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ABSTRACT

Many computer models of large complex systems are time consuming to experiment on. Even when

surrogate models are developed to approximate the computer models, estimating an appropriate surrogate

model can still be computationally challenging. In this article, we propose an Additive Global and Local

Gaussian Process (AGLGP) model as a flexible surrogate for stochastic computer models. This model

attempts to capture the overall global spatial trend and the local trends of the responses separately. The

proposed additive structure reduces the computational complexity in model fitting, and allows for more

efficient predictions with large data sets. We show that this metamodel form is effective in modelling

various complicated stochastic model forms.

1 INTRODUCTION

In practice, simulation models are widely used to provide an effective and efficient way to evaluate the

behavior of real systems. However with the stochastic and complex nature of most real systems, the

simulation models can be time consuming to execute. An alternative is to create a statistical model of the

simulation model, which is known as metamodel.

A metamodel is a simplification of a simulation model. Simpson et al. (2001) reviewed the metamodel

application in engineering. Li et al. (2010) also provided a comprehensive comparison of metamodeling

approaches that can also be well applied in simulation optimization. Among all these metamodels, the

Gaussian Process model, also known as the kriging model (Cressie 1993), has been increasingly popular

in recent years due to its adaptability and efficiency to model the computer outputs. More importantly,

it can provide a unique statistical view of the prediction error, which makes it more useful in simulation

optimization. Beyond the deterministic computers experiments, it has also been widely used in the stochastic

simulation through stochastic kriging model (Ankenman et al. 2010) or the modified nugget effect model

(Yin et al. 2011).

However, estimating the Gaussian Process model is a computational challenge when the data sets are

large. Given the data size of N, estimating the model parameters with traditional methods like the maximum

likelihood estimation and estimating the model predictors involve the inversion of a N×N covariance matrix,

which typically requires O(N3) operations and O(N2) memory. This becomes computational intractable

for a large N. As such, a desktop computer is unable to handle data sizes larger than several hundreds.

Many approximation approaches have been proposed to solve the computational problem with large data

sets. Existing approximation methods may be divided into three categories: global approximation, localized

regression and combination of global approximation and localized regression. The global approximation

methods include rank reduction and sparse approximation (Quiñonero Candela and Rasmussen 2005,

Banerjee et al. 2008). However these global approximation methods typically capture only the long

lengthscale global trend of the spatial processes, leaving much of the local dependencies unexplained.
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The second category is localized regression, where model predictions are estimated based on local

neighborhoods. Local Kriging fits different Kriging models in different subregions independently. Local

Kriging is known for its adaptability to model nonstationary process and its efficiency in computation.

However it suffers from the discontinuities at the boundaries due to its localized independent model

estimation. Park et al. (2011) proposed an approach that smooths the discontinuities by adding equality

constraints at the boundaries of neighboring subregions, but the additional computational time is required to

estimate the boundary values. Another local approximation approach is to apply covariance tapering, which

assumes that the distant pairs of observations are uncorrelated (Furrer, Genton, and Nychka 2006). Sparse

matrix algorithm can then be applied to realize the computational efficiency. However, such approaches

are unable to effectively capture the long lengthscale dependencies, missing often the larger global trend.

Recent works by Gramacy and Apley (2014) and Gramacy and Haaland (2015) propose splitting the input

domain into different segments where the parameters are estimated separately, enabling parallelization in

the model estimation. However accomplishing the massive parallelization may still require large amounts

of computation.

The last category combines the global approximation and the localized regression to overcome the

disadvantages of the individual methods. A full scale approximation (FSA) of the covariance functions

proposed by Sang and Huang (2012) approximates the covariance function through a combination of a

reduced rank approximation and a tapered residual approximation. This attempts to capture both the

long lengthscale dependence and shorter lengthscale dependence. The partially independent conditional

approximation (PIC) approaches (Snelson and Ghahramani 2007) also successfully combines a reduced

rank approximation and a locally independent residual approximation.

In this paper, we leverage on the benefits of combined approach and develop an Additive Global and

Local Gaussian Process (AGLGP) model that facilitates computations of large data sets. It incorporates a

global GP model and a piecewise local GP model into an additive GP model with a composite covariance

structure. The local model allows for different correlation structures in different subregions, which is more

flexible and better able to capture the nonstationary process with more numerical stability. The basic idea

behind the AGLGP is to build a global model with a small set of inducing points to capture the global trend

and build a local model to capture the residual process from the global model. Our central contribution is

to develop a model that is computationally efficient and can capture the nonstationarity with this additive

structure. In addition to the model prediction, the AGLGP can be potentially applied in optimization.

The rest of the paper is organized as follows. Section 2 introduces the background. Section 3 presents

the new AGLGP model, its predictive distribution, discusses the parameter estimation based on the derived

covariance structure and illustrates the mechanisms to fit the model. In Section 4 a numerical study

is conducted to demonstrate the application of the new model and a comparison is made with other

approximation models. Finally in Section 5, conclusions and future areas of development are discussed.

2 BASICS AND NOTATIONS

2.1 Kriging

The Kriging model is popularly used for approximating various highly flexible and nonlinear functional

forms. For deterministic computer experiments, suppose we run the simulation at n inputs x = (x1,x2, ...,xn)
and obtain corresponding simulation outputs y = (y(x1),y(x2), ...,y(xn)). We assume that simulation outputs

can be modeled as a Gaussian Process with mean µ(x) and covariance function R(·), i.e., y(x) = f (x), f (x)∼
GP(µ(x),σ2R(·)). Given the parameters, the kriging predictor and the mean square error (MSE) at an

input x∗ are given as

ŷ(x∗) = µ(x∗)+ r′R−1(y−µµµ) (1)

ŝ2(x∗) = σ2

[
1− r′R−1r+

(1−1′R−1r)2

1′R−11

]
(2)
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where r = (R(d∗,1),R(d∗,2), ...,R(d∗,n)) is the covariance between the point to be estimated and n observed

points, and d∗,i is the Euclidean distance between point x∗ and xi; R is n×n covariance matrix across all design

points. The covariance function R(·) can have different forms and usually depends on a correlation parameter

θ . A popular choice is the exponential family of correlation functions, which is commonly applied in computer

experiments for its smooth characteristics, R(di, j) = R[ f (xi), f (x j)] = σ2exp[−∑
k
h=1 θh|xih −x jh|

ph ], where

σ2 is the variance of f (x) of all x, θh control how fast the correlation decayes with the distance in the hth

dimension. Stein (1991) discusses various families of correlation functions and their properties, including

isotropic and anisotropic functions. When the mean function takes a constant form µ(x) = µ , it is known

as the ordinary kriging model. This form is shown to be adequate in many applications (Ankenman et al.

2010, Sacks et al. 1989, Jones et al. 1998).

2.2 Stochastic Kriging

Stochastic Kriging extends the kriging model applied for the deterministic computer experiments to stochastic

computer experiments. In the stochastic case, we assume that the simulation output y(x) are realizations

of a random process that can be described by the model

y(x) = f (x)+ ε(x) (3)

where f (x) is the mean of the process, and ε(x) is the random noise of the process. Here we assume

ε(x) ∼ N(0,σ2
ε (x)), and are independently distributed across simulations. Furthermore, ε(x) is assumed

independent of f (x). The error variances σ2
ε (x) may depend on x. The MSE-optimal predictor can be

shown to be

ŷ(x∗) = µ + r′(R+ΣΣΣε)
−1(y−1′µ) (4)

where ΣΣΣε = diag(σ2
ε (x1), ...σ

2
ε (xn)). The optimal MSE is then given by:

ŝ2(x∗) = E( f (x∗)− ŷ(x∗))2 = R(d∗,∗)− r′(R+ΣΣΣε)
−1

r (5)

This modeling form is known as stochastic kriging (Ankenman et al. 2010), and a similar form known as

the Modified Nugget Effect Kriging can be found in Yin et al. (2011).

2.3 Composite Gaussian Process Model

The composite Gaussian Process model (CGP) (Ba and Joseph 2012) proposes a modeling approach by

incorporating a flexible global trend into the GP model. This is useful when the second-order stationarity

assumption for the traditional kriging model is violated. It replaces the polynomial mean model µ(x) in

the universal kriging model by another GP model and introduces a local model for the local adjustment

y(x) = zglobal(x)+ zlocal(x), zglobal(x)∼ GP(µ,τ2g(·)), zlocal(x)∼ GP(0,σ2(x)l(·)) (6)

The first GP zglobal(x) has a mean µ , variance τ2 and correlation structure g(·). The second GP zglobal(x)
has a mean 0, variance σ2(x) and a correlation structure l(·). Both g(·) and l(·) are specified to be Gaussian

correlation functions. Overall, the model is equivalent to assuming the response y(x) ∼ GP(µ,τ2g(·)+
σ2(x)l(·)). Suppose σ2(x) can be further expressed as σ2(x) = σ2v(x), then the best linear unbiased

prediction can be shown to be

ŷ(x∗) = µ +(g(x∗)+λv1/2(x∗)ΣΣΣ1/2l(x∗))′(G+λΣΣΣ1/2LΣΣΣ1/2)−1(y−1′µ) (7)

where g(x∗) = (g(x∗,x1), ...,g(x
∗,xn)), l(x) = (l(x∗,x1), ..., l(x

∗,xn)). G,L are n×n correlation matrix across

all design points with specified correlation function of g(·) and l(·). λ =σ2/τ2 and ΣΣΣ= diag(v(x1), ...,v(xn))
is denoted to represent the local variances at each design point.
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3 AN ADDITIVE GLOBAL AND LOCAL GAUSSIAN PROCESS MODEL

To estimate the Gaussian Process model with large data sets, approximations are typically required.

Considering the disadvantages of the discontinuities in localized kriging model, a combination of a global

model and a local model is proposed here. Specifically, the proposed AGLGP model incorporates a global

model to capture the overall global trend and a local model to capture the residual process in the local

neighborhoods.

Consider a simple example function of y(x) = cos(100(x− 0.2))e2x + 7sin(10x) in Figure 1. The

function exhibits both a long lengthscale trend and a short lengthscale trend. To capture these, the global

model is developed to capture the long lengthscale global trend yglobal = 7sin(10x) and the local model is

to capture the residual process (of shorter lengthscale), mainly ylocal = cos(100(x− 0.2))e2x. To address

the computational constraints of the data sets, we propose to capture the global trend by a smaller number

of well placed inducing points, and capture the residual process with a piecewise local model.
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Figure 1: Decomposition of the signal function

The purpose of the inducing points is to sufficiently summarize the observed data points and smooth out

the local fluctuations to highlight the global trend. To determine the inducing points, clusters are generated

in such a way that the points within a cluster are close in terms of their distance x and response y.

The residuals from the global trend are then modeled by another piecewise GP. To fit the local model,

the overall region is partitioned into local regions with a specific correlation structure. With appropriately

selected regions, the residual process is expected to be more homogeneous within a local region, and

the independent assumption is made across regions. Such local kriging models have been applied to

model nonstationary process, but can be highly discontinuous across region as previously described. Our

overall model combines both the global and local model that aims to capture both the global trend and

local residuals, and the additive combination reduces the discontinuities of local kriging models. In the

following subsections, we will describe the model development for the deterministic computer experiments

(section 3.1) and the stochastic computer experiments (section 3.2).

3.1 Deterministic Additive Global and Local Gaussian Process Model

For the deterministic computer experiments, the AGLGP models the response by an addition of a global

and a local model.

y(x) = fglobal(x)+ flocal(x), fglobal(x)∼ GP(β0,g(·)), flocal(x)∼ GP(0, l(·)) (8)

g(xi − x j) = σ2rg(xi − x j,θθθ), l(xi − x j) = τττ2rl(xi − x j,ααα)

where fglobal(x) models the global trend that is captured through a small set of inducing points, and flocal(x)
models the residual process that is unexplained by fglobal(x). We assume fglobal(x) can be modeled by

a deterministic GP model with a constant mean β0 and variance of σ2, while flocal(x) can be modeled
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by another zero mean GP to capture the detrended residual process, which is the bias between the signal

function and the global trend. fglobal(x) and flocal(x) are assumed to be independent. This is similar to the

assumption made in Composite Gaussian Process model (Ba and Joseph 2012). σ2 and τ2τ2τ2 are the variance

of the global and local model and rg(·) and rl(·) are the correlation structure of the individual processes. In

this paper, we assume the Gaussian correlation function. Here θθθ and ααα represent the sensitivity parameters

of the correlation functions. The larger the parameters, the lower the correlation with respect to distance. As

we expect the global model to capture the global trend while the local model to capture the residual details,

it is reasonable to add constraints on the unknown correlation parameters θθθ and ααα to satisfy 0 ≤ θθθ ≤ααα . As

we assume independence across local regions for the local residuals, the covariance function l(xi − x j) of

the local model will be a piecewise function. Given k local regions, r1, ...rk, the local covariance structure

can be expressed by l(xi − x j) = ∑
k
r=1 H(xi,x j)lr(xi − x j)

H(xi,x j) =

{
1,xi ∈ rp,x j ∈ rq, p = q

0,xi ∈ rp,x j ∈ rq, p 6= q

lr(xi −x j) is the specific covariance structure in local region r = 1, ...,k.

We define a set of inducing points xg = (x1
g,x

2
g, ...,x

m
g ) in m dimensions, where m ≪ n, with output

of yg = (y1
g,y

2
g, ...,y

m
g ). yg is the realization of fglobal(x), which is a latent process. We first assume yg

is known, with given parameters β0,θ ,αθ ,αθ ,α,σ2,τ2τ2τ2. The best linear unbiased global predictor can then be

written as

ŷglobal(x
∗) = β0 +g′G−1

m (yg −1′β0) (9)

where g = (g(x∗− x1
g), ...g(x

∗− xm
g )), Gm is m×m covariance matrix with i jth element g(xi

g − x
j
g). The

global predictor interpolates yg since ŷglobal(x
j
g) = β0 + e′i(yg −1′β0) = yi

g, where e′i is the i-th unit vector.

With the fitted global model, we have ŷglobal = (ŷglobal(x1), ..., ŷglobal(xn)). The residuals are then obtained

by yl = y− ŷglobal . We assume that the residual process is correlated within a local region while independent

across local regions, so different correlation functions are allowed in different local regions. This enables

flexibility to capture nonstationarity in the process. The local predictor is given by

ŷlocal(x
∗) = l′L−1

n yl (10)

where l = (l(x∗− x1), ...l(x
∗− xn)) and Ln is covariance matrix with (i j) element l(xi − x j), Ln is a block

diagonal matrix which can be expressed by Ln = diag(L1, ...,Lr, ...Lk).
From (9) and (10), the overall AGLGP predictor can be expressed as

ŷ(x∗) = ŷglobal(x
∗)+ ŷlocal(x

∗) = β0 +g′G−1
m (yg −1′β0)+ l′L−1

n yl (11)

3.1.1 Deriving the Predictive Distribution

The derivation of the overall predictor (11) assumes yg is known. However yg is a latent process which

can not be observed directly. Similarly yl is also a latent process. In this section we derive the predictive

distribution of any input x∗ by integrating out the random variable yg and yl. It is worthy to note that the

integration does not complicate the covariance matrix. Detailed derivation of the covariance matrix will be

discussed in section 3.1.2. We define the realization of flocal by yl = {yi
l}

n
i=1 at input x = {xi}

n
i=1. Based

on our assumptions for fglobal and flocal , the distributions of yg and yl are given as

p(yg|xg) = N(yg|β0β0β0,Gm), p(yl|x) = N(yl|0,Ln) (12)

where Gm and Ln are functions of global inducing points xg and the local regions. We discuss the selection

of xg and the division of local regions in detail later in Section 3.1.3. The main idea is to select these

xg such that they are sufficiently spread out to capture the changes in the global trend, and local regions
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divided such that points across regions are far apart (to approximate independence). From equation (8)

and (12), the conditional likelihood of a single observed point x is given as

p(y|x,xg,yg,x,yl) = N(y|β0 +g′G−1
m (yg −β0β0β0)+ l′L−1

n yl,λ + γ) (13)

where λ and γ represent the mean square prediction error for the global and local models respectively,

with λ = Gnn −g′G−1
m g,γ = Lnn − l′L−1

n l, and Gnn and Lnn are the global and local variance at location x.

The conditional distribution of yg given the observed (x,y) can be shown to be

p(yg|xg,x,y) = N(yg|β0 +GmQ−1
m Gmn(ΛΛΛ+Ln)

−1(y−β0),GmQ−1
m Gm) (14)

where ΛΛΛ = diag(λλλ ),λλλ = Gn −GnmG−1
m Gmn and Qm = Gm +Gmn(ΛΛΛ+Ln)

−1Gnm, and the conditional

distribution of yl given yg and y is given as

p(yl|xg,yg,x,y) = N(yl|ΣΛΣΛΣΛ−1(y−β0β0β0 −GnmG−1
m (yg−β 0)),ΣΣΣ) (15)

where ΣΣΣ = (L−1
n +ΛΛΛ−1)−1. Given a new input x∗, the unconditional predictive distribution can be obtained

by integrating yg,yl from the likelihood function of (13)

p(y∗|x∗,xg,x,y) =
∫∫

p(y∗|x∗,xg,yg,yl,x,y)p(yl|xg,yg,x,y)p(yg|xg,x,y)dygdyl = N(y∗|µ̂∗, σ̂∗2) (16)

where

µ̂∗ = β0 +[g′Q−1
m Gmn + l′(ΛΛΛ+Ln)

−1(ΛΛΛ+Ln −GnmQ−1
m Gmn)](ΛΛΛ+Ln)

−1(y−β0)

σ̂∗2 = Gnn −g′(G−1
m −Q−1

m )g+
(1−1′G−1

m g)2

1′G−1
m 1

+Lnn − l′[ΛΛΛ+Ln]
−1l

Given parameters θ ,αθ ,αθ ,α,σ2,τ2τ2τ2, we can derive β0 to maximize the likelihood function in the form β̂0 =
1′R−1y

1′R−11
,

where R is covariance matrix derived in the Section 3.1.2. Based on this, we have the following theorem,

Theorem 1 Given the parameter values θ ,αθ ,αθ ,α,σ2,τ2τ2τ2, the predictive mean µ̂∗ is an unbiased predictor.

Proof of this theorem is provided in the Appendix A.

3.1.2 Parameter Estimation

The predictive distributions derived in equation (16) are given under the assumption that the parameters

are known. However, in practice, these parameters need to be estimated through observations. We derive

the estimator for the unknown parameters by maximizing likelihood function. First we derive the marginal

likelihood of y by integrating out yg

p(y|x,xg) =
∫

p(y|x,xg,yg)p(yg|xg)dyg = N(β0,G
′
mnG−1

m Gmn +ΛΛΛ+Ln) (17)

The derived AGLGP model has an overall covariance structure GnmG−1
m Gmn +ΛΛΛ+Ln, where ΛΛΛ =

diag{G−GnmG−1
m Gmn} and Ln is a block diagonal matrix. When we let m = n and k = 1, AGLGP

model is equivalent to Composite Gaussian Process model (CGP) with a composite covariance matrix

G+L. From this, we can see that the AGLGP model can also be viewed as a approximation of CGP,

where GnmG−1
m Gmn +ΛΛΛ is an approximation for G and Ln is an approximation for L. Our piecewise

Ln approximation allows different covariance structure in different blocks and gives more flexibility for

nonstationary features. Then the negative log-likelihood function dependent on θθθ , ααα , σ2 and τ2τ2τ2 is given as

l(θ ,αθ ,αθ ,α,σ2,τ2τ2τ2) =
1

2
lndetR+

1

2
(y− β̂ 0)

′R−1(y− β̂ 0) (18)
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where R = G′
mnG−1

m Gmn +ΛΛΛ+L. From the Woodbury formula (Higham 2002), we get

[GnmG−1
m Gmn +ΛΛΛ+Ln]

−1 = (I− [ΛΛΛ+Ln]
−1GnmQ−1

m Gmn)[ΛΛΛ+Ln]
−1

where Ln is a block diagonal matrix and ΛΛΛ is a diagonal matrix, so ΛΛΛ+Ln can be inverted in blocks.

To minimize the negative log-likelihood function (18), optimization algorithms like the quasi-Newton

methods can be applied. However, as the number of parameters to be optimized increases with the number

of local regions, the approximations of the Hessian matrix can become a computational burden. Fortunately,

based on our assumptions of independence across local regions, most of the terms in the Hessian matrix are

zeros, i.e. ∂ 2l
∂αih∂α jk

= 0,∀h 6= k, where αih,α jk represent the local parameters of input dimensions i and j in

local regions h and k. We further suggest to start the algorithm from multiple starting points to improve the

convergence of these optimization methods. To address the issue of the increasing number of parameters

to estimate when input dimensions increases, further assumption such as αih = θi +κh can be made. A

similar assumption is made in the estimation of the Composite Gaussian Process model (Ba and Joseph

2012).

Based on our independence assumption across the local regions, some discontinuities can be present

in our estimated model. However, as our model is an additive global (smooth) model and local model,

the discontinuities tend to be smaller than those from a localized model approach only. If continuity

in the overall model is required, further continuity restrictions can be applied. For example, Park et al.

(2011) smoothes the discontinuities in local models by adding extra constraints on the subregion boundaries

when combining the local predictors. However substantial computational time is required to determine

the values at the boundaries. Continuity can also be achieved by releasing the independence assumption

over non-overlapping local regions. The original matrix can instead be partitioned into overlapping local

regions and this helps to smooth out the local regions. However, this increases the computation required

for the inversion of the new local matrix, and the larger the overlapping areas, the more complicated the

matrix inversion will be. Another alternative is to constrain the local model predictors to be zero at the

boundaries, and have only the global model dominate at the boundaries.

3.1.3 Selection of Inducing Points and Local Regions

To develop the AGLGP model, inducing points that summarize the observed data points and smooth out

short-term fluctuations need to be selected for the global model. In addition, the whole input space needs

to be divided into local regions for a piecewise local model.

In selecting inducing points for sparse matrix approximation methods, various selection criterion have

been summarized in Quiñonero Candela and Rasmussen (2005). For the global model, it is desirable to

place these artificial (inducing) points such that collectively, they are able to capture the global trend, not

only in the location x, but also in the observation values y.

To divide the input space with a given a set of input designs and corresponding observations, we first

classify the data through hyperplanes that represent the largest separation, or margin, between classes so

that the independent assumptions across local regions can be reasonably made. Hence, points are grouped

according to their Euclidean distance and the boundaries are drawn such that the largest separation or

margin between two subregions is achieved. Figure 2 illustrates the desirable characteristics of the local

regions decomposition and the selection of inducing points.

Here we describe in detail the algorithm applied to attain this. First we divide the whole input space R

into k different local regions r1, ...,rk. Suppose n observed points x = (x1, ...,xn) are separated into k sets of

data x = (xs1
, ...,xsk

), where xsi
∈ ri,∀i = 1, ...,k. Points are separated through k-means, which based on the

Euclidean distance of input x to minimize the within-region sum of squares argmin
s

∑
k
i=1 ∑x∈xsi

‖x−µi‖
2.

µi is the mean of points in xsi
. Then based on the data sets xsi

in a local region ri, we construct boundaries

of local regions through Support Vector Machine (SVM), which chooses the best hyperplane that represents

the largest separation or margin between two neighboring local regions. Hsu and Lin (2002) summarizes
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Figure 2: Domain Decomposition and inducing points generation

the methods for multiclass SVM. In this paper, we generate pairwise classifiers. Two hyperplanes that

separate data set xsi
and xs j

, i 6= j with no points between them are described by a set of points xp1
and xp2

that satisfies w ·xp2
−b = 1, w ·xp1

−b =−1, where w is the normal vector to the hyperplane. Parameters

are optimized by maximizing the distance between this two hyperplanes 2
‖w‖ , which is equivalent to

min ‖w‖

s.t. w·xi −b ≥ 1,xi ∈ xsi

w·x j −b ≤−1,x j ∈ xs j

where the constraints ensure that there is no data between two hyperplanes.

With the defined local regions, the set of points xsi
within a certain local region ri are then further

divided into clusters based on their observations ysi
: firstly we define the range of overall observations

∆y = ymax −ymin and the range of points within cluster ∆; next, contour lines are drawn with an interval of

∆, i.e. L = {(x,y)|y = c} where c ∈ {ymin,ymin+∆, ...,ymax−∆,ymax}. Finally, the set of points xsi
is further

divided into φ clusters xsi
= (ci1, ...,ciφ ), where ci j = {x|ymin+∆×( j−1)≤ y(x)≤ ymin+∆× j}, j = 1, ...,φ .

If ||xh−xk||> ||xl −xh||, ∀xh,xk ∈ ci j, ∃xl /∈ ci j, the cluster ci j will be further divided into two subclusters

between xi and x j. Finally we have m subclusters c = (c1, ...,cm), where the variability within a cluster is

relatively small compared to the total variability of the whole domain. Then the points in a subcluster are

aggregated to generate an inducing point. The summary of the algorithm is described in Table 1.

Table 1: Inducing points selection and input space decomposition

Step 1 Separate points x into k sets s = (s1, ...,sk) through k-means based on locations of x

Step 2 Generate boundaries for the k set of data s = (s1, ...,sk) via SVM that gives the largest

separation between data set s to get the local regions {ri}i=1,...,k

Step 3 Further divide points si in each local region into clusters ci = (ci1, ...,ciφ ) based on a set of

contour lines L = {(x,y)|y = c} where c ∈ {ymin,ymin +∆, ...,ymax −∆,ymax}
Step 4 If ||xh − xk||> ||xl − xh||, ∀xh,xk ∈ ci j, ∃xl /∈ ci j, the cluster ci j will be further divided into

subclusters. Finally points in each subcluster are aggregated into inducing points

With this algorithm, two key points need to be specified, specifically the number of inducing points

and the number of regions. Here we recommend the number of inducing points selected to be under a

hundred (for computational efficiency), and the number of local regions to be no more than ten (for the

computational efficiency of the multiclass SVM classifier). This however has to be traded-off with the
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data size and the number of parameters to be estimated. In the numerical examples, we find that regions

divided such that the number of parameters is limited within ten work reasonably well.

3.2 Stochastic AGLGP

For stochastic simulation, the mean of the simulation output is modeled by

y(x) = f (x)+ ε(x) = fglobal(x)+ flocal(x)+ ε(x) (19)

where f (x) describes the mean of the process and ε(x) is the random noise. We assume ε(x)∼ N(0,σ2
ε (x))

and the error variance may depends on x. In stochastic simulation when replicates at each observation points

are observed, the sample mean of the replicates are typically used in model estimation. We denote the

sample mean and sample variance as y(xi) =
∑

r
j=1 y j(xi)

r
,v(xi) =

∑
r
j=1(y j(xi)−y(xi))

2

r−1
. Similar to the deterministic

case, the output of the stochastic AGLGP is also additive, with y = yg +yl. In this stochastic case, we still

assume no noise in the latent process yg. This is a reasonable assumption as the process is unobservable.

Then we have the distribution of yl as p(yl|x) = N(yl|0,Ln +Σε). The likelihood of a single point is then

given by

p(y|x,xg,yg,x,yl) = N(y|β0 +g′G−1
m (yg −β 0)+ l′(Ln +ΣεΣεΣε)

−1yl,λ + γ +σ2
ε (x)) (20)

The conditional distribution of yg and yl can be shown to be

p(yg|xg,x,y) = N(yg|β0 +GmQ−1
m GmnK−1(y−β0),GmQ−1

m Gm) (21)

p(yl|xg,yg,x,y) = N(yl|LnK−1{y−β0 −GnmG−1
m (yg−β 0)},Ln −LnK−1Ln +ΣΣΣε) (22)

where Qm = Gm +GmnK−1Gnm and K = Ln+Λ+ΣΛ+ΣΛ+Σε . Given a new input x∗, with (21) and (22), the

predictive distribution is obtained by integrating the likelihood function (20) to give

p(y∗|x∗,xg,x,y) = N(y∗|µ̂∗, σ̂∗2) (23)

where

µ̂∗ = β0 +[g′Q−1
m Gmn + l′(Ln +ΣΣΣε)

−1LnK−1(K−GnmQ−1
m Gmn)]K

−1(y−β0)

σ̂∗2 = Gnn −g′(G−1
m −Q−1

m )g+
(1−1′G−1

m g)2

1′G−1
m 1

+Lnn − l′[ΣΣΣε +Ln]
−1LnK−1Ln[ΣΣΣε +Ln]

−1l+σ2
ε (x

∗)

The predictor is still an unbiased predictor but is no longer an interpolator. The parameter estimation can

be similarly estimated based on the MLE method discussed in Section 3.1.2 but with Ln +ΛΛΛ is replaced

by K.

In the heterogeneous case where the random error is assumed to be independent but not identical,

variance information is not available to estimate σ2
ε (x

∗) unless the location has been previously observed.

Here we propose to model log(σ2
ε ) as a Gaussian Process. This natural log transformation has the nice

properties of approximating normality, stabilizing variance, and ensuring inverse transformation back to

the positive scale. The details can be found in Ng and Yin (2012).

4 NUMERICAL STUDY OF TEST FUNCTIONS

In this section, we study the performance of the model. We measure the prediction accuracy compared

with some existing approximation approach. The approximation methods compared includes FSA (Sang

and Huang 2012), localized GP model (i.e. local kriging), reduced rank approximation (Banerjee, Gelfand,

Finley, and Sang 2008) and PIC (Snelson and Ghahramani 2007).
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The implementation of all methods were conducted in MATLAB. As the implementations of the other

methods are not available, we wrote our own codes for PIC, FSA, local and reduced rank. Throughout the

numerical analysis, we used the Gaussian covariance function. All numerical studies were performed on

a processor with quad-core 3.3 GHz CoreTM i5 CPU and 8 GB memory.

Two test functions are applied. The first is a one dimension function y(x) = cos(100(x− 0.2))e2x +
7sin(10x) as shown in Figure 1. It has long lengthscale global trend and also local (shorter lengthscale)

variation. Computer experiments are simulated with three noise level functions, namely σe = 0, 5.5+
4.5sin(10x), 15.5+14.5sin(10x). 1000 sampled locations are taken and 20 replications are simulated at

each sampled location. The average mean squared error (IMSE) between the predictor and signal function

at N = 1000 unsampled points is used as the performance measure. Specifically in each macro replication

k, we observe MSE(k) = 1
N ∑

N
i=1(ŷ(xi)− y(xi))

2, and the average of the MSE based on M = 1000 macro

replications is used, IMSE = 1
M ∑

M
k=1 MSE(k). For FSA and PIC, we chose the same number of inducing

inputs as AGLGP and this differs in each macro-replication. The tapering scale of FSA is 0.2. PIC shares

the same decomposition method and same number of local regions five with AGLGP in this example.

Table 2: IMSE of approximation models with one-dimension test function

Model AGLGP Local FSA Reduced Rank PIC

σe = 0 0.0212 0.0208 0.0875 0.0982 0.0832

σe = 5.5+4.5sin(10x) 0.1542 0.1616 0.5365 0.6501 0.5292

σe = 15.5+14.5sin(10x) 1.6235 1.6491 1.8476 1.7622 1.6536

Table 2 summarizes the results. Furthermore, pair-wise t-test results show that the mean square

prediction errors for the AGLGP model and Local Kriging are statistically better than the other models

(FSA, PIC, Reduced Rank) at α = 0.05. The difference of the mean square prediction error between

AGLGP model and Local Kriging is not statistically significant at α = 0.05. However, the Local Kriging

suffers larger discontinuities on the boundary. Figure 3 illustrates the predictors outputs of AGLGP model

and LocalKriging model. From this figure, we can see obvious discontinuities of LocalKriging model at

the boundaries of local regions. The AGLGP model displays a much smoother fitted response.

Figure 3: Fitted one-dimension test function via AGLGP and LocalKriging

The second test function studied is the Six-Hump Camel function (4−2.1x2
1 +x4

1/3)x2
1 +x1x2 +(−4+

4x2
2)x

2
2. We randomly selected 400 input locations from the region [-2, 2]×[-2, 2]. The noise function

σe = 6+5sin(x1) is used and 20 replicates are taken at each input location. 6561 separate points are then

predicted and the mean square prediction error observed is 1.3897. The simulation results is shown in

Figure 4.

The left graph in Figure 4 is the predicted surface while the right is the error between the prediction

and the true value e = ŷ(x∗)− y(x∗). Compared to the noise variance level, we can see that the error is

small for most points unless the points located at the boundary of the whole region. Specifically, among
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Figure 4: Simulation for Six-Hump Camel function

all the 6561 predicted points, 4431 points have errors e ∈ [−1,1] while 6048 points have errors e ∈ [−2,2].
The result shows a good interpolation prediction with AGLGP model.

5 CONCLUSION

This paper proposes an additive global and local Gaussian Process (AGLGP) model to approximate the

response surface of computer models where large data sets are observed. The proposed AGLGP model

incorporates a global model and a local model, which combines to be a good approximation of a Gaussian

Process with a composite covariance structure. In addition to reducing the computational burden of large

data sets, the additive structure of the model is flexible and is able to capture nonstationarity features

of the computer models.The numerical study illustrate the performance of AGLGP with several other

approximating GP models, and the results of AGLGP are promising.

To further understand the performance advantages of AGLGP, an extension of this work is to conduct an

analytical comparison of the approximation components, including the covariance structure of the various

approximation models. Another related extension of this work is its potential application in simulation

optimization, where individual components of the additive model can be adopted to efficiently explore and

exploit the design space.

A UNBIASEDNESS

For the AGLGP model, given the model parameters, the predictive mean µ̂∗ can be expressed by µ̂∗ =

β̂0+(g′G−1
m Gmn + l′)R−1(y−1′β̂0), where R = G′

mnG−1
m Gmn +ΛΛΛ+Ln and β̂0 =

1′R−1

1′R−11
. µ̂∗ is also a linear

combination of y, i.e. µ̂∗ =
n

∑
i=1

λiyi,

λi =

[
1′R−1

1′R−11
+(g′G−1

m Gmn + l′)R−1(1−1′
1′R−1

1′R−11
)

]
ei

where ei = [0,0, ..., 1︸︷︷︸
the ith element

, ...,0,0];
n

∑
i=1

λi = 1. Hence, E[µ̂∗] = E[
n

∑
i=1

λiyi] =
n

∑
i=1

λiE[yi] = E[y(x∗)].
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