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ABSTRACT

When we use simulations to estimate the performance of a stochastic system, simulations are often driven

by input distributions that are estimated from real-world data. There is both input and simulation uncertainty

in the performance estimates. Non-parametric sampling approaches, e.g., the bootstrap, could be used to

generate samples of input distributions quantifying both input model and parameter uncertainty. In this

paper, a sequential experiment design is proposed to efficiently propagate the input uncertainty to output

mean and deliver a percentile confidence interval to quantify the impact of input uncertainty on the system

performance. Compared to the classical equal allocation, it could assign more computational budget to

samples of input distributions that contribute most to the percentile confidence interval estimation. Our

approach is supported by rigorous theoretical and empirical study.

1 INTRODUCTION

Stochastic simulation could be used to evaluate the performance of complex stochastic systems. The input

models that are used to drive the simulation are often estimated from real-world data. Therefore, there

are two sources of uncertainty in the system performance estimate: input estimation error and simulation

uncertainty. In this paper, the input estimation error is also called input uncertainty. Since the input

uncertainty could dominate the simulation uncertainty, ignoring it may lead to unfounded confidence in

the simulation assessment of system performance (Barton and Schruben 2001). In our study, we want to

efficiently estimate the impact of input uncertainty and control the simulation estimation error.

The approaches to quantify input uncertainty could be divided into parametric, semi- and non-parametric

approaches. When the parametric families of input distributions are known, the input uncertainty could be

characterized by the parameter estimation error (Xie, Nelson, and Barton 2015). The semi-parametric, e.g.,

Bayesian model average (BMA) (Chick 2001) and nonparametric approach, e.g., the bootstrap (Barton and

Schruben 2001), were proposed to quantify both input model and parameter uncertainty. Notice that BMA

delivers posteriors of all data coming from each of candidate distributions and uses them to quantify the

input uncertainty. Without any prior information, it could be hard to specify an appropriate set of candidate

distributions.

Approaches to quantify the input uncertainty could be divided into frequentist and Bayesian approaches.

If a percentile confidence or credible interval is desired to measure the impact of input uncertainty on

the system mean performance estimate, it is typically recommended to have a few thousands of samples

of input distributions to quantify the input uncertainty. These samples could be generated by sampling

approaches, including the bootstrapping and Bayesian sampling approaches. Since each simulation run

could be computationally expensive, it is important to develop approaches that efficiently propagate the

input uncertainty to outputs. When input models could be specified by finite “parameters”, a metamodel
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of the system mean response could be constructed to efficiently propagate the input uncertainty to output

mean (Xie, Nelson, and Barton 2015). When nonparametric approaches, such as the bootstrap, are used to

quantify the input uncertainty, the direct simulation with equal computational allocation at all samples of

input distributions is commonly used to propagate the input uncertainty to outputs (Barton and Schruben

2001).

For illustration purposes, in this paper, we focus on using the non-parametric bootstrapping to quantify

the input uncertainty and building a percentile confidence interval (CI) to quantify the impact of input

uncertainty. Our approach is also applicable to the situation where a Bayesian approach is used to quantify

the input uncertainty and a percentile credible interval is desired for quantifying the impact of input

uncertainty. Notice that it is easy to extend our approach to construct a percentile CI quantifying both

input and simulation estimation uncertainty; see Xie, Nelson, and Barton (2015).

When we propagate the input uncertainty to outputs, since samples of input distributions do not equally

contribute to estimating the percentile CI quantifying the impact of input uncertainty, the equal allocation

could waste simulation resources to precisely estimate the mean response for those unimportant samples.

This leads to the desire of computational efficient and precise algorithms. In this paper, we propose a

sequential experiment design that could gradually find the important samples of input distributions and

assign more computational resource there. Therefore, we could efficiently use the computational budget to

deliver a percentile CI quantifying the impact of input uncertainty.

The next section provides the problem statement. In Section 3, we propose a sequential experiment

design to efficiently estimate the percentile CI quantifying the impact of input uncertainty. This is followed

by theoretical support. In Section 4, we report a numerical study of an M/M/1/50 queue, and we conclude

the paper in Section 5.

2 PROBLEM STATEMENT

Simulation is driven by input models, denoted by F . For the jth replication, the simulation output Yj is

Yj(F) = µ(F)+ ε j(F)

where, µ(F) denotes the unknown output mean and ε j(F) represents the simulation error with ε j(F) ∼
N(0,σ2(F)). Notice that the simulation outputs depend on the choice of input models. F could be composed

of univariate and multivariate joint distributions. For the notation simplification, we only consider one

univariate input distribution.

We denote the underlying true input model by Fc. The unknown Fc is estimated by a random sample

of m real-world data, denoted by {X1,X2, . . . ,Xm}, with Xi
i.i.d.∼ Fc and i = 1,2, . . . ,m. Let F̂ represent the

point estimator of Fc. We are interested in quantifying the impact of input uncertainty on the system

mean performance estimate. Specifically, we want to find the (1−α∗)100% two-sided equal probability

percentile CI, denoted by CI∗ ≡ [QL,QU ], such that

Pr(µ(Fc) ∈ [QL,QU ]) = 1−α∗. (1)

If µ(·) is known, we have QL = inf{q : Pr(µ(F̂)≤ q)≥ α∗/2} and QU = inf{q : Pr(µ(F̂)≤ q)≥ 1−α∗/2}.
It could be difficult to get the sampling distribution for F̂ . In this paper, the bootstrapping is used to

quantify the input model and parameter uncertainty. That means we draw with replacement to generate m

bootstrapped samples, denoted by {X (1)
1 ,X

(1)
2 , . . . ,X

(1)
m }. Based on them, we could construct a bootstrapped

empirical distribution, denoted by F1. By repeating this procedure B times, we could generate B bootstrapped

empirical distributions, denoted by F1,F2, . . . ,FB, to quantify the input uncertainty. In this paper, we ignore

the sampling uncertainty for finite B bootstrapped samples. Accounting for this source of uncertainty is

our on-going research.

Let q1 = α∗/2 and q2 = 1−α∗/2. We have QL = µ[q1B] and QU = µ[q2B], where µb ≡ µ(Fb) and the

permutation, denoted by [·], is defined by µ[1] ≤ µ[2] ≤ ·· · ≤ µ[B]. Suppose q1B and q2B are integers for
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simplicity. That means there exists samples of input distributions with the index, denoted by [q1B] and

[q2B], in the set {F1,F2, . . . ,FB} corresponding to the true percentiles. When µ(·) is known, there is no

additional simulation estimation error introduced when we propagate the input uncertainty to output mean.

Thus, µ[q1B] and µ[q2B] define the faithful CI we want to estimate.

At any F , the system true mean response µ(F) is unknown and it could be estimated by running

simulations. If we know the true input model Fc, we could directly run simulations at Fc and estimate

µ(Fc) by using the sample mean of simulation outputs. However, Fc is unknown and estimated by

m real-world data. The input uncertainty is quantified by bootstrapped samples, {F1,F2, . . . ,FB}. The

straightforward approach to propagate the input uncertainty to output means is using the direct bootstrap

that equally allocates, say n replications, at each bootstrapped sample of input distributions. Then, we

could estimate µ[q1B] and µ[q2B] by Ȳ(q1B) and Ȳ(q2B), where Ȳ (Fb) = ∑
n
j=1Yj(Fb)/n and Ȳb ≡ Ȳ (Fb). The

permutation, denoted by (·), is defined by Ȳ(1) ≤ Ȳ(2) ≤ ·· · ≤ Ȳ(B). There exist two sources of error in the

point estimator Ȳ(γB) with γ = q1 and q2: the selection error and simulation estimation error. To estimate

the percentiles µ[q1B] and µ[q2B] well, we need to control both errors. Since we do not need to estimate

µb precisely for the sample Fb with mean response far from the percentiles, the equal allocation does not

efficiently use the computational resource.

Our objective is to find a good computational allocation to bootstrapped input distributions F1,F2, . . . ,FB,

so that we could precisely estimate percentiles µ[q1B] and µ[q2B]. We propose a sequential experiment design

that could efficiently allocate computational resources to important samples of input distributions that

contribute most to the percentile estimation. By doing so, we achieve the goal of computational efficiency,

and our algorithm delivers an accurate percentile estimate along with a specified accuracy.

3 SEQUENTIAL EXPERIMENT DESIGN FOR INPUT UNCERTAINTY QUANTIFICATION

In this section, we first describe a sequential procedure in Section 3.1 that allocates the computational

resource to F1,F2, . . . ,FB so that we could efficiently estimate percentile values µ[q1B] and µ[q2B]. Then, we

provide the theoretical support for our algorithm in Section 3.2.

Motivated by Lesnevski, Nelson, and Staum (2008), we propose a sequential procedure that could

efficiently estimate the percentiles µ[q1B] and µ[q2B], while simultaneously controlling the estimation accuracy.

Specifically, we develop two-sided screening supported by Theorem 1 in Section 3.2 that gradually screens

out samples that are statistically impossible to be [q1B] and [q2B], assign more replications to surviving

samples and run simulations. We iteratively repeat this screening procedure until the percentile estimation

reaches to the desired accuracy. Since the percentile estimates are based on order statistics Ȳ(q1B) and Ȳ(q2B),

screening over large samples could cause selection bias; see Lesnevski, Nelson, and Staum (2007). We

divide the whole screening procedure into two phases. The main purpose of Phase I is to screen out most

samples with mean responses far from µ[q1B] and µ[q2B]. Then, we use the technique of restart to reduce

selection bias caused by screening in Phase I. The main focus in Phase II is the percentile estimation.

The number of samples screened out in Phase II is typically small and the corresponding selection bias is

negligible.

Based on simulation outputs of samples in surviving sets, we could construct (1−α)100% CIs, denoted

by CI1 and CI2, for the lower and upper percentile estimation by Equation (2). The percentile estimation

accuracy is measured by the widths of these CIs. Theorem 2 proves that CI1 and CI2 cover µ[q1B] and

µ[q2B] with probability (1−α). By the Bonferroni inequality, the total significant level α could be divided

into the significant levels for screening and simulation estimation error, αI and α0. Since most screening

supposes to finish in Phase I, we typically assign larger proportion of screening significant level to Phase I,

denoted by αI1, than that to Phase II, denoted by αI2. αI1 and αI2 are tunable parameters. In the empirical

study, we set αI1 = 0.8αI .

Since we want to quantify the impact of input uncertainty on the system mean performance,

{µ(F1),µ(F2), . . . ,µ(FB)} are the mean responses of the same system with different input distributions.

When we employ common random number (CRN) to generate X from Fb and Fb′ , simulation outputs
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Y (Fb) and Y (Fb′) could have stronger correlation if Fb and Fb′ are close to each other, where b 6= b′ and

b,b′ = 1,2, . . . ,B. Therefore, CRN is implemented in our procedure to efficiently screen out samples with

mean responses very similar.

Notice that there exist three types of CIs in our procedure. [µ[q1B],µ[q2B]] represents the percentile CI

quantifying the impact of input uncertainty on system mean performance. The estimation accuracy for

percentiles µ[q1B] and µ[q2B] is characterized by CI1 and CI2 in Equation (2). The CI widths, |CIk| with

k = 1,2, are used as the stopping criteria for our sequential experiment design. Let Lk denote the desired

width for CIk. For a given input distribution, say Fb, the third type of CI characterizes the simulation

estimation uncertainty for µ(Fb) with b = 1,2, . . . ,B. Since |CIk| with k = 1,2 depends on the simulation

estimation accuracy of all samples in the surviving sets, it is hard to use it to specify the maximum number

of iterations required. Therefore, the third type of CI is used to specify the maximum number of iterations.

3.1 Sequential Procedure

We define Ik with k = 1,2 as the sets of samples of input distributions that survive screening for estimating

percentiles µ[q1B] and µ[q2B] accordingly. Let ILk and IUk ,k = 1,2 denote the sets of eliminated samples that

have mean responses statistically smaller or larger than the desired one.

3.1.1 Phase I

In this section, we describe the procedure in Phase I. We first allocate n0 replications to each Fb with

b = 1,2, . . . ,B in Step 2. Generally, n0 is small, in most cases n0 can be set no greater than 30. We

run simulations, obtain outputs {Y1(Fb),Y2(Fb), . . . ,Yn0
(Fb)} and calculate the sample mean and variance,

denoted by Ȳb and S2
b, with b = 1,2, . . . ,B. Then, we iteratively screen out samples with mean responses

far from the percentiles. The maximum number of iterations for Phase I is M = max(M1,M2), where Mk

denotes the number of iterations required to have the CI width of µ[qkB] less than Lk with k = 1,2; see Step 3.

Notice that it is based on the third type of CI. In Phase I, we update I1 and I2 simultaneously in Step 4,

which could save the computational resources. The accumulated replications for samples in surviving sets

increases by a growth factor R. At iteration ℓ, each surviving sample has the accumulated replications

N(ℓ) = ⌈n0Rℓ⌉. Screening can stop early if early stopping criteria are satisfied: a) only one sample remains

in Ik, or b) |CIk| is no greater than Lk; see Step 5. Screening for lower and upper percentiles could stop at

different iterations. We denote the procedure stops screening for Ik,k = 1,2 at iterations Jk respectively.

Phase I mainly includes following steps.

1. Specify q1,q2, αI1, αI2, α0. Define Ik
0 ←{1,2, . . . ,B} and I

Lk

0 = I
Uk

0 = /0 for k = 1,2.

2. Initial allocation. Assign n0 replications to Fb with b = 1,2, . . . ,B. Simulate and sort sample means

of simulation outputs: Ȳ(1) ≤ Ȳ(2) ≤ ·· · ≤ Ȳ(B). Set Lk = β ·Ȳ(qkB) for k = 1,2, where β is a constant,

such as 0.01.

3. Estimate the maximum number of iterations for Phase I. Let M = max(M1,M2), where for k = 1,2

Nmax =

(
2

S(qkB) · tn0−1,1− α0
2

Lk

)2

and Mk = max
(
⌈logR

Nmax

n0

⌉,0
)
+1

Define αk′
I1 =

αI1

Mk
, which is the screening error allowance for each iteration during Phase I.

4. Screening. For stage ℓ= 1,2, . . . ,M:

Ik
ℓ = {∀i ∈ Ik

ℓ−1 : ∑
j 6=i

∀ j∈Ik
ℓ−1

1(Ȳj ≤ Ȳi +Wi j)≥ qkB−1−|ILk

ℓ−1|

and ∑
j 6=i

∀ j∈Ik
ℓ−1

1(Ȳj ≥ Ȳi−Wi j)≥ B−qkB−|IUk

ℓ−1|}
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I
Lk

ℓ = I
Lk

ℓ−1

⋃
{∀i ∈ Ik

ℓ−1 : ∑
j 6=i

∀ j∈Ik
ℓ−1

1(Ȳj ≤ Ȳi +Wi j)< qkB−1−|ILk

ℓ−1|}

I
Uk

ℓ = I
Uk

ℓ−1

⋃
{∀i ∈ Ik

ℓ−1 : ∑
j 6=i

∀ j∈Ik
ℓ−1

1(Ȳj ≥ Ȳi−Wi j)< B−qkB−|IUk

l−1|}

Where, Wi j = t
N(ℓ)−1,1− αk′

I1

|Ik
ℓ−1
|−1

· Si j√
N(ℓ)

and S2
i j =

1
N(ℓ)−1 ∑

N(ℓ)
h=1 (Yih−Yjh− (Ȳi− Ȳj))

2 and 1(x) is the

indicator function.

5. Check stopping criteria. If |Ik
ℓ | = 1 or ℓ = Mk or |CIk| ≤ Lk, then stops updating Ik for k = 1,2,

where CIk is the CI for percentile estimation

CIk ≡
[

min
i∈Ik

ℓ

(
Ȳi− t

N(ℓ)−1,1− α0
2
· Si√

N(ℓ)−1

)
,max

i∈Ik
ℓ

(
Ȳi + t

N(ℓ)−1,1− α0
2
· Si√

N(ℓ)−1

)]
. (2)

If stopping criteria for both lower and upper percentiles hold, the procedure moves to Phase II.

Otherwise assign additional n0Rl(R−1) replications to each sample in the surviving set Ik
ℓ , and run

simulations, let ℓ← ℓ+1. Loop back to Step 4.

3.1.2 Phase II

In this section, we describe the procedure for Phase II. To reduce the selection bias from the screening

procedure in Phase I, our procedure “restarts” in Step 1 (Lan, Nelson, and Staum 2010; Boesel, Nelson,

and Kim 2003; Nelson and Goldsman 2001). All simulations from Phase I are discarded, and for every

sample that survives Phase I, do simulations with replications ⌈n0RJk+1⌉ with k = 1,2.

We estimate the maximum number of iterations in Step 2. If we can ensure that every sample in Ik

has an individual CI width no greater than Lk/|Ik|, then |CIk| ≤ Lk for k = 1,2 because all samples in each

surviving set are statistically indifferent. Therefore, the maximum number of iterations for Phase II is

determined by the number of iterations required for every sample in the surviving set Ik having CI width

less than Lk/|Ik| with k = 1,2. Notice that it is based on the third type of CI.

To fully utilize the error allowance on screening, two updates are made. First, our procedure “recycles”

the unused portions of αI1,
(
1− Jk/Mk

)
αI1,k = 1,2, since Phase I may exit early. Therefore, during

Phase II, the allowable significant level on screening is αk
I2 = αI − JkαI1/Mk. Second, the number of

iteations required in Phase II, denoted by P, is updated at each iteration. Unlike Phase I, where αI1 is

equally distributed among all iterations, αI2 may be unevenly allocated to all iterations. The reason is that

P is determined in a conservative manner. Therefore, constantly updating the number of stages Pℓ required

at iteration ℓ would give a tighter upper bound on P, which comes with higher utilization of screening

error allowance. For the theoretical support for this adaptively updating the number of iterations, please

see Theorem 3 in Section 3.2.

For qk with k = 1,2:

1. Restart. Allocate N(Jk + 1) = n0RJk+1 replications to each sample in the surviving set Ik
Jk

, run

simulations and calculate sample variance of simulation outputs S2
i for i ∈ Ik

Jk
.

2. Estimate the number of iterations needed. Set

N′max =

(
2maxi∈Ik

Jk

(Si) · tN(Jk+1)−1,1− α0
2

Lk/|Ik
Jk
|

)2
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Denoted the maximum number of iteration needed for Phase II by Pk
Jk
= max

(
⌈logR

N′max

N(Jk+1)⌉,0
)
+1.

Let αk
I2 = αI− Jk

Mk
αI1. Define α ′I2,Jk

=
αk

I2

Pk
Jk

as the error allowance for each iteration.

3. Screening. For stage ℓ= Jk +1,Jk +2, . . . ,Jk +Pk
ℓ :

Ik
ℓ = {∀i ∈ Ik

ℓ−1 : ∑
j 6=i

∀ j∈Ik
ℓ−1

1(Ȳj ≤ Ȳi +Wi j)≥ qkB−1−|ILk

ℓ−1|

and ∑
j 6=i

∀ j∈Ik
l−1

1(Ȳj ≥ Ȳi−Wi j)≥ B−qkB−|IUk

ℓ−1|}

I
Lk

ℓ = I
Lk

ℓ−1

⋃
{∀i ∈ Ik

ℓ−1 : ∑
j 6=i

∀ j∈Ik
ℓ−1

1(Ȳj ≤ Ȳi +Wi j)< qkB−1−|ILk

ℓ−1|}

I
Uk

ℓ = I
Uk

ℓ−1

⋃
{∀i ∈ Ik

ℓ−1 : ∑
j 6=i

∀ j∈Ik
ℓ−1

1(Ȳj ≥ Ȳi−Wi j)< B−qkB−|IUk

ℓ−1|}

Where, Wi j = t
N(ℓ)−1,1−

α ′
I2,ℓ−1

|Ik
ℓ−1
|−1

· Si j√
N(ℓ)

and S2
i j =

1
N(ℓ)−1 ∑

N(ℓ)
h=1 (Yih−Yjh− (Ȳi− Ȳj))

2.

4. Report the point estimate Ȳ(qkB) and CI for percentile µ[qkB],

CIk =

[
min
i∈Ik

ℓ

(
Ȳi− t

N(ℓ)−1,1− α0
2
· Si√

N(ℓ)−1

)
, max

i∈Ik
ℓ

(
Ȳi + t

N(ℓ)−1,1− α0
2
· Si√

N(ℓ)−1

)]

If |CIk| ≤ Lk, stop. Otherwise, continue.

5. Updating the number of iterations and the remaining screening significant level. Let

N′max←
(

2max
i∈Ik

ℓ
(Si)·t

N(ℓ)−1,1− α0
2

Lk/|Ik
ℓ |

)2

Pk
ℓ = max

(
⌈logR

N′max

N(Jk+1)⌉,0
)
+1.

Update the screening error allowance,

αk
I2 = αk

I2−
αk

I2

Pk
ℓ−1 + Jk− (ℓ−1)

and α ′I2,ℓ =
αk

I2

Pk
ℓ + Jk− ℓ

(3)

6. Simulation. Assign additional n0Rl(R−1) replications to samples in the surviving set Ik
ℓ , and run

simulations, let ℓ← ℓ+1. Loop back to Step 3.

3.2 Theoretical Support

In this section, we provide the theoretical support for the sequential procedure in Section 3.1. For notation

simplification, we drop the index for the lower and upper percentiles, k. Theorem 1 shows our screening

rule could guarantee the surviving set I includes the sample [qB] with probability (1−αI), where q = q1

or q2.
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Theorem 1 Define the surviving set

I = {i : ∑
j 6=i

1(Ȳj ≤ Ȳi +Wi j)≥ qB−1 and ∑
j 6=i

1(Ȳj ≥ Ȳi−Wi j)≥ B−qB}

where, Wi j = tn−1,1− αI
B−1
· Si j√

n
and S2

i j =
1

n−1 ∑
n
h=1(Yih−Yjh− (Ȳi− Ȳj))

2. Then, P([qB] ∈ I)≥ 1−αI.

Proof: Define
A1 = {all j with µ j < µ[qB] : Ȳj ≤ Ȳ[qB]+W[qB] j

and all j with µ j > µ[qB] : Ȳj ≥ Ȳ[qB]−W[qB] j}
Since A1 ⊆ {[qB] ∈ I}, we only need to show P(A1)≥ 1−αI . Define

A2 = {all j with µ j < µ[qB] : Ȳj ≤ Ȳ[qB]+W[qB] j}
A3 = {all j with µ j > µ[qB] : Ȳj ≥ Ȳ[qB]−W[qB] j}.

We have
P(A2

c) = P(∃ j with µ j < µ[qB] : Ȳj > Ȳ[qB]+W[qB] j)

= P
( ⋃

j 6=[qB]
µ j<µ[qB]

{Ȳj > Ȳ[qB]+W[qB] j}
)

≤ ∑
j 6=[qB]

µ j<µ[qB]

P(Ȳj > Ȳ[qB]+W[qB] j)

= ∑
j 6=[qB]

µ j<µ[qB]

P

(
Ȳj− Ȳ[qB]− (µ j−µ[qB])

S[qB] j/
√

n
>

W[qB] j +(µ[qB]−µ j)

S[qB] j/
√

n

)

= ∑
j 6=[qB]

µ j<µ[qB]

P

(
Ȳj− Ȳ[qB]− (µ j−µ[qB])

S[qB] j/
√

n
> tn−1,1− αI

B−1

)

= (qB−1) · αI

B−1
.

Step 3 follows by the Bonferroni inequality again. Similarly, we could have P(Ac
3) = (B−qB) ·αI/(B−1).

Therefore, by Bonferroni inequality,

P([qB] ∈ I)≥ P(A1)≥ 1−P(A2
c)−P(A3

c)

= 1− (qB−1)
αI

B−1
− (B−qB)

αI

B−1
= 1−αI.✷

After screening and estimation, we use Ȳ(qB) as the point estimate for µ[qB]. Then, we contruct a CI

for the percentile estimation, denoted by

CIq =

[
min
i∈I

(
Ȳi− t

n−1,1− α0
2
· Si√

n−1

)
,max

i∈I

(
Ȳi + t

n−1,1− α0
2
· Si√

n−1

)]
.

Notice that to account for (qB) 6= [qB], this CI does not center around Ȳ(qB). Theorem 2 shows that CIk

delivered by our sequential procedure in Section 3.1 could cover the true quantile µ[qkB] with probability

(1−α) with k = 1,2.
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Theorem 2 Suppose α = 2αI +α0. Then, P(µ[qB] ∈ CIq)≥ 1−α.

Proof:

P
(

µ[qB] ≥min
i∈I

(Ȳi− t
n−1,1− α0

2
· Si√

n−1
)
)

≥ P
(
[qB] ∈ I, µ[qB] ≥min

i∈I
(Ȳi− t

n−1,1− α0
2
· Si√

n−1
)
)

≥ P
(
[qB] ∈ I, µ[qB] ≥ Ȳ[qB]− t

n−1,1− α0
2
· Si√

n−1

)

≥ 1−P
(
[qB] /∈ I

)
−P
(

µ[qB] < Ȳ[qB]− t
n−1,1− α0

2
· Si√

n−1

)
≥ 1−αI−

α0

2
.

Similarly,

P
(

µ[qB] ≤max
i∈I

(Ȳi + t
n−1,1− α0

2
· Si√

n−1
)
)

≥ P
(
[qB] ∈ I, µ[qB] ≤max

i∈I
(Ȳi + t

n−1,1− α0
2
· Si√

n−1
)
)

≥ P
(
[qB] ∈ I, µ[qB] ≤ Ȳ[qB]+ t

n−1,1− α0
2
· Si√

n−1

)

≥ 1−P
(
[qB] /∈ I

)
−P
(

µ[qB] > Ȳ[qB]+ t
n−1,1− α0

2
· Si√

n−1

)
≥ 1−αI−

α0

2
.

Therefore, we have P(µ[qB] ∈ CIq)≥ 1−αI− α0

2
−αI− α0

2
= 1−α . ✷

Theorem 3 supports the strategy to adaptively update the number of iterations P required in Phase II.

By the Bonferroni inequality, we only need to show that the accumulated screening significance level

consumed in Phase II is αI2.

Theorem 3 The screening significant level spent in each iteration is α ′I2,ℓ with ℓ= Jk,Jk +1, . . . ,Jk +P−1

and it is updated by eq (3). The accumulated screening significance level consumed in Phase II is αI2:

∑
Jk+P−1
ℓ=Jk

α ′I2,ℓ = αI2, where P denotes the number of iterations in Phase II.

Proof: We prove it by induction. Let r denote the number of times we update P. First consider the case

with r = 1. In Phase II, P is updated once to Pℓ after the ℓth iteration. That means P and α ′I2 remain

constant until the ℓth iteration. All screening allowance consumed until the ℓth iteration is ℓ−J
P

αI2, and the

remaining allowance is P−ℓ+J
P

αI2.

Two cases are discussed. Case 1 is: Pℓ+J ≤ ℓ. By our definition of P, that means every sample in I, say

Fb, has an individual CI from Ȳb with width less than L/|I|, the percentile CIq must have the width no greater

than L, the stopping criteria is satisfied and the procedure just stops. Case 2 is: ℓ < Pℓ+J < P+J. In such

case, we update α ′I2 by eq (3): α ′I2 = ((P+J−ℓ)αI2/P)/(Pℓ+J−ℓ). Hence, the total screening significance

level spent in Stage II is: (ℓ− J)αI2/P+α ′I2 · (Pℓ+ J− ℓ) = (ℓ− J)αI2/P+(P+ J− ℓ)αI2/P = αI2.

Assume the guarantee that the accumulated screening significant level spent in Phase II equals to αI2

holds when r = r′, where r′ ≥ 1 is an integer. We want to show this guarantee also holds when r = r′+1.

When the maximum number of iterations P is updated r′+1 times, we can choose only update P at first r′

chances, leaving the last update point constant. Then the problem is simply the base case with only one

update point, which we have proved. Therefore, for r = r′+1, the guarantee also holds. ✷

4 EMPIRICAL STUDY

In this section we use an M/M/1/50 queue to illustrate the performance of our approach. Customer arrival

rate is λ c = 6 and service rate is µc = 10. We are interested in the expected number of customers in the

system.
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To evaluate our approach, we pretend that the distributions for inter-arrival and service times are

unknown. They are estimated from m inter-arrival times A1,A2, . . . ,Am and service times S1,S2, . . . ,Sm with

Ai
i.i.d.∼ exp(λ c) and Si

i.i.d.∼ exp(µc). In our experiment, m = 100. To quantify the input uncertainty, we

generate B bootstrapped empirical input distributions. We want to find a 99% CI quantifying the impact

of input uncertainty on system mean response. Therefore, we want to efficiently estimate µ[q1B] and µ[q2B]

with q1 = 0.005 and q2 = 0.995.

The simulation of the queueing system starts with an empty system. The warmup length is 150 time

units. Ideally, we would compare the percentile estimates obtained by our algorithm to the true values

µ[q1B] and µ[q2B]. Since the true percentiles are not known, we use very long simulation runs to estimate

them. To find an adequate run-length to estimate true values of µ[q1B] and µ[q2B], we did a side experiment.

Specifically, we have 10 macro-replications. In each macro-replication, we draw m = 100 independent

real-world observations of interarrival and service times. Then, we generate 10 bootstrapped empirical

distributions and use them to drive the simulations. We run simulatons with run lengths equal to 103,

2×103, 5×104, 105, 5×105 and 106 time units to estimate the average number of customers in the system.

We chose 106 time units as the benchmark. The relative error defined as the maximum relative difference

of the results obtained by each runlength compared to those obtained using 106 time units is recorded

in Table 1. The runlength with 5× 105 achieves maximum relative error 0.02. Balancing precision and

computational cost, we choose 5×105 time units to estimate true percentiles µ[q1B] and µ[q2B].

Table 1: The maximum absolute relative difference relative to the results by using the runlength equal to

106 time units.

run length 103 2×103 5×104 105 5×105

relative error 0.18 0.18 0.11 0.10 0.02

We compare the performance of our approach with the equal allocation under different settings. We

run 100 macro-replications for each setting. In each macro-replication, we first obtain m = 100 data from

exp(µc) and exp(λ c). Then, we generate B = 500,1000 samples of bootstrapped input distributions to

quantify input uncertainty. At each bootstrapped sample, we run simualtions. We set the runlength to

be RL = 10,100 time units. We set up the significance level α = 0.05 with αI = 0.015 and α0 = 0.02.

The number of initial replications is n0 = 30. Let the desired width for percentile estimation CIs to be

Lk = 0.05Ȳ(qkB), where Ȳ(qkB) with k = 1,2 is the point estimates of percentiles based on the initial allocation.

We first study the screening performance of our approach. Figure 1 shows the number of samples in

the surviving sets Ik with k = 1,2 obtained from one macro-replication when B = 500 and RL=10. The

horizontal axis gives the iteration index and the vertical axis gives the number of samples in surviving

sets. We could observe that the majority of samples are screened out in a few iterations. It takes 13

iterations to precisely estimate µ[q1B] and 18 iterations for µ[q2B]. Figure 2 illustrates the average of mean

respones of surviving samples ∑b∈Ik Ȳb/|Ik| for k = 1,2. Green horizontal lines represent the true percentile

values. Clearly, the average mean response of surviving samples converges to the true percentiles µ[q1B] and

µ[q2B]. Even though different macro-replications could require different number of iterations to get a precise

percentile estimation, these plots represent the typical screening behavior for our sequential approach.

Figure 3 shows the histogram of the relative percentile estimation errors obtained by our approach

and equal allocation under the same computation cost. Here, B = 1000 and RL=10 time units. The dark

grey denotes the result from our approach and light grey denotes the result from the equal allocation.

Figure 3 indicates that our approach provides more accurate estimation for µ[q1B] and µ[q2B]. In general, by

gradually screening out samples with mean responses far from µ[q1B] and µ[q2B], our sequential procedure

can effectively use computational budget and precisely estimate the percentiles.

The first part of Table 2 show the mean, standard deviation (SD) and maximum of absolute relative

error of percentile estimates obtained by our approach and equal allocation under the same simulation

budget when q1 = 0.005. The bottom of Table 2 shows the results for q2 = 0.995. In general, our algorithm
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Figure 1: The number of surviving samples in Ik with k = 1,2 when B = 500.

Figure 2: Average of mean responses for surviving samples in Ik with k = 1,2 when B = 500.

outperforms the equal allocation. It produces more accurate and stable percentile estimation. In some

experiments, we observe that our procedure reports a point estimate extremely far away from the true one.

This might be due to insufficient initial sample size (Lesnevski et al. 2008). One may increase n0 in this

case.

5 CONCLUSION

When we use nonparametric approaches to estimate both input model and parameter uncertainty, the input

uncertainty is quantified by many samples of input distributions. Since each simulation run could be

computationally expensive, it is desired to develop an approach that could efficiently propagate the input
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Figure 3: Histogram of relative error of percentile estimates when B = 1000.

Table 2: Relative estimation error of percentiles µ[q1B] and µ[q2B] obtained from the sequential experiment

design and the equal allocation.

λ c = 6, q1 = 0.005 our procedure direct equal allocation

mean SD maximum mean SD maximum

B = 500, RL=10 0.71% 0.50% 2.08% 2.04% 1.63% 6.53%

B = 500, RL=100 0.94% 1.74% 12.44% 1.42% 1.14% 5.56%

B = 1000, RL=10 0.47% 0.39% 1.42% 1.86% 1.65% 7.90%

B = 1000, RL=100 0.70% 0.59% 3.20% 2.21% 1.56% 8.53%

λ c = 6, q2 = 0.995 our procedure direct equal allocation

mean SD maximum mean SD maximum

B = 500, RL=10 2.26% 2.02% 12.10% 5.21% 4.38% 15.54%

B = 500, RL=100 3.2% 7.94% 54.01% 3.84% 4.20% 18.22%

B = 1000, RL=10 2.13% 1.80% 8.34% 4.47% 4.30% 20.60%

B = 1000, RL=100 2.19% 2.19% 12.30% 6.27% 5.35% 27.40%

uncertainty to output mean. In this paper, we propose a sequential experiment design. It could gradually

screen out samples of input distributions with mean responses far from the true percentiles and assign

more computational budget to the important samples that contribute most to the percentile estimation.

Our approach could efficiently estimate a percentile CI quantifying the impact of input uncertainty on the

system mean performance. It is supported with theoretical analysis and an empirical study demonstrates

our approach performs better than the classical equal allocation approach.
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