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ABSTRACT

We develop new point estimators for the variance parameter of a steady-state simulation process. The

estimators are based on jackknifed versions of nonoverlapping batch means, overlapping batch means,

and standardized time series variance estimators. The new estimators have reduced bias—and can be

manipulated to reduce their variance and mean-squared error—compared with their predecessors, facts

which we demonstrate analytically and empirically.

1 INTRODUCTION

A fundamental goal in simulation output analysis is the estimation of the unknown mean µ of a steady-state

simulation-generated output process, {Yj : j = 1,2, . . . ,n} . The obvious point estimator for this task is the

sample mean, Y n ≡ n−1 ∑
n
i=1Yi. It also proves useful to get a handle on the sample mean’s variability, so a

long-standing area of research has involved estimating the measure σ2
n ≡ nVar(Y n) or (almost equivalently)

the variance parameter, σ2 ≡ limn→∞ σ2
n = ∑

∞
j=−∞ R j, where the covariance function R j ≡ Cov(Y1,Y1+ j),

for j = 0,1, . . .. Knowledge of σ2 helps us to make precision and confidence statements about Y n as an

estimator for µ .

Over the years, a significant literature has developed with the problem of estimating σ2 in mind,

for example, the methods of nonoverlapping batch means (NBM) (Schmeiser 1982), overlapping batch

means (OBM) (Meketon and Schmeiser 1984), and standardized time series (STS) (Schruben 1983). These

methods typically divide the time series {Yj : j = 1,2, . . . ,n} into possibly overlapping batches of size

m, and calculate estimators for σ2 that have been proven to be consistent as m and b ≡ n/m both go to

infinity—that is, the mean squared errors (MSEs) of these estimators go to zero as m and b →∞.

Broadly speaking, the batch size m governs the bias component of the estimator’s MSE, while the

quantity b most directly affects the variance component of MSE (Goldsman and Meketon 1986, Song and

Schmeiser 1995, and Aktaran-Kalaycı et al. 2011). When the budget n is fixed, one faces the classical

bias-variance trade-off when selecting m and b. The goal of this paper is to use simple jackknifing technology

to facilitate large reductions in bias at the price of only modest increases in variance—the result of which

will be improved MSE.
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This article is organized as follows. We present background material in Section 2 to introduce the

NBM, OBM, and STS variance estimators that will be used in the sequel. The main jackknifing results for

these estimators are given in Section 3. A comparison of the various estimators is undertaken in Section

4. Conclusions and ongoing work are detailed in Section 5.

2 BACKGROUND

In this section, we define the NBM, OBM, and STS estimators for σ2.

2.1 Nonoverlapping Batch Means Estimator

Here we divide the steady-state output {Yj : j = 1,2, . . . ,n} into b contiguous, nonoverlapping batches of

observations, each of length m, where we assume that n = bm. Thus, the ith nonoverlapping batch consists

of observations {Y(i−1)m+k : k = 1,2, . . . ,m} for i = 1,2, . . . ,b. We define the nonoverlapping batch means

by Y i,m ≡ m−1 ∑
m
k=1Y(i−1)m+k, for i = 1,2, . . . ,b. It is well known that under mild moment and mixing

conditions, these batch means can be regarded as approximately independent and identically distributed

(i.i.d.) normal random variables as the batch size m increases. This immediately allows us to use the scaled

sample variance of the batch means as the NBM estimator for σ2 (Glynn and Whitt 1991, Steiger and

Wilson 2001),

N (b,m) ≡ m

b−1

b

∑
i=1

(Y i,m −Y n)
2 ⇒

σ2χ2
b−1

b−1
as m →∞,

where the symbol ⇒ denotes convergence in distribution and χ2
ν is a χ2 random variable with ν degrees

of freedom. Under mild conditions, several papers (e.g., Chien, Goldsman, and Melamed 1997, Goldsman

and Meketon 1986, Song and Schmeiser 1995) find the expected value of the NBM estimator. For instance,

consider the following standing assumption.

Assumption A: The process {Yj} is stationary with mean µ and exponentially decaying covariance function

|R j|= O(δ j) for some δ ∈ (0,1), so that

∞

∑
j=m

jℓ|R j| = O(mℓδ m) and
m

∑
j=1

jℓR j =
γℓ
2
+O(mℓδ m) for ℓ= 0,1,2, . . .,

where the “Big-Oh” notation g(m) = O(h(m)) means that for some finite constants C and m0, we have

|g(m)| ≤C|h(m)| for all m ≥ m0, and where γℓ ≡ 2∑
∞
j=1 jℓR j, ℓ= 0,1,2, . . ..

Under Assumption A, Aktaran-Kalaycı et al. (2007) show that

E[N (b,m)] = σ2 − γ1(b+1)

mb
+O(δ m). (1)

In addition, the NBM estimator’s variance is given by

lim
m→∞

(b−1)Var[N (b,m)] = 2σ4 for fixed b.

2.2 Overlapping Batch Means Estimator

Now we form n−m+ 1 overlapping batches, each of size m. In particular, the ith overlapping batch is

composed of the observations {Yi+k : k = 0,1, . . . ,m−1}, for i = 1,2, . . . ,n−m+1; and the ith overlapping

batch mean is Y O
i,m ≡ m−1 ∑

m−1
k=0 Yi+k, for i = 1,2, . . . ,n−m+1. Finally, the OBM estimator for σ2 is the

appropriately scaled sample variance of the overlapping batch means (Meketon and Schmeiser 1984),

O(b,m) ≡ nm

(n−m+1)(n−m)

n−m+1

∑
i=1

(Y O
i,m −Y n)

2.
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Under Assumption A with b = n/m ≥ 2, Aktaran-Kalaycı et al. (2007) show that

E[O(b,m)] = σ2 − γ1(b
2 +1)

n(b−1)
+

γ1 + γ2

(n−m)(n−m+1)
+O(δ m) (2)

(also see Goldsman and Meketon 1986 and Song and Schmeiser 1995, among others). Further, Damerdji

(1995) finds that for large batch size m and fixed sample-to-batch-size ratio b,

lim
m→∞

Var[O(b,m)] =
(4b3 −11b2 +4b+6)σ4

3(b−1)4
≈ 4σ4

3b
for large b.

So the OBM estimator has about the same bias as, but only 2/3 the variance of the NBM estimator.

2.3 Standardized Time Series Nonoverlapping Area Estimator

For purposes of this subsection, we divide the steady-state simulation output {Yj : j = 1,2, . . . ,n} into

b = n/m nonoverlapping batches, as in Section 2.1. Schruben (1983) defined the standardized time series

from nonoverlapping batch i by

Ti,m(t) ≡
⌊mt⌋(Y i,m −Y i,⌊mt⌋)

σ
√

m
for t ∈ [0,1] and i = 1,2, . . . ,b,

where ⌊·⌋ is the floor function and Y i, j ≡ j−1 ∑
j
k=1Y(i−1)m+k is the jth cumulative sample mean from batch

i, for i = 1,2, . . . ,b and j = 1,2, . . . ,m. The STS nonoverlapping area estimator for σ2, based on b batches

and weight function f (·), is defined as

A ( f ;b,m) ≡ 1

b

b

∑
i=1

Ai( f ;m),

where

Ai( f ;m) ≡
[

1

m

m

∑
k=1

f (k/m)σTi,m(k/m)

]2

for i = 1,2, . . . ,b,

and where f (·) satisfies the conditions

∫ 1

0

∫ 1

0
f (s) f (t)

(

min(s, t)− st
)

dsdt = 1 and d2

dt2 f (t) is continuous at every t ∈ [0,1]. (3)

Under a mild functional central limit theorem assumption (cf. Goldsman, Meketon, and Schruben

1990), it turns out that A ( f ;b,m)⇒ σ2χ2
b

/

b as m →∞. Moreover,

E[A ( f ;b,m)] = σ2 − [(F −F)2 +F
2
]γ1

2m
+O(1/m2), (4)

where

F(s)≡
∫ s

0
f (t)dt for s ∈ [0,1], F ≡ F(1), F(u)≡

∫ u

0
F(s)ds for u ∈ [0,1], and F ≡ F(1).

Further, under mild conditions and as long as the weight function f (·) satisfies Conditions (3), we have

for fixed b,

lim
m→∞

bVar[A ( f ;b,m)] = 2σ4.
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Schruben’s original area estimator uses the constant weight f0(t) ≡
√

12 for all t ∈ [0,1], for which

under Assumption A, Aktaran-Kalaycı et al. (2007) derive the fine-tuned result

E[A ( f0;b,m)] = σ2 − 3γ1

m
− σ2

m2
+

γ1 +2γ3

m3
+O(δ m), (5)

indicating that A ( f0;b,m) is somewhat biased in m. The good news is that it is easy to choose a weight

such as f2(t) ≡
√

840(3t2 − 3t + 1/2) that yields an estimator having F = F = 0 in Equation (4), i.e.,

which is first-order unbiased for σ2. In fact, under Assumption A, Aktaran-Kalaycı et al. (2007) obtain

the fine-tuned result

E[A ( f2;b,m)] = σ2 +
7(σ2 −6γ2)

2m2
+

35(γ1 +2γ3)

2m3
+O(1/m4). (6)

3 MAIN RESULTS

In this section, we deliver the main results of the article. Section 3.1 describes a simple jackknife calculation

that reduces estimator bias. Then Sections 3.2–3.4 show how to use the jackknife on the NBM, OBM, and

STS nonoverlapping area estimators. Section 4 compares the performances of the various estimators.

3.1 A Rough and Ready Tool

One of the easiest ways to reduce estimator bias is via the use of jackknifing (Quenouille 1949, Quenouille

1956, Tukey 1958, Efron 1982). In the ensuing discussion, we will work with simple “block” jackknife

versions of our original NBM, OBM, and STS estimators. In order to provide motivation, suppose that V (n)
is a generic estimator for σ2 based on n observations. Further suppose that E[V (n)] = σ2+c/n+O(1/n2)
for some appropriate c. If we define a jackknife version of V (n) by

VJ(n) ≡ V (n)− rV (rn)

1− r
, 0 < r < 1, (7)

then an elementary calculation reveals that E[VJ(n)] = σ2+O(1/n2), thereby yielding a first-order unbiased

estimator for σ2. While this bias reduction is greatly satisfying, the party is spoiled a bit by a variance

increase,

Var[VJ(n)] =
1

(1− r)2

(

Var[V (n)]+ r2Var[V (rn)]−2rCov[V (n), V (rn)]
)

≈ 1

(1− r)2

(

(1+ r2)Var[V (n)]−2rCov[V (n), V (rn)]
)

,

where the approximation is due to the fact that Var[V (n)] and Var[V (rn)] (for fixed r) typically converge

to the same constant for large n.

We will use this trick—or an easy variant—in the upcoming sections.

3.2 Jackknifing the NBM Estimator

We apply a slight variant of Equation (7) to obtain the jackknifed NBM estimator,

NJ(b,m,r) ≡ βN(b,r)N (b,m)+ [1−βN(b,r)]N (b/r,mr), (8)

where we assume for convenience that b/r and rm are integers and we take

βN(b,r) ≡ b+ r

b(1− r)
.
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Equations (1) and (8) immediately reveal that E[NJ(b,m,r)] =σ2+O(δ m), i.e., NJ(b,m,r) has exponentially

decaying bias. After carrying out additional algebra, the details of which are given in Dingeç et al. (2015),

one can calculate the variance of the jackknifed NBM estimator,

lim
m→∞

Var[NJ(b,m,r)] =
2σ4

b−1

[

(

1+ r− r2
)

b2 +(r+ r2)b+ r2

(1− r)b(b− r)

]

≡ 2σ4

b−1
W (b,r),

where W (b,r) represents a variance inflation factor over the original NBM estimator N (b,m), with

lim
b→∞

W (b,r) =
1+ r− r2

1− r
> 1 for 0 < r < 1.

For example, for r = 1/8 and 1/2, the above limiting inflation factors are 71/56 ≈ 1.3 and 5/2, respectively.

3.3 Jackknifing the OBM Estimator

We can remove the OBM estimator’s first-order bias term displayed in Equation (2) by jackknifing,

OJ(b,m,r) ≡ βO(b,r)O(b,m)+(1−βO(b,r))O(b/r,mr),

where we again assume for convenience that b/r and rm are integers and we take

βO(b,r) ≡ (b−1)
(

b2 + r2
)

(1− r)b [b2 −b(r+1)− r]
.

After some algebra, we find that the expected value of the jackknifed OBM estimator is

E[OJ(b,m,r)] = σ2 +

[

(b3 −br+ r2 − r)m+b2 − r
]

(γ1 + γ2)

bm
[

(b−1)m+1
][

(b− r)m+1
][

b2 − (1+ r)b− r
] +O(δ m). (9)

Thus, OJ(b,m,r) is first-order unbiased for σ2, which is an improvement over the analogous expected value

result for O(b,m) from Equation (2). Moreover, Dingeç et al. (2015) find that limb→∞ E[OJ(b,m,r)] =
σ2 +O(δ m), suggesting that the bias will exhibit exponential decay for large b. Dingeç et al. (2015) also

obtain the variance of the jackknifed OBM estimator,

Var[OJ(b,m,r)] ≈ 4σ4

3b
(1+2r)+O(1/b2) for large b.

For r = 1/2 and large b, the jackknifed OBM estimator has approximately 2 times the variance of the

regular OBM estimator; this penalty goes up to a factor of at most 3 for r ≈ 1.

3.4 Jackknifing the STS Nonoverlapping Area Estimator

For notational convenience, we temporarily work with area estimators consisting of b = 1 batch of m

observations; modifications for b > 1 batches of m observations will be discussed starting in Section 3.4.3.

Therefore, consider Section 2.3’s area estimator from the first batch of m observations, A( f ;m)≡ A1( f ;m).
We will examine the effects of jackknifing on this area estimator with weights f0(t) and f2(t).

3.4.1 Area Estimator with Weight f0(t)

Recall that the expected value of the area estimator with constant weight f0(t) =
√

12 is given by Equation

(5), where it is revealed that A( f0;m) is first-order biased as an estimator of σ2. The good news is that

Equation (7) gives us a recipe to eliminate this first-order bias via the jackknifed estimator

AJ1
( f0;m,r) ≡ A( f0;m)− rA( f0;rm)

1− r
.
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After some algebra, our hopes are realized, since

E[AJ1
( f0;m,r)] = σ2 +

σ2

rm2
− (1+ r)(γ1 +2γ3)

r2m3
+O(δ m).

However, Dingeç et al. (2015) show that there is a steep price to be paid in terms of variance for this

first-order unbiasedness. Namely,

Var[AJ1
( f0;m,r)]

Var[A( f0;m)]
→ 1+ r2 −2r4

(1− r)2
; (10)

for instance, if r = 1/2, the variance inflates by a factor of 4.5, so that Var[AJ1
( f0;m,r)]→ 9σ4.

Without becoming discouraged by this variance inflation, let us apply our jackknifing technology again

to remove other bias terms. In fact, if we are interested in eliminating a generic area estimator’s O(1/mℓ)
bias term for some positive integer ℓ, Dingeç et al. (2015) show that the estimator

AJℓ( f ;m,r) ≡ A( f ;m)− rℓA( f ;rm)

1− rℓ
, r ∈ (0,1), (11)

does the trick. Similarly, if we want to simultaneously eliminate two bias terms, say of orders O(1/mℓ1) and

O(1/mℓ2) for positive integers ℓ1 and ℓ2 with ℓ2 > ℓ1, then it is easy to show that the following estimator

is right for the job,

AJℓ1 ,ℓ2
( f ;m,r) ≡ A( f ;m)− (rℓ1 + rℓ2)A( f ;rm)+ rℓ1+ℓ2A( f ;r2m)

(1− rℓ1)(1− rℓ2)
, r ∈ (0,1).

.

For example, suppose that we would like to simultaneously eliminate the first- and third-order bias

terms for the area estimator with weight f0. Then we find after a bit of algebra that the expected value of

the estimator AJ1,3( f0;m,r) is

E[AJ1,3( f0;m,r)] = σ2

(

1+
1− r

r(1− r3)m2

)

+O(δ m),

where the first- and third-order bias terms have indeed been eliminated, while the second-order term still

remains. Fortuitously, we can avoid a third jackknife and eliminate the O(1/m2) bias term by applying a

simple manipulation. Let

ζ (m,r) ≡ r(1− r3)m2

1− r+ r(1− r3)m2
,

so that the estimator

A⋆
J1,3

( f0;m,r) ≡ ζ (m,r)AJ1,3( f0;m,r) (12)

has exponential convergence of its expected value to σ2,

E
[

A⋆
J1,3

( f0;m,r)
]

= σ2 +O(δ m).

As with Equation (10), Dingeç et al. (2015) find that as m →∞, the asymptotic variance inflation caused

by the “double jackknife” is

Var[A⋆
J1,3

( f0;m,r)]

Var[A( f0;m)]
→ 1+ r2 + r3 + r5

(1− r)3 (1+ r+ r2)
, r ∈ (0,1);

and for r = 0.5, this ratio is 45/7 ≈ 6.4, so that Var[A⋆
J1,3

( f0;m,r)]→ 12.857σ4.

464
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3.4.2 Area Estimator with Weight f2(t)

We apply the technology of Equation (11) with ℓ= 2 to Equation (6) with b = 1 to remove the quadratic

bias term, resulting in

E[AJ2
( f2;m,r)] =

E[A( f2;m)]− r2E[A( f2;rm)]

1− r2
= σ2 − 35(γ1 +2γ3)

2r(1+ r)m3
+O(1/m4), r ∈ (0,1),

which is second-order unbiased, as promised. Similar to Equation (10), we calculate the asymptotic variance

inflation caused by the jackknife as m →∞,

Var[AJ2
( f2;m,r)]

Var[A( f2;m)]
→ 1+ r4 − 1

2
r5 [7+3r(−7+4r)]2

(1− r2)2
, r ∈ (0,1),

so that for r = 0.5, the inflation factor is about 1.88194, i.e., Var[AJ2
( f2;m,r)]→ 3.764σ4. Notice that this

inflation factor is significantly smaller than the inflation factors for AJ1
( f0;m,r) and A⋆

J1,3
( f0;m,r).

We can repeat the jackknifing exercise to remove higher-order bias terms, but instead refer the reader

to Dingeç et al. (2015) for the detailed results.

3.4.3 Batching of Jackknifed Area Estimators

The single-batch variance estimators AJℓ( f ;m,r) and A⋆
J1,3

( f0;m,r) defined by Equations (11) and (12) are

easily generalized for b > 1 batches. Simply let

AJℓ( f ;b,m,r) ≡ 1

b

b

∑
i=1

AJℓ,i( f ;m,r) and A
⋆

J1,3
( f0;b,m,r) ≡ 1

b

b

∑
i=1

A⋆
J1,3,i( f0;m,r),

where the i subscript indicates that the component estimator is from the ith nonoverlapping batch, i =
1,2, . . . ,b. Assuming that the AJℓ,i( f ;m,r) estimators from different nonoverlapping batches are i.i.d., we

see that E[AJℓ( f ;b,m,r)] = E[AJℓ( f ;m,r)] and Var
[

AJℓ( f ;b,m,r)
]

= Var
[

AJℓ( f ;m,r)
]

/b; and similarly for

A ⋆
J1,3

( f0;b,m,r).

4 COMPARISON OF ESTIMATORS

In this section, we compare the performances of different jackknifed estimators presented in Section 3

based on their biases, variances, and MSEs.

4.1 Bias, Variance, and Mean Squared Error

Table 1 summarizes the main results from Section 3 for r = 1/2, along with asymptotically optimal

MSE results. The MSE of an estimator for the variance parameter σ2 balances bias and variance. To

this end, consider the generic variance estimator V (n) for σ2. Suppose that the bias of V (n) is of the

form Bias[V (n)] = c/mk for some constant c, batch size m, and k > 0, where we ignore smaller-order

terms. Further suppose that the variance of V (n) is of the form Var[V (n)] = v/b for some constant v and

sample-to-batch-size ratio b = n/m.

In such cases, the MSE of V (n) as an estimator of σ2 is

MSE[V (n)] = Bias2[V (n)]+Var[V (n)] ≈ c2

m2k
+

v

b
,

where the approximation is the direct result of ignoring small-order terms. As described in Goldsman and

Meketon (1986), Song and Schmeiser (1995), and Aktaran-Kalaycı et al. (2011), the minimum value of
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Table 1: Approximate bias, variance, and optimal MSE formulas for large b and m and r = 1/2. (Bias

results for OJ(b,m,1/2) are for the special case in which b →∞.)

Estimator Bias b ·Variance/σ4 MSE⋆

N (b,m) −γ1

m
2 3

(

γ1σ4

n

)2/3

NJ(b,m,1/2) O(δ m) 5 O(ℓn(n)/n)

O(b,m) −γ1

m
4/3 2.289

(

γ1σ4

n

)2/3

OJ(b,m,1/2) O(δ m) 8/3 O(ℓn(n)/n)

A ( f0;b,m) −3γ1

m
2 6.240

(

γ1σ4

n

)2/3

AJ1
( f0;b,m,1/2)

2σ2

m2
9 12.622

(

σ5

n

)4/5

A ⋆
J1,3

( f0;b,m,1/2) O(δ m) 90/7 O(ℓn(n)/n)

A ( f2;b,m)
7(σ2 −6γ2)

2m2
2 4.740

[

(σ2 −6γ2)σ
8

n2

]2/5

AJ2
( f2;b,m,1/2)

−70(γ1 +2γ3)

3m3
3.764 11.545

[

(γ1 +2γ3)σ
12

n3

]2/7

this quantity (at least asymptotically for large values of the run length n and hence for large m and b) is

MSE⋆[V (n)] = (1+2k)

[

c
( v

2nk

)k
]

2
1+2k

.

For the variance estimators NJ(b,m,r), OJ(b,m,r), and A ⋆
J1,3

( f0;b,m,r) for which the bias is of the form

O(δ m), a more-delicate analysis is required to show that the minimum MSE is of order O(ℓn(n)/n); see

Dingeç et al. (2015).

4.2 Exact Bias Example

We present exact closed-form bias results for a particular stochastic process—a stationary autoregressive

process of order 1 [AR(1)]. The AR(1) is defined by Yi = φYi−1 + εi for i = 1,2, . . ., where −1 < φ < 1,

Y0 ∼ N(0,1), and the εi’s are i.i.d. N(0,1− φ 2) random variables, independent of Y0. The covariance

function of the process is R j = φ | j|, for j = 0,±1,±2, . . .. As shown by Aktaran-Kalaycı et al. (2007), we

have σ2 = (1+φ)/(1−φ),γ1 = 2φ/(1−φ)2,γ2 = 2φ(1+φ)/(1−φ)3, and γ3 = 2φ(1+4φ +φ 2)/(1−φ)4.

Aktaran-Kalaycı et al. (2007) give closed-form formulas for the expected values of N (b,m), O(b,m),
and A ( f0;b,m) for the AR(1) process. The expected value of the vanilla NBM estimator is

E[N (b,m)] = σ2 − γ1

bm

(

b+1− b2φ m −φ bm

b−1

)

; (13)
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and, for large b, we have

lim
b→∞

E[N (b,m)] = σ2 − γ1 (1−φ m)

m
.

Equations (8) and (13) give the expected value of the jackknifed NBM estimator,

E[NJ(b,m,r)] = σ2 − γ1

[(

b2 −1
)

φ mr +(r2 −b2)φ m +(1− r2)φ bm
]

m(b−1)(1− r)(b− r)
.

For large b, we obtain

lim
b→∞

E[NJ(b,m,r)] = σ2 − γ1 (φ
mr −φ m)

m(1− r)
. (14)

The expected value of the regular OBM estimator is

E[O(b,m)] = σ2 −
(

b2 +1
)

γ1

b(b−1)m
+

γ1 + γ2

(n−m)(n−m+1)
+

γ1φ m

n−m

[

b+
φ n−m

b
− 2

(

1+φ n−2m+1 −φ n−m+1
)

(1−φ)(n−m+1)

]

.

We will not give the tedious expression here for E[OJ(b,m,r)], but as per Equation (9), the jackknifed

estimator OJ(b,m,r) is first-order unbiased for σ2.

What is much more interesting is that for the special case in which we let b →∞, some algebra reveals

that the expected value of the jackknifed OBM estimator is the same as the right-hand side of Equation (14).

So, asymptotically, the jackknifed OBM estimator has the same bias as the jackknifed NBM estimator.

But we also know that the jackknifed OBM estimator has an asymptotic variance that is smaller than that

of the jackknifed NBM estimator. Thus, perhaps it will be the case that, asymptotically, OJ(b,m,r) will

have a smaller MSE than NJ(b,m,r)—though this is not quite borne out by the respective MSE⋆ entries

of Table 1, which only indicate that the MSEs are of the same order O(ℓn(n)/n).
Continuing, the expected value of the original area estimator A ( f0;b,m) is

E[A ( f0;b,m)] = σ2 − 3γ1

m
− σ2

m2
+

γ1 +2γ3

m3
− 3γ1

m

(

1+
σ2

m

)2

φ m,

while that of the jackknifed version turns out to be

E
[

A
⋆

J1,3
( f0;b,m,r)

]

= σ2 − 3r2γ1φ mr2

m(1− r)2 (1+ r+ r2)
+o(φ mr2

/m),

where the “little-oh” notation g(m) = o(h(m)) means that g(m)/h(m) → 0 as m → ∞. For this AR(1)

example, note that the bias of the jackknifed area estimator is O(φ mr2

/m), whereas the biases of the

jackknifed NBM and OBM estimators are of the smaller order O(φ mr/m).
Table 2 presents exact bias results for the regular N (b,m), O(b,m), and A ( f0;b,m) estimators and

the jackknifed NJ(b,m,r), OJ(b,m,r), and A ⋆
J1,3

( f0;b,m,r) estimators with various batches sizes m, batch

count b = n/m = 10, and r = 1/2 for an AR(1) process with φ = 0.9 (in which case σ2 = 19). We see

that jackknifing dramatically reduces estimator bias, as anticipated by the underlying theory. Note that the

NJ(b,m,r) and A ⋆
J1,3

( f0;b,m,r) estimators have exponentially decaying bias as the batch size m increases,

while OJ(b,m,r) seems to decay a bit more slowly (since b = 10 is “small”).

4.3 Asymptotically Optimal Mean Squared Error Example

With these exact expected bias results as well asymptotic variance results from Dingeç et al. (2015) for the

general jackknife parameter r in hand, we optimize the MSEs with respect to the batch count b, the batch
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Table 2: Exact biases of the N (b,m), O(b,m), and A ( f0;b,m) estimators and the jackknifed NJ(b,m,r),
OJ(b,m,r), and A ⋆

J1,3
( f0;b,m,r) with b = 10 and r = 1/2 for an AR(1) process with φ = 0.9 (σ2 = 19).

m N (b,m) NJ(b,m,r) O(b,m) OJ(b,m,r) A ( f0;b,m) A ⋆
J1,3

( f0;b,m,r)

64 −3.09 −0.22 −3.14 −0.21 −7.72 −2.21

128 −1.55 −0.004 −1.58 −0.001 −4.13 −0.19

256 −0.77 −2E−06 −0.79 0.0008 −2.10 −0.002

512 −0.39 −2E−12 −0.39 0.0002 −1.05 −1E−06

1024 −0.19 −2E−24 −0.20 5E−05 −0.53 −7E−13

2048 −0.10 −3E−48 −0.10 1E−05 −0.26 −6E−25

size m, and r, for an AR(1) process with φ = 0.9. The optimal values are found by numerical minimization

of the asymptotic MSE, which is given by the sum of the exact squared bias and the asymptotic variance.

These results are displayed in Table 3 for a selection of n-values. We see that the jackknifed estimators

quickly outperform their non-jackknifed counterparts in terms of optimal MSE as n increases. Specifically,

NJ(b,m,r) performs quite well, though for large-enough n (and hence large-enough b and m), the jackknifed

OBM estimator OJ(b,m,r) eventually overtakes it.

5 CONCLUSIONS AND ONGOING WORK

We have shown that the use of jackknifing is an effective way to dramatically reduce the bias and mean

squared error of estimators of a steady-state simulation’s variance parameter σ2. This is particularly

noteworthy in light of the fact that jackknifing typically increases estimator variance.

We presented results for nonoverlapping batch means, overlapping batch means, and certain standardized

time series area estimators. In Dingeç et al. (2015), we generalize our work in the following ways:

• We consider other STS area estimator weighting functions, specifically, the general class given in

Foley and Goldsman (1999).

• We consider other classes of STS estimators, for example, estimators based on Cramér von–Mises

(Goldsman et al. 1999), Durbin–Watson (Batur et al. 2009), folded (Alexopoulos et al. 2010),

and reflected (Meterelliyoz et al. 2015) functionals of Brownian bridges, as well as overlapping

versions thereof (see, e.g., Alexopoulos et al. 2007).

• We derive approximate distributions of the various variance estimators—not just the first two central

moments.

• We work with jackknife estimators that take advantage of batching in a more-efficient way.

• When carrying out simultaneous jackknifing to eliminate multiple orders of bias, we work with

multiple r-values—not just a single value as in the current paper.

We are certainly encouraged by the fact that jackknifing almost always decreases bias significantly for this

bulleted list of estimators—both in theory and on practical experimental stochastic processes.
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