variance, then 
the protocol requires the use of Welch’s t-test (Howell 2010). Unlike the method described in (Touati, 
Worms, and Briais 2013), if it is confirmed that the data do not follow a Gaussian distribution, our 
protocol applies the Wilcoxon-Mann-Whitney test instead of Welch’s t-test. The Wilcoxon-Mann-Whitney 
test consists in ranking the observations and computing the sum of the ranks for each group. However, in 
order to apply this test, the assumption that the samples come from the same distribution must be met. In 
the approach hereby proposed, we use the Kolmogorov-Smirnov test (Gibbons and Chakraborti 2014) to 
determine whether this assumption is true or false. In the case of multiple comparisons, our protocol 
adopts the Holm’s test (Glantz 2011) in order to keep the influence of the FWER problem under control. 
Thus, after obtaining all p-values of all comparisons, we sort the p-values smaller than Į, in ascending 
order. Next, we apply the Holm’s test to evaluate whether there is the presence of false positive. 

The Holm’s test is considered an improvement of the approach proposed by Bonferroni (Glantz 
2011), being a less conservative adjustment procedure. Unlike the Bonferroni’s test, the Holm’s test 
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considers the previous comparisons to evaluate subsequent comparisons; this test is proposed to accept or 
reject a set of null hypotheses, ordered and starting with the lowest p-value (Glantz 2011). Thus, if there 
are k paired comparisons, it should sort k p-values in ascending order, where pk is the lowest unadjusted 
p-value, j is the jth hypotesis test performed (j ≤ k), and ĮĲ is the real significance level, so the Holm’s test 
is given by iteration of Įj = ĮĲ / (k - j +1 ). For a certain iteration, if the kth p-value is less than the adjusted 
p-value, Įj, the test rejects the null hypothesis and then starts the next iteration, comparing the next p-
value in the sorted list. Otherwise, if the unadjusted p-value is higher than Įj, then the test should be 
stopped because it is assumed that the subsequent comparisons are not significant (Glantz 2011). 

 

Figure 1: Proposed protocol to compare samples of execution times. 

534



Nogueira and Matias Jr. 
 

3.6 Testbed Environment and Instrumentation 

For carry out our experiments we used a NUMA computer with four AMD OpteronTM Processor 6212 of 
1.40 GHz and 8 cores each (32 cores in total), with three levels of cache and 64GB of RAM (see Figure 
2). The operating system used was the Linux kernel version 3.11.10-7 (OpenSUSE 13.1). 

 

Figure 2: Topology of one of the four processors used. 

4 RESULTS 

4.1 Experiment #1 

After obtaining the execution time samples for each treatment assessed in this experiment, we applied the 
protocol described in Section 3.5 (see Figure 1). 

Firstly, by comparing the treatments in this experiment, it was observed that for the pairs RL3O2-
RL5O2, RL3O2-RL5O3, and RL5O2-RL5O3, in 100% of cases the comparisons were performed through 
the Wilcoxon-Mann-Whitney test. For the pairs RL3O2-RL3O3, RL3O3-RL5O2, and RL3O3-RL5O3, the 
Student's t-test was applied in 10% of cases; no comparison used the Welch's t-test. Hence, we conclude 
that most of the samples showed no adherence to a Gaussian distribution, given that most of the 
comparisons (over 90%) were performed using the Wilcoxon-Mann-Whitney test. These evidences 
suggest that the factors runlevel and compiler optimization significantly influenced the variability 
observed in the execution times, which changed the execution time distributions in different treatments. 
Note that this result shows that not always the execution times follow a Gaussian distribution, which is 
not infrequently assumed by studies in the literature (e.g., Georges, Buytaert, and Eeckhout 2007; 
Mazouz, Touati, and Barthou 2010). 

Table 3 shows the results of all paired comparisons among the treatments for all NPB benchmarks, 
before applying the Holm’s test. It can be seen that the pairs of treatments RL3O2-RL3O3, RL3O2-
RL5O3, RL3O3-RL5O2, and RL5O2-RL5O3 presented differences considered statistically significant in 
over 90% of the comparisons. 

Table 3: Percentages of paired comparisons different statistically in Exp. #1. 

 RL3O3 RL5O2 RL5O3 
RL3O2 100% 50% 100% 
RL3O3  90% 50% 
RL5O2   90% 

 
Table 4 shows the results for all paired comparisons after applying the Holm’s test. The asterisk 

symbol (*) indicates the comparisons that had a reduction in their percentage of comparisons considered 
statistically different, with reference to Table 3, due to Type I errors detected during the Holm’s test 
analysis. In general, we noticed that the set of comparisons was statistically significant and that only one 
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of the ten NPB benchmark programs, SP, presented a comparison result (RL3O2-RL3O3) with Type I 
error due to the FWER problem; this specific comparison represented 33.33% of the SP’s treatment 
comparisons considered statistically significant. The results after the Holm’s test confirm the significant 
influence of factor compiler optimization (O) on the execution times of the NPB’s benchmarks (ш 90% of 
comparisons); the factor runlevel (RL) showed a lower influence (50% of comparisons). 

Table 4: Percentages of paired comparisons different statistically in Exp. #1 with Holm’s test analysis. 

 RL3O3 RL5O2 RL5O3 
RL3O2 90%* 50% 100% 
RL3O3  90% 50% 
RL5O2   90% 

 

4.2 Experiment #2 

The results of Experiment #2 showed that, in overall, no specific environment variable size stood out 
among the longest and shortest execution times, considering all evaluated programs. This was likely given 
that each program has a different behavior, which interferes in the results. 

Initially, by comparing the treatments with the optimization factor in O2, it was observed that for the 
pairs 0-64, 0-1024, 64-128, 64-256, 64-512, 64-1024, and 64-2048, in 100% of cases the comparisons 
were performed through the Wilcoxon-Mann-Whitney test. For the pair 0-128, the Student's t-test was 
applied in 30% of cases, and in pairs 64-4096 and 2048-4096 the Welch’s t-test was used in 10% of cases. 
For the optimization factor in O3, it was observed that for the pairs 0-128, 64-128 and 128-2048, the 
Wilcoxon-Mann-Whitney test was used in 100% of cases; for the pairs 256-2048, 256-4096, 512-1024 and 
2048-4096 the Student’s t-test was applied in 20% of cases, and for the pairs 128-4096, 512-4096 and 
1024-4096 the Welch’s t-test was used in 10% of cases. Hence, we conclude that most of the samples 
showed no adherence to a Gaussian distribution, given that most of the comparisons (over 70%) were 
performed using the Wilcoxon-Mann-Whitney test. 

Table 5 shows the results of all paired comparisons before applying the Holm’s test. We observe that 
over 20% of all comparisons were considered statistically significant different, for both levels of the 
optimization factor (O2 and O3). We also noted that there was difference in the percentage of the 
comparisons statistically different when we compared the results obtained with the optimization factor in 
levels O2 and O3. For example, when comparing the treatments with EVS varying from 0 to 2048 in O2, 
we observed that 20% of the comparisons showed statistically significant difference in the execution 
times. On the other hand, when the optimization factor was changed to O3 we identified that this 
percentage increased to 70% (see Table 5).  

Table 6 shows the results of all paired comparisons after applying the Holm’s test. Analyzing the 
results obtained with and without the Holm’s test applied to the comparisons, we note that except for 
comparisons 0-128 and 256-1024 with the optimization factor in O2, and comparisons 128-256, 0-1024, 
256-1024, 512-1024 and 64-2048 with the optimization factor in O3, all other comparisons presented 
false positive (presence of Type I error). Specifically in the treatments where the optimization factor was 
set to O2, we found that except for the results obtained for the NPB programs GC and IS, all other results 
would be affected by the FWER problem without applying our proposed control. For example, in case of 
the BT program, 47.05% of its comparisons would be considered statistically different incorrectly; the 
other programs showed the following percentages of false positives: DC (69.23%), EP (33.33%), FT 
(45.45%), LU (27.78%), MG (17.39%), SP (77.78%), and UA (100.00%). Regarding the treatments where 
the optimization factor was set to O3, except for the EP benchmark program, all other NPB programs 
would be affected by the FWER problem without our proposed control. The BT program would have 30% 
of its comparisons considered statistically different containing Type I errors, so as the others programs: 
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CG (7.41%), DC (100%), FT (54.54%), IS (35%), LU (33.33%), MG (21.05%), SP (80%), and UA 
(77.78%). 

Table 5: Percentages of paired comparisons different statistically in Exp. #2. 

 O2 Optimization 
EVS 64 128 256 512 1024 2048 4096 

0 50% 40% 60% 70% 50% 20% 50% 
64  70% 60% 40% 70% 60% 70% 
128   40% 30% 50% 40% 50% 
256    40% 40% 30% 60% 
512     50% 50% 50% 
1024      50% 70% 
2048       50% 

 O3 Optimization 
EVS 64 128 256 512 1024 2048 4096 

0 60% 50% 50% 40% 30% 70% 40% 
64  60% 50% 60% 70% 60% 60% 
128   60% 60% 70% 70% 60% 
256    60% 20% 90% 40% 
512     40% 60% 50% 
1024      60% 40% 
2048       60% 

 

Table 6: Percentages of paired comparisons different statistically in Exp. #2 with Holm’s test analysis. 

 O2 Optimization 
EVS 64 128 256 512 1024 2048 4096 

0 30%* 40% 20%* 50%* 40%* 10%* 30%* 
64  40%* 40%* 30%* 60%* 30%* 60%* 
128   20%* 20%* 30%* 20%* 40%* 
256    30%* 40% 20%* 40%* 
512     20%* 30%* 40%* 
1024      40%* 40%* 
2048       40%* 

 O3 Optimization 
EVS 64 128 256 512 1024 2048 4096 

0 60% 40%* 40%* 10%* 30% 40%* 20%* 
64  50%* 40%* 40%* 40%* 60% 40%* 
128   60% 40%* 50%* 60%* 30%* 
256    40%* 20% 60%* 30%* 
512     40% 50%* 40%* 
1024      40%* 30%* 
2048       50%* 

 
In summary, this experiment shows that the same benchmark programs running with different sizes of 

one or more OS environment variables may result in statistically significant different execution times, 
which certainly affect experimental analyses if  this influence is not adequately controlled. It is important 
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to highlight that it is not uncommon for studies involving computing experiments not to consider this type 
of influence in their planning or result analyses. Note that changes in the size of OS environment 
variables can be done intentionally by the experimenter or even with no user intervention (e.g., by 
operating system programs or services). In both situations, not appropriately considering the influence of 
this factor on the execution times may cause erroneous conclusion, leading to the belief that the 
differences observed in the execution times are consequences of one or more factors being tested (e.g., a 
new algorithm), while there may actually be the effect of uncontrolled external factors. The results also 
showed that our proposed approach was adequate to prevent the influence of Type I errors, caused by the 
FWER problem, which could affect a significant percentage of the analyzed results.  

4.3 Experiment #3 

Based on the results of this experiment, we analyzed the comparisons and observed that for the treatment 
pairs SA2TH-CP2TH, SA4TH-CP2TH, CP2TH-CP4TH, and CP2TH-CP6TH the Wilcoxon-Mann-
Whitney test was used in 100% of cases, which means their execution time samples did not follow a 
Gaussian distribution. For the pair SA2TH-SC2TH the Student's t-test was used in 30% of cases; the 
Welch's t-test was used in 40% of the comparisons in the treatment pairs SA2TH-CP4TH, SA6TH-
CP4TH, SA6TH-CP6TH, CP4TH-SC2TH and CP4TH-SC6TH. The results indicate that the factors 
number of threads and thread allocation strategy had significant influence on changing the distribution of 
the execution times. 

Table 7 shows the results of all paired comparisons before applying the Holm’s test. In assessing the 
difference between the treatments, the results show that all comparisons should be considered statistically 
different in over 60%. Table 8 shows the results after applying the Holm’s test for the all comparisons. 
The results indicate that the MG program was affected by the FWER problem. The detected false positive, 
without the proper control, would represent 3.03% of the MG’s treatment comparisons considered 
different statistically. 

Table 7: Percentages of paired comparisons different statistically in Exp. #3. 

 SA 
4TH 

SA 
6TH 

CP 
2TH 

CP 
4TH 

CP 
6TH 

SC 
2TH 

SC 
4TH 

SC 
6TH 

SA2TH 100% 100% 100% 90% 100% 60% 100% 100% 
SA4TH  100% 100% 90% 90% 100% 100% 90% 
SA6TH   100% 100% 90% 100% 100% 90% 
CP2TH    100% 100% 90% 100% 100% 
CP4TH     100% 100% 100% 100% 
CP6TH      100% 100% 90% 
SC2TH       100% 100% 
SC4TH        100% 

 

5 CONCLUSION 

Computing experiments are crucial for scientific research. Nonetheless, the accuracy of experimental 
results greatly depends on the rigor applied to the design of the experiments, as well as their execution 
and output analyses. In this paper, we present empirical evidences that expose the importance of taking 
into account and handling the variability in execution times of computer programs, which are caused 
mainly by environmental factors, particularly the ones related to the operating systems. Neglecting such 
influences during the analysis of computing experiments put in risk the correct understanding of their 
results. 
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Table 8: Percentages of paired comparisons different statistically in Exp. #3 with Holm’s test analysis. 

 SA 
4TH 

SA 
6TH 

CP 
2TH 

CP 
4TH 

CP 
6TH 

SC 
2TH 

SC 
4TH 

SC 
6TH 

SA2TH 100% 100% 100% 90% 100% 60% 100% 100% 
SA4TH  100% 100% 90% 90% 100% 100% 90% 
SA6TH   100% 100% 90% 100% 100% 90% 
CP2TH    100% 100% 90% 100% 100% 
CP4TH     100% 90%* 100% 100% 
CP6TH      100% 100% 90% 
SC2TH       100% 100% 
SC4TH        100% 

 
The experimental findings we present confirm that the size of operating system environment variables 

may significantly impact program execution times. The same was observed for the runlevel and the 
thread affinity factors, which are regularly not considered by experimenters in computing experiments.  

Another important finding is that not always do the execution time samples follow a Gaussian 
distribution; this is an assumption not rarely found in related works in the literature. Furthermore, we 
experimentally show that the familywise error rate problem is present in multiple comparisons of 
execution times in computing experiments and also may influence a significant high number of treatment 
comparisons; in some cases we observed that 100% of the results could be affected by this problem 
without the proper control. 

Finally, our proposed changes to the protocol originally introduced in Touati, Worms, and Briais 
(2013) added the necessary support for the proper analysis of execution times obtained from multiple 
treatments, controlling the overall probability of observing one or more Type I errors. This approach 
keeps the effects of FWER problem under control for this category of experimental data. 

Two ongoing related research works are under development. One is focused on the investigation of 
different procedures, widely adopted in the literature, to measure the execution times of computer 
programs. Our goal is to evaluate their accuracy and also possible influences on the execution time 
variability. The second work is creating a software platform to help experimenters to design and 
automatically execute computing experiments based on the DOE approach. This platform will  support the 
proposed protocol presented in this work for the analysis of execution times obtained from experimental 
designs based on multiple treatments. 
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