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ABSTRACT 

We develop a graphical method, namely the bivariate measure of risk and error (BMORE) plot, to 

visualize bivariate output data from the stochastic simulation. The BMORE plot consists of a sample 

mean, median, minimum/maximum values for each measure, an outlier, and the boundary of a certain 

percentile of the simulation data on a two-dimensional space. In addition, it depicts confidence regions of 

both the true mean and the percentile to show how accurate the two estimates are. From the BMORE plot, 

scholars, practitioners, and software engineers in simulation fields can understand the variability and 

potential risk of the simulation data intuitively, design simulation experiments effectively, and reduce a 

great deal of time and effort to analyze the simulation results. 

1 INTRODUCTION 

In the last decade, the simulation had more attentions to analyze complicated industrial and service 

systems under various uncertainties. Scholars, practitioners, and software engineers have developed 

numerous simulation software that can analyze the systems with cutting-edge techniques. Nevertheless, 

most results from the simulation software have focused on static numbers representing estimates of mean 

or long-run average values, and thus it is hard to intuitively understand risk measures from the results.  

 Since risk measures and their errors are important to understand uncertainties in the systems (Savage 

2009), simulation researchers and practitioners have studied how to visualize them effectively. For 

univariate output data, Nelson (2008) introduces a very intuitive and easy-to-implement plot, namely the 

Measure of Risk and Error (MORE) plot. The MORE plot shows not only the sample mean and 

percentiles but also their confidence intervals based on the histogram of simulation data. From the plot, 

the users can catch the ideas of measures of risk and errors immediately and intuitively. A commercial 

simulation software, SIMIO provides the MORE plot as a graphical presentation of simulation results 

from multiple across-replications (Kelton et al. 2014).  

Recently, many researchers have more interests in analyzing bivariate output data. Specifically, bi-

objective optimization problems and stochastically constrained problems require estimation of multiple 

performance measures. For example, Bekker (2013) formulates a buffer allocation problem as a bi-

objective optimization problem with two performance measures, the work-in-process (WIP) and the 

throughput. In addition, Park et al. (2014) considers a water quality monitoring network design problem 

as a stochastically constrained simulation optimization problem with two performance measures, the 

minimum elapsed time for contaminant detection and the probability of the detection in a real river 

system. When considering bivariate output data, one may want to know correlation and skewness, or 

decide whether we need more within and across replications or not. Therefore, it becomes necessary to 
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develop a graphical method to show simulation output data for two performance measures simultaneously 

in the two-dimensional space.  

 In this paper, we newly develop a bivariate MORE (BMORE) plot that enables users to see bivariate 

results from a stochastic simulation immediately. The BMORE plot consists of a sample mean, median, 

minimum/maximum values, outlier, and boundary of a certain percentile of the result data that are close to 

the median in the Cartesian coordinate. In addition, it provides confidence regions of the true mean and 

the percentile to show how accurate the estimates are. After introducing the structure of the BMORE plot, 

we present how to construct the BMORE plot. Then, based on simulation results of a buffer allocation 

problem as an example, we discuss the experimental results, followed by concluding remarks. 

2 THE BMORE PLOT 

The BMORE plot demonstrates simulation output data under two performance measures simultaneously. 

In this section, we introduce the main components of the BMORE plot. 

 Since one of the most popular methods to visualize a set of bivariate data is a scatter plot, the 

BMORE plot employs the format of the scatter plot. The BMORE plot uses the Cartesian coordinate with 

a horizontal axis for one measure and a vertical axis for the other measure. Each bivariate observation is 

plotted as a point in the coordinate. Based on the plot, we may roughly capture the variability of 

simulation data and the correlation between two performance measures. For example, Figure 1 (a) shows 

a scatter plot of 50 bivariate observations from a three-buffer allocation problem (Pichitlamken and 

Nelson 2003). In Figure 1 (a), one might recognize that two measures, the throughput and the cycle time, 

are positively correlated.  

 In terms of basic statistical analysis, the next step that naturally comes after drawing a scatter plot is 

finding the sample mean and median of the bivariate data. In Figure 1 (b), a plus symbol marks the 

sample mean, and a white circle marks the median. The difference between locations of the sample mean 

and median indicates how much the distribution of the data is skewed. In addition to the sample mean and 

the median, we draw a boundary of 100×ȕ% of data that are close to the median, where ȕ is a user-

specified value between 0 and 1. The boundary is called ȕ-bag, and the 0.5-bag for the three buffer 

allocation problem is shown as a bold line in Figure 1 (b). The ȕ-bag is a bivariate generalization of the 

percentile in the MORE plot (Nelson 2008) that considers two ranks of univariate data (i.e., observations 

with ranks ہn·0.25ۂ and ڿn·0.75ۀ where n is the number of simulation runs). If the ȕ-bag is large, the 

variability of the observation data is likely to be large, and thus users can perceive the future risk 

regarding two measures. In Figure 1 (b), star symbols represent outliers. The specific methods to draw the 

ȕ-bag and select the outliers are discussed in the following section.  

 Even though the sample mean and the ȕ-bag in the BMORE plot provide useful information about the 

central tendency, skewness and variability of the data, users may wonder how accurate the information is 

unless the number of across-replications is large enough. For the users, the BMORE plot shows 

confidence regions of the true mean and the ȕ-bag as shown in Figure 1 (c). Let Į be another user-

specified value between 0 and 1, representing a significance level of a confidence region. In Figure 1 (c), 

the region in light grey around the sample mean represents an approximated 100×(1-Į)% confidence 

region of the mean, and the region in dark grey represents an approximated 100×(1-Į)% confidence 

region of the 0.5-bag, where Į equals 0.05. (The detailed methods to construct the confidence regions of 

the mean and the ȕ-bag are discussed in the following section.) The BMORE plot also shows the 

minimum and maximum values of the observations for each measure as bold dotted lines as shown in 

Figure 1 (c). 
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(a) Scatter plot 

 

 
(b) Sample mean, median, and the 0.5-bag 

 

 
(c) Confidence regions of the mean and the 0.5-bag 

Figure 1: Construction of a BMORE plot. 
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3 CONSTRUCTION OF THE BMORE PLOT 

In this section, we describe specific methods to construct the BMORE plot. The BMORE plot consists of 

the sample mean, median, ߚ-bag, minimum/maximum values for each measure, outliers, and confidence 

regions of the true mean and the ߚ-bag on a scatter plot. Since the methods to obtain other values are 

trivial, we mainly focus on explaining how to construct the sample mean, the confidence region of the 

true mean, the ߚ-bag, and the confidence region of the ߚ-bag.  

3.1. Sample Mean and the Confidence Region 

Let X and Y be the two variables representing two performance measures that we are interested in. We 

define Z = (X, Y) and Zi = (Xi, Yi), representing the ith simulation observation of Z. When n is the number 

of across-replications of the simulation, Zi for i=1,2,…n are independent and identically distributed 

(i.i.d.). Then, we define a sample mean vector	܈ ൌ ሺXǡ Yሻ், where X ൌ ଵσ ܺୀଵ  and	Y ൌ ଵσ ܻୀଵ . 

 Regardless of the normality of Zi, ܈ follows an approximately bivariate normal distribution by the 

central limit theorem if n is large enough. Therefore, we use the Hotelling’s ܶଶstatistics to construct a 

confidence region of the true mean of	܈. Let ࣆ ൌ ሺߤ ǡ  ߤ  andߤ ሻ் define a true mean vector whereߤ

are the unknown true mean values of X and Y respectively. Then, from Mason and Young (2002), the ͳͲͲ ൈ ሺͳ െȘሻ% confidence region of the true mean is constructed by ࣆ  satisfying the following 

inequality: ൫܈ െ ܈൯்Ȋିଵ൫ࣆ െ ൯ࣆ  ଶሺିଵሻሺିଶሻܨሺଶǡିଶሻሺߙሻǡ                                  (1) 

where Ȋ	 is the variance-covariance matrix of Zi and ܨሺଶǡିଶሻሺߙሻ  is the ͳ െ ߙ  quantile of the ܨ 

distribution value with ʹ and ݊ െ ʹ degrees of freedom.  

 In the following subsection, we discuss the ߚ-bag and its confidence region. 

 bag and the Confidence Region-ࢼ .3.2

Since the distribution of the simulation observations is often unknown in practice, we first consider a 

nonparametric method to construct a ߚ-bag. Rousseeuw et al. (2012) develop a bivariate generalization of 

the univariate box plot, namely bag plot. The bag of the bag plot is designed to contain 50% of the data 

points near the median. Based on the bag plot, the ߚ-bag is designed to contain a certain percentage (i.e., ͳͲͲ ൈ  Ψሻ of data points near the median. As in the original bag plot, we define a set of all simulationߚ

observations in two-dimensional real space as Ȑ ൌ ሼࢆଵǡ ଶǡࢆ ǥ ǡ ሽࢆ  and use the same location depth 

function ݈݄݀݁ݐሺࣂǡȐሻ for some point ࣂ א Rଶ relative to Ȑ. The location depth function, ݈݄݀݁ݐሺࣂǡȐሻǡ 
represents the smallest number of simulation observations (i.e., ࢆଵǡ ଶǡࢆ ǥ ǡ  ) in Ȑ that are included byࢆ

any closed halfspace with a boundary line through ࣂ. See Tukey (1975) for an introduction to the location 

depth function ݈݄݀݁ݐሺࣂǡȐሻ and also see Rousseeuw and Tukey (1996) for a detailed algorithm for 

calculating the ݈݄݀݁ݐሺࣂǡȐሻ.  For a non-negative integer ݇, let ߉ be a set of ࣂ having ݈݄݀݁ݐሺࣂǡȐሻ ݇, and ͓߉ is the number of simulation observations ࢆ୧ in ߉ Ǥ		Note that ߉ ك  < ିଵ always hold for k߉

0. Then, we can find a ߚ-bag for bivariate observations by following the two steps: 

 

Step 1: Find k > 0 such that ͓߉  ݊ہ ή ۂߚ ൏ ିଵ߉͓ . 

Step 2: Linearly interpolate between ߉and   .ିଵ߉
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 The median is defined as the ࣂ with the highest location depth function value if such ࣂ is unique. If 

there are multiple ݏࣂ with the same highest location depth, the geometric center of the ࣂs is selected as 

the median. When we enlarge the 0.5-bag by a scale factor 3 relative to the median and define its 

boundary as fence, then the points located outside of the fence are marked as outliers.  

 A confidence region of a ߚ-bag consists of inner and outer boundaries. Let ߚ and ߚ be lower and 

upper bounds of ߚ with a significance level ߙ and ݊ observations, then ߚ and ߚ can be approximated by 

the followings equations (Nelson 2008): 

ߚ ൌ ߚ െ ܼଵ	ି	మഀටఉሺଵିఉሻିଵ 	 and  ߚ ൌ ߚ  ܼଵ	ି	మഀටఉሺଵିఉሻିଵ ǡ                                 (2)              

where ܼଵିఈȀଶ is the ͳ െ in the above steps, we can obtain inner and outer boundaries of the ͳͲͲ ߚ  instead ofߚ  andߚ  Ȁʹ quantile of the standard normal distribution. By usingߙ ൈ ሺͳ െȘሻ% confidence region 

of the ߚ-bag, respectively. 

 As a special case, if the observation data follow a bivariate normal distribution or if the simulation 

observations are either within-replication averages with enough simulation or batch means, we can use 

the Hotelling’s ܶଶ statistic to construct an approximated ߚ-bag and its confidence region instead of the 

non-parametric methods. In order to assess if observations are normally distributed, numerous tests 

including the Shapiro-Wilk test, the Kolmogorov-Smirnov test, and Anderson-Darling test are available. 

In this case, similar to the construction method in Section 3.1, an approximated ߚ-bag can be defined by 

the boundary of a set containing all Z values satisfying the following inequality (Mason and Young 

2002):  ൫ࢆ െ ࢆ൯்Ȋିଵ൫܈ െ ൯܈  ଶሺାଵሻሺିଵሻሺିଶሻ  ሻǤ                                (3)ߚሺଶǡିଶሻሺܨ

 In order to obtain the inner and outer boundaries of the ͳͲͲ ൈ ሺͳ െȘሻ% confidence region of the ߚ-

bag, one can insert ߚ and ߚ from (2) instead of ߚ to the inequality (3). Note that constructing ߚ-bag 

with the Hotelling’s ܶଶ statistic under the normality assumption is much faster than constructing ߚ-bag 

with the location depth function under the non-normality assumption. 

4 EXPERIMENTAL RESULTS 

As a test problem, we examine a three-buffer allocation problem (Buzacott and Shanthikumar 1993) to 

see how the BMORE plot works. Figure 2 shows the basic structure of the system having three buffers. In 

the problem, x1, x2, and x3 represent service rates of the server 1, 2, and 3, and x4 and x5 represent the 

buffer sizes in front of the servers 2 and 3 respectively. Service rates and buffer sizes are assumed to be 

integers. We assume that all service times are exponentially distributed, and an infinite number of jobs 

exist in front of the server 1. If the buffer of station i is full, then the server i-1 is blocked, and the finished 

job on the server i-1 cannot move into the station i. Under the constraints on the total buffer size (i.e., x4 + 

x5 ≤ 20) and total service rate (i.e., x1 + x2 + x3 ≤ 20) for the stations, Pichitlamken and Nelson (2003) 

finds an optimal design, (x1, x2, x3, x4, x5) = (7, 6, 6, 8, 12), for the maximum averaged throughput. 
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Figure 2: Three-buffer allocation problem. 

 In this section, we show the BMORE plots with the design, (x1, x2, x3, x4, x5) = (7, 6, 6, 8, 12), when 

considering the averaged throughput and the averaged cycle time as performance measures. After 

discarding the first 2000 units simulated for a warm-up period, the throughput and cycle time are 

averaged over the subsequent m units released (i.e., the number of the within-replications is m). Let n 

represent the number of simulation runs (i.e., the number of the across-replications). We perform the 

simulation with four different choices of (m, n) and then depict the BMORE plots for Ș = 0.05 and ߚ = 

0.5. 

 When assuming the non-normality of the simulation observations, we draw the BMORE plots based 

on the nonparametric method as in Figure 3. As the number of within-replications, m, increases, the 

variance of observation data decreases under both performance measures, and the (negative) correlation 

between two measures becomes clearer. Outliers are marked by star symbols in the figure. As the number 

of across-replications, n, increases, the confidence regions become smaller, and thus we get more accurate 

estimates of the mean and the 0.5-bag. Note that the shapes of the ߚ-bag and the boundaries of the 

confidence region of the 0.5-bag are different and the shapes change as the number of observations 

changes. The number of points in the 0.5-bag is almost exactly a half of the total number of observations. 

Similarly, inside areas of the inner and outer boundaries of the confidence region of the 0.5-bag also 

include almost exactly ݊ہ ή ݊ہ and ۂߚ ή  .number of observations respectively ۂߚ

 When assuming the normality of the simulation observations (although this assumption might not 

appropriate for the three-buffer allocation example with small m and n), the BMORE plot based on the 

Hotelling’s T2 statistic can be used to approximate the ߚ-bag  and its confidence region and the results are 

shown in Figure 4. In Figure 4, the features except the 0.5-bag and its confidence region remain same as 

in Figure 3. When compared to the piecewise-linear shapes in Figure 3, the shapes of the 0.5-bags and the 

boundaries of their confidence regions change to ellipses in Figure 4. Note that the sizes of the ellipses 

change as m or n changes but the two boundaries of the confidence region of the ߚ-bag are evenly apart 

from the ߚ-bag under all pairs of m and n. For small m and n, the BMORE plots based on the location 

depth function and the Hotelling’s ܶଶ statistic look different from each other as in Figure 3 (a) and Figure 

4 (a), while they become more similar as m and n increases. Especially, for  small n (i.e., n=25), the 

BMORE plot Figures 3 (a) and (b) show that the confidence region of the true mean is partly overlapped 

by the confidence region of the 0.5-bag, while Figures 4 (a) and (b) show that no overlapped region exists 

between two confidence regions. As a result, the BMORE plot based on the location depth function 

enforces users to increase the number of across replications to get a more accurate sample mean and 0.5-

bag, while the BMORE plot based on the Hotelling’s T2 statistic can hardly provide such information. 

5 SUMMARY AND CONCLUSION 

We develop a new chart, namely the BMORE plot, to depict the variability and the measures of risk and 

error for bivariate simulation observation data. The BMORE plot consists of the sample mean, median, 

minimum/maximum values, outliers, ߚ-bag, and confidence regions of the mean and the ߚ-bag on the 

scatter plot.  

 By using the method in Section 3.2, the users can construct their ߚ-bag and its confidence region no 

matter what distribution the observation data follow. However, if the simulation observation is either 

within-replication averages or batch means with enough simulation length and the number of simulation 

observations is large enough, then the ߚ -bag and its confidence region can be constructed by the 

Hotelling’s ܶଶ statistic.  

 Compared to many conventional simulation results providing a list of static numbers (such as sample 

means, long-run average values, standard deviations, and minimum/maximum values), the BMORE plot 

considers risk measures in addition to the static results and visualize them effectively for bivariate 

simulation output data. The BMORE plot does not make users spend a great deal of time to analyze the 
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static numbers. Instead, by using the BMORE plot, the users may catch the idea of measures of risk and 

error at a glance and understand the potential risks as well as the setting of simulation experiments 

efficiently. If repeatedly applied to different sets of performance measures, the BMORE plot can be used 

as a tool to analyze the measure of risk and error for multivariate observation data as well. In this case, the 

setting of ߚ for an overall error rate needs to be adjusted. 

 

 

 

 

(a) m=10 and n=25 

 

(b) m=100 and n=25 

 

(c) m=10 and n=100 

 

(d) m=100 and n=100 

Figure 3: BMORE plots with the non-normality assumption. 
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(a) m=10 and n=25 

 

(b) m=100 and n=25 

 

(c) m=10 and n=100 

 

(d) m=100 and n=100 

Figure 4: BMORE plots with the normality assumption. 
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