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ABSTRACT

This work extends current research in model analysis and program understanding to assist modelers in

obtaining additional insight into their models and the systems they represent. Given a particular simulation

implementation, this research demonstrates the feasibility of automatically-derived observations that could

potentially enhance a model builder or model user’s understanding of their models. One significant point of

this research is that the newly-created tools do not necessitate that a modeler be able to encode the model,

modify or add code, or even have a technical background. Another key point is focus on model aspects

rather than simulation aspects: the model itself is detailed rather than the simulation implementation code.

Results indicate these tools and techniques, when applied to even modest simulation models, can reveal

aspects not previously apparent to builders or users of the models. This work provides modelers with

additional techniques that can enhance understanding.

1 INTRODUCTION

It is often stated by users of simulation that its primary benefit is not necessarily the data produced, but

the insight that building the model provides. Paul et al. discuss this in (Paul, Eldabi, Kuljis, and Taylor

2005), noting that “[s]imulation is usually resorted to because the problem is not well understood.”

Simulation is used increasingly throughout research, development, and planning for many purposes.

While model output is often the primary interest, insights into the system gained through the simulation

process can also be valuable. These insights can come from building and validating the model as well as

analyzing its behaviors and output; however, much that could be informative may not be easily discernible

through these traditional approaches, particularly as models continue to increase in complexity.

A prime problem with model descriptions, whether in textual or graphical notations, is that even in

simple models, embedded descriptions are often difficult to fully comprehend. Source code involves many

issues unrelated to the model itself, such as data collection, animation, and tricks for efficient run-time

behavior; coupled with difficulties in programming language, model details can be particularly opaque to

most modelers.

For some systems and the models that represent them, recognizing interactions among components

provides useful information about the systems. Often these interactions occur indirectly and usually with

time delays between cause and effect. These interactions might not be easily noticed when observing

animations of the simulations and are often not captured by the data typically collected and reported

at the conclusion of simulations. Understanding the reasons for behaviors is an often unstated goal of

simulation activities. This additional insight may also reveal modeling errors and implementation errors

(the implemented model is inconsistent with the conceptual model), though these are not a focus of this

research.
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Insights can arise from many sources. One can be surprised to discover relationships among seemingly

unrelated events. One can gain insight when something that is expected to happen does not occur, or when

something that is not expected to happen does occur. Sometimes events can happen with regularity or in

groupings that may not be noticed by a modeler and may reveal important aspects of the simulated system.

Often these facts are not immediately obvious, particularly in large simulations (Overstreet and Levinstein

2004, Nance, Overstreet, and Page 1999). Anecdotal reports from modelers support the frequent difficulty

of detecting important aspects of their models which when pointed out are quite useful.

This work describes research to better inform modelers about their models, extending current work in

model analysis and program understanding with the goal of assisting modelers in obtaining more insight into

their models and the systems they represent. To explore these potentials, we use a simulation implementation

that facilitates and enables the use of several beneficial analysis techniques. A primary technique for model

understanding is analysis of model output; this research has developed new, complementary techniques.

Some of these techniques are known but have not been applied to modeling issues in the simulation

community.

Results indicate these code analysis techniques, when applied to even modest simulation models, can

reveal aspects of those models not readily apparent to the builders or users of the models. These analyses

can often reveal important aspects of systems that are not readily observable in model-driven animations or

even in examining data produced during simulation execution. This work has provided both model builders

and model users with additional tools that can give them improved understanding of their models.

2 SOLUTION FRAMEWORK

It is often difficult to separate code that defines the model – and hence is likely of primary interest to a

modeler – from code that is present in order to run a simulation – for example, the details of adding events

to lists. A modeler, as defined here, is the curator of the model; s/he may or may not be the programmer

who realizes the model into the computer, and may or may not have programming expertise. A model

user is one who uses the simulation to meet some objective, perhaps such as trying to better understand

the system at hand, designing, training, or evaluating different scenarios.

One significant point of this research is that the created tools do not necessitate that a modeler or

model user be able to encode the model or have any coding expertise, but simply supply the original model

definition file and execute a command. Some of the information presented here could be produced by

existing software development tools but many modelers today do not have the technical background to use

these tools or to make use of the reports such tools can produce.

These newly-created tools – detailed in Section 3 – can help modelers, model builders, and model users

better understand their models by showing what causes what as well as producing concise summaries of

key model structures that allow modelers to direct their attention to aspects not generally discernible from

current simulation output.

2.1 The Condition Specification

Different ways of describing a model lend themselves more easily to different types of analyses. The condition

specification is a way of describing a model that lends itself to and is the basis for many model analyses (Nance

and Overstreet 1987, Page and Nance 1999). It was created to facilitate automated transformation among

the classical world views of event scheduling, activity scanning, and process interaction. Serendipitously,

supporting these transformations requires a representation that also enables several forms of useful diagnostic

and informative analysis. The diagnostic capabilities of the condition specification are detailed in (Overstreet,

Page, and Nance 1994, Nance, Overstreet, and Page 1999); an overview of its structure is described herein.

In a condition specification, a model consists of a set of objects. The state of each object is captured

in a set of object attributes. Model execution consists of a sequence of changes to object attributes. While

a complete condition specification has several components, the transition specification is of immediate
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interest here. A transition specification describes what triggers attribute changes and how new values for

them are assigned. The triggers are called conditions and the changes are called actions. A collection of

model actions that must always occur atomically is called an action cluster (AC).

For example, consider the classical traveling repairman problem (described below). Examples of objects

would be the repairman and facilities. One object attribute for the repairman might include whether he is

busy or idle. An example of a transition in a transition specification might be:

Condition: the repairman arrives at a facility in need of repair

Action cluster: begin repair: set repairman status to busy; schedule end repair.

There are different types of conditions. Those that only depend on the value of simulation time are

called time-based, or alarms. Those that depend on object attributes not including simulation time (e.g.,

based on conditions) are called state-based.

Each transition specification must have an initialization action cluster and a termination action cluster.

The initialization action cluster occurs exactly once, at start-up. It may schedule one or more alarms for

future times or it may change the values of object attributes so that some condition becomes true. The

simulation proceeds accordingly with actions causing varying conditions to become true, either in the same

instant as the action occurrence or at a future simulation time using alarms.

2.2 Action Clusters, Interaction Graphs

As stated above, an action cluster is a collection of model actions that must always occur atomically.

Continuing the traveling repairman example, whenever begin repair occurs, setting the repairman status to

busy and scheduling end repair occur as an indivisible unit.

Action clusters can be studied to create action cluster interaction graphs (ACIGs) (Nance, Overstreet,

and Page 1999). The main purpose of this type of graph, derived from source code, is to show which events

can cause which events. When given an unfamiliar model to modify or use, modelers and model users

traditionally examine text output, source code, and perhaps animations if available. Animations aside, most

analyses are not particularly visual, a shame since pictures can help us build mental models (Glenberg and

Langston 1992) – in this context, a mental model of the encoded model.

In an action cluster interaction graph, nodes represent action clusters (events) and directed edges

represent the ability of one action cluster to directly cause the occurrence of another action cluster – that

is, an edge leads from AC 1 to AC 2 if the actions of AC 1 can cause the condition of AC 2 to become

true either at the same instant as AC 1 or at a future instant (through scheduling an alarm). If an action

cluster can schedule an action cluster, that is represented by a dashed line; if an action cluster could trigger

an action cluster at the same simulation time, that is represented by a solid line.

3 TOOLS FOR ENHANCING UNDERSTANDING

Observing and analyzing the behaviors produced by a simulation are the usual techniques for improving

understanding of a system being simulated. Different kinds of approaches yield different potential discoveries.

Some analyses can tell the modeler about the model; others can uncover potential errors in the model

(coding or otherwise).

Both static and dynamic analysis techniques offer different and complementary insights; the newly-

created tools discussed below use both static and dynamic techniques. These techniques have a long history

of use in the computer science community and software engineering community. Code optimization,

automated generation of some types of documentation, checking that an implementation conforms to a

design, and reverse engineering all use a combination of these techniques, as does this research.
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3.1 Tool(s) Overview

A tool/suite of tools has been newly created to address these needs. There are seven functionalities:

• Creation of an extensive simulation log

• Addition of trip lines

• Identification of scheduled and triggered events

• Creation of event summaries

• Creation of the static action cluster interaction graph

• Creation of the tallied dynamic action cluster interaction graph

• Creation of a dynamic action cluster interaction graph flip book.

The original simulation output is never modified or supplemented; separate files are created by the

tools. Each functionality is discussed below.

To run the tools, a single Python command is executed; alternatively, each functionality can be executed

individually, also (each) with a single command. With the exception of trip lines (one line of code per

request), no programming or any modification is needed. The tools are not yet general purpose such that

they can be used with any given simulation written in any programming or simulation language; however,

they allow exploration of the feasibility of analysis to supplement what many simulations produce.

3.2 Example: Traveling Repairman

A simulation of the classical traveling repairman model is used to demonstrate the created tools. In the

model (Cox and Smith 1961), a repairman tends to a number of machines which fail over time and need

repair. This model can be used to study how many machines or repairmen are needed, effects of machine

modifications, and production rates.

3.3 Simulation Log

Using dynamic analysis, an extensive simulation log is generated that notes each action and the simulation

time.

Many simulations are programmed to print final usage statistics, utilization, etc.; however, this log is

generated without any user action or programming effort (such as including output print statements).

While the log can be examined by the modeler and is informative in its own right, it is used by most

of the other tools to present summary information. For a typical simulation, the size of the log makes

noticing issues of interest more difficult.

The created simulation log is parsed to create a screen- and printer-friendly version of the log as well.

In the example below, the original simulation output included the execution frequency of each action

cluster and run statistics such as utilization and repairman travel time.

Original, complete, unmodified simulation output:

Run 0

Frequency count of AC executions

AC procId Frequency

0 1

1 1

2 2001

3 2000

4 2000

5 1351
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6 1351

7 2000

Termination! System time: 73612.47

Repairman utilization: 39.72

Repairman total work time: 16203.31

Repairman total travel time: 13035.50

Number of repairs: 2000

Part of the newly- and automatically-generated log:

Run 0

time: description

0.000000: initialization

0.000000: initialization scheduled failure for time 0.004378
...

0.004378: failure

0.004378: (repairman.status == IDLE && SomeFailed()) triggered

travel_to_facility

0.004378: travel_to_facility

0.004378: travel_to_facility scheduled begin_repair for time 3.504378

3.504378: begin_repair

3.504378: begin_repair scheduled end_repair for time 8.913395

8.913395: end_repair

8.913395: end_repair scheduled failure for time 251.966998

8.913395: (mrp.num_failed_facilities == 0 && repairman.status == IDLE

&& repairman.location != idle_loc) triggered travel_to_idle
...

73612.466229: (repairman.num_repairs >= mrp.max_repairs) triggered

termination

73612.466229: termination

By examining this simulation log, a modeler might learn that the simulation starts by scheduling the

first machine failures, or that the repairman traveled to the idle location only a few times, observations that

are not readily apparent from the simulation output.

3.4 Trip Lines

A “trip line” concerns any boolean expression of model variables of which the modeler wants to be notified

the first time it is passed – for example, if a queue length becomes greater than 10 or a wait time becomes

greater than one hour. This could also be used to note other user-defined criteria.

The modeler can add a special line (or lines) anywhere in the simulation code indicating what variable(s)

and/or condition(s) s/he would like to be noted. Two options are available: trip when(condition) or

trip when(condition, reset condition). In the first case, if the condition becomes true, that is noted in

the simulation log; this trip line can be tripped exactly once. In the second case, if the condition becomes

true, that is noted in the simulation log; if the reset condition becomes true, that is also noted in the

simulation log, the trip line is reset and can be tripped again.

Trip lines are an optional addition of a single, simple line of code per request that requires no knowledge

of output, output formatting, or finding everywhere a change might occur, and allows a modeler to easily
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check whether situations that may be of interest actually occur.

From the simulation code (programmer added the trip when):

/* 10,000 hours to become an expert myth */

trip_when(repairman.work_time >= 10000.0);

From the automatically-generated simulation log:

...

44072.318287: begin_repair

44072.318287: begin_repair scheduled end_repair for time 44097.771914

44072.318287: ! trip line tripped: (repairman.work_time >= 10000.0)
...

3.5 Scheduled and Triggered Events

While many code coverage tools can aid programmers in detecting unexecuted components, a significant

point of this research is to assist modelers and model users that may not be interested or comfortable in

learning to use or exploit such tools. In addition, the results of such tools often include much that is not

pertinent to the model itself, but rather its implementation – not likely to be of interest to the modeler

and worse, might obfuscate information that is of interest. Combining this with interest in model analysis

rather than simulation analysis yields a tool that creates a list of all scheduled, unscheduled, triggered, and

untriggered events.

This list can be informative by possibly identifying unanticipated effects previously unrecognized by

the modeler. They can also serve a diagnostic purpose if a list omits events the modeler knows should be

included, or includes events the modeler knows should not be included.

From the tool:

during the simulation run:

scheduled events:

arrive_idle

begin_repair

end_repair

failure

unscheduled events:

termination

travel_to_facility

travel_to_idle

triggered action events:

termination

travel_to_facility

travel_to_idle

untriggered events:
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∼ none ∼

In this case, for example, if travel to idle did not occur, it could indicate a busy repairman, a coding

error, or a modeling error.

3.6 Event Summaries

In a simulation, different types of statistics can be of interest: some are general – for example, how often

an event occurs; some are model-specific – for example, how often a particular machine is in use; and still

others are implementation-specific – for example, how often a condition queue is empty.

Using dynamic analysis, total simulation time and a summary with respect to each event are tallied and

presented for each simulation run. For each event in the run, its number of occurrences, events scheduled,

number of times scheduled, events triggered, and number of times triggered are presented.

In a prior local simulation study, a modeler was studying trace data produced during simulation exe-

cutions. It happened to be noticed that the events that occurred could be divided into a small number of

groups based on the number of times each event occurred; every event in each group occurred the same

number of times. This observation revealed a structure of the model – and the system it represented – that

had not been previously recognized – a fundamental insight revealable through these created tools.

From the tool:

Run 0

Total simulation time: 73612.466229

Events:

initialization

occurrences: 1

events scheduled:

failure: 12 times

events triggered:

∼ none ∼

begin_repair

occurrences: 2000

events scheduled:

end_repair: 2000 times

events triggered:

∼ none ∼

end_repair

occurrences: 2000

events scheduled:

failure: 2000 times

events triggered:

termination: 1 time

travel_to_facility: 648 times

travel_to_idle: 1351 times
...
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3.7 Static Action Cluster Interaction Graph

As discussed in Section 2.2, the main purpose of this type of graph is to show which events can cause

which events.

The action cluster interaction graph is automatically generated by the tool (Figure 1, below). This also

provides potentially useful model documentation.

initialization

failure

termination

travel_to_facility

begin_repair

end_repair

travel_to_idle

arrive_idle

Figure 1: Generated graph: traveling repairman static action cluster interaction graph

3.8 Tallied Dynamic Action Cluster Interaction Graph

Using both static and dynamic analysis, the action cluster interaction graph is automatically generated,

with edges labeled according to event frequency during a given run (Figure 2, below).

From static analysis, one may discover that event A can cause event B, but dynamic analysis often

can reveal specifics of which events caused which events – that is, which event caused a particular event,

and which event(s) a particular event caused – which cannot always be determined prior to run-time. In

combination, if static analysis suggests that event A can cause event B, but dynamic analysis reveals this

is not observed, this may be of interest.

Given an arbitrary condition specification, the automatic creation of a static ACIG with a minimum

number of edges is unsolvable (Nance, Overstreet, and Page 1999); these superfluous edges are misleading

as they suggest a false causal relationship between events. Edges labeled “0” in the tallied dynamic ACIG

can guide modelers to consider if these edges are superfluous – perhaps through additional, non-automated

analysis of the model – or if this interaction just did not occur during this particular run.
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run 0

initialization

failure

 12 

termination

travel_to_facility

 62 

begin_repair

end_repair

 100 
 1 

 100 

travel_to_idle

 68 
 31 

arrive_at_idle

 68 

 7 

 100 

Figure 2: Generated graph: traveling repairman tallied dynamic action cluster interaction graph

3.9 Dynamic Action Cluster Interaction Graph Flip Book

A dynamic ACIG is created for every time step of the simulation run; these are then combined into a

multi-page document that can be flipped through. This provides an initial visual representation of the entire

simulation run and a basis for future animation.

Being able to study specific run interactions in a clear, visual way contributes additional possibilities

for insight that are not as easily discernible from text-based output. The flip book provides the ability for

a modeler to focus on particular periods of time or particular event sequences.

4 EVALUATION

The crux of this research was to create and present automatically-derived observations that could potentially

enhance a modeler or model user’s understanding, that would not necessitate that s/he have programming

expertise or even a technical background. As modeling and simulation continues to be used increasingly

often in research and as models continue to increase in complexity, these types of analyses and tools will

continue to be an important contribution.

Another significant aspect of this is the focus on model aspects rather than simulation aspects. Source

code tends to involve many issues unrelated to the model itself, such as data collection, animation, and

tricks for efficient run-time behavior. Even when the modeler is an expert programmer, this other code

often can obscure features of the model as implemented.

4.1 Simulation Log

Many simulations are programmed to generate execution traces, final usage statistics, perhaps animations,

etc.; however, the first contribution of this log is its generation with no user action or programming effort.

The amount and kinds of detail provided in the log are a helpful contribution in and of themselves –
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possibly providing a modeler with additional insights into the behavior of the model they have created or

are using – as well as an additional resource for the other created tools.

For example, consider the simulation output of the repairman model in the first part of Section 3.3:

as with most simulations, it is designed to answer a few specific questions based on modeling objectives.

However, studying the simulation log (second part of Section 3.3), one can see that immediately after the

failure at time 0.004378, (repairman.status == IDLE && SomeFailed()) triggered travel to

facility, information that is not available otherwise.

Similarly, at the end of the simulation, why did the simulation terminate? Considering the simulation

log, one can determine that the maximum number of repairs was reached: (repairman.num repairs

>= mrp.max repairs) triggered termination.

Additionally, for someone with expertise, the simulation log is more readily searchable with regular

expressions than most standard simulation output.

4.2 Trip Lines

Trip lines are an optional addition of a single, simple line of code per request that requires no knowledge

of output, output formatting, or finding everywhere a change might occur, allowing a modeler to easily

check whether situations that may be of interest actually occur.

The benefits of using a trip line over, say, general if statements include not having to find everywhere

a variable or variables are changed and hence the condition might change; clarity and integration with

the simulation log; and the aforementioned non-requirement of programming expertise. Trip lines can be

simply configured to trip exactly once or tripped and reset, neither of which can be accomplished with

only a (set of) print statement(s).

The availability of trip lines can increase understanding of the embedded model and more importantly,

the system it represents.

4.3 Scheduled and Triggered Events

The scheduled and triggered event lists can be informative by possibly identifying unanticipated effects

previously unrecognized by the modeler. They can also serve a diagnostic purpose if a list omits events the

modeler knows should be included, or includes events the modeler knows should not be included. While

existing software tools, such as gcov, can be used to provide some similar information, these lists omit

much from gcov-like tools that is unlikely to be of interest to a modeler and instead focus on model

behavior.

Similarly, consider Section 3.5, scheduled and triggered events with respect to the traveling repair-

man: one can note that termination can be either scheduled or triggered. Perhaps in the batch of runs

under consideration, the simulation always terminates after a certain number of repairs ((repairman.

num repairs >= mrp.max repairs) triggered termination, from the simulation log in Sec-

tion 3.3) – that is, termination is always triggered. However, it could be insightful to know that the

simulation also could be scheduled to end (perhaps the machines fail less often, causing the repairman

to make fewer repairs) – something not necessarily discernible from any arbitrary batch of runs but now

obvious.

4.4 Event Summaries

As discussed in Section 3.6, having concise, useful summary information about model components has

already revealed model structure in some models that had not been previously recognized.
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4.5 Static Action Cluster Interaction Graph

Being able to follow how model components can interact is a significant part of understanding the model itself.

The static ACIG presents these possible interactions in a clear, visual way that is not easily discernible

from usual simulation output. This additional information is unlikely to be detected by executing the

simulations and contributes to the insights gained by modeling a complex system. These graphs have

been discussed previously (e.g., (Nance, Overstreet, and Page 1999)) but were created manually; though

concerning relatively simple models and multiply-reviewed, many of these manually created graphs were

found later to have errors. This is another compelling argument for such automation.

Additionally, while not exemplified here, some analyses can be based on visual inspection of the

static ACIG that are not easily noticed otherwise. For example, the only event that has no successors is

termination. If visual inspection reveals that another event has no possible successors, this may warrant

additional consideration: it may be included in anticipation of future development or a result of code

reuse; or could indicate an error in either coding or specification rather than a characteristic of the system

represented.

4.6 Tallied Dynamic Action Cluster Interaction Graph

Being able to follow how model components interact during a particular simulation run can also enhance

model understanding. The tallied dynamic ACIG combines the insights of the static ACIG with those of

each event summary during the simulation run, again, in a clear, visual way.

Not obvious from only the text-based event summaries or the static ACIG, though, is the possibility

of superfluous edges and which edges may be such; these edges are misleading as they suggest a false

causal relationship between events. Edges labeled “0” in the tallied dynamic ACIG can guide modelers to

consider if these edges are extraneous or if this interaction just did not occur during this particular run,

enhancing understanding of the model and the system it represents.

4.7 Dynamic Action Cluster Interaction Graph Flip Book

The dynamic ACIG flip book provides a visual representation of the entire simulation run. Again, being

able to study specific run interactions in a clear, visual way contributes additional possibilities for insight

that are not as easily discernible from text-based output. The flip book provides a first cut at animating this

output and the ability for a modeler to focus on particular periods of time or particular event sequences.

For example, consider the combination of the flip book with trip lines: when a line is tripped, exploring

the flip book can give a clear picture of the preceding events. Often, animations in and of themselves are

not particularly useful if they are without navigation tools to enable exploration: dealing with the wealth of

data available (graphically or otherwise) can often overwhelm and obscure useful information. Being able

to choose a particular time or event – say, when a trip line tripped – and being able to consider specifically

the surrounding simulation events can contribute to better understanding.

5 SUMMARY

The automated analysis of model specifications is an area that historically has received little attention

in the simulation research community but which can offer significant benefits. This is particularly true

for analysis intended to provide modelers and model users additional information about their models. A

usual goal in simulation is enhanced understanding of a system; model analysis can provide insights not

otherwise available. This work developed new approaches for the simulation community to complement

current methods used to gain insights into models, their behaviors, and the systems they represent.

The contribution of this research is the demonstration of the feasibility of automatically-derived

observations that could potentially enhance a modeler or model user’s understanding, that does not necessitate

that the modeler have programming expertise or even a technical background. While some of the information
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presented here could be produced by existing software development tools, many modelers today do not

have the technical background to use these tools or to make use of the reports such tools can produce.

Another key point of this work is the focus on model aspects rather than simulation aspects. As modeling

and simulation continues to be used increasingly often in research and as models continue to increase in

complexity, these types of tools will become increasingly helpful.

Automatic tools have been newly-created and demonstrated to reveal new insights into models and

the systems they represent. These tools include an extensive simulation log; trip lines; scheduled and

triggered events; event summaries; static action cluster interaction graph; tallied dynamic action cluster

interaction graph; and dynamic action cluster interaction graph flip book. This work demonstrates that

using a particular simulation implementation, the automatic generation of new information is feasible.
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