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ABSTRACT

We study a subset selection procedure – one of the well-known statistical methods of ranking and selection

for stochastic simulations – in the presence of input parameter uncertainty; i.e., the parameters of the input

distributions are unknown and there is only a limited amount of input data available for input parameter

estimation. The goal is to present a new decision rule which identifies subsets of stochastic system designs

including the best (i.e., the design with the largest or smallest expected performance measure) with a prob-

ability that exceeds some user-specified value. At WSC 2013, we studied this problem by restricting focus

to the method of asymptotic normality approximation to represent input parameter uncertainty. Motivated

by the limitations of the asymptotic normality approximation for simulations of complex systems with

large numbers of input parameters, we revisit this problem with the simulation replication algorithm as an

alternative method to capture input parameter uncertainty.

1 INTRODUCTION

An important step in the use of simulation for stochastic system design and analysis is to evaluate competing

system designs. Despite the examples demonstrating the importance of capturing the uncertainty around

the input parameter estimates obtained from limited input data (e.g., see Zouaoui and Wilson (2004) for a

queuing simulation example and Biller et al. (2014) for an inventory simulation example), accounting for

input parameter uncertainty in a stochastic simulation is still not the standard practice. Consequently, there

is a lack of statistically-valid procedures that compare alternative simulated system designs by accounting

for input parameter uncertainty. However, with the growing use of stochastic simulation in business system

design and analysis, it is imperative to develop data-driven modeling support for the statistical comparison of

alternative system designs in the absence of full knowledge about the systems’ input distribution parameters.

Our paper addresses this limitation of the simulation design and analysis by focusing on subset selection,

which is one of the well-known statistical methods of ranking and selection for stochastic simulations.

When the input distributions and their parameters are unknown and the historical input data available

for their estimation are limited, two of the main sources of uncertainty to represent in simulation output

analysis are stochastic uncertainty (i.e., the uncertainty that is due to the dependence of the simulation output

on random input processes) (Helton 1997) and parameter uncertainty (i.e., the uncertainty that is due to the

estimation of the input-model parameters from limited data) (Raftery et al. 1996). Model uncertainty also

arises due to the selection of a single input model from a set of alternative models. However, we assume

that the functional forms of all input models are known; thus, we do not consider the model uncertainty.

Stochastic uncertainty is inherent in every simulation and controlled by the number of simulation

replications. The parameter uncertainty is, on the other hand, often ignored as a result of driving simulations

with the parameters of the probability distributions estimated from input data of finite length. This practice

of simulation design and analysis leads to not only inconsistent estimates for the mean performance measures
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but also inconsistent coverage of the confidence intervals (Barton 2012). In this paper, we account for

the stochastic and parameter uncertainties in the analysis of simulation output data with the objective of

selecting a subset of stochastic system designs, which includes the best with a probability that exceeds a

user-specified value.

Goldsman and Nelson (1998) describe ranking and selection procedures as statistical methods specifically

developed to select the best system, or a subset of systems that includes the best system, from among

a collection of (competing) alternative system designs, while guaranteeing the probability of a correct

selection to be at least some user-specified value under certain assumptions. A close look at the existing

literature reveals that the development of the ranking and selection procedures dates back to the 1950s

with Bechhofer (1954) establishing the indifference-zone formulation and Gupta (1956, 1965) formulating

the subset selection. Both approaches are known to compensate for the limited inference provided by the

hypothesis tests in identifying the system design with the best (largest or smallest) performance measure.

Over the years, there has appeared various extensions of these procedures. We focus on the well-known

subset-selection formulation and refer the reader to Kim (2013) for a comprehensive review of this literature.

Subset selection is a screening device that attempts to select a subset of system designs including the best

with at least a pre-specified probability. Specifically, we consider k alternative stochastic system designs

with input random vectors Yi, i = 1,2, . . . ,k as the sources of uncertainty driving their stochastic simulations.

Defining Xiℓ for the ℓth simulation output from system i, we let Xi := {Xiℓ;ℓ = 1,2, . . . ,ni} denote the output

sequence of ni replications from the simulation. Under the assumption of complete knowledge about the

distributions of the input random vectors Yi, i = 1,2, . . . ,k (i.e., for the given functional forms of the input

distributions, the input parameter vectors Ψi, i = 1,2, . . . ,k are known), we consider Xiℓ, ℓ = 1,2, . . . ,ni to

be independent and normally distributed random variables each with a mean of µi := E[Xiℓ] and a variance

of σ2
i := V[Xiℓ] for i = 1,2, . . . ,k. This is often a reasonable assumption when Xiℓ is the average of a

large number of output variables or Xiℓ is a batch mean in a steady-state simulation. We investigate the

sensitivity of the performance of our procedures to the departure of the simulation output data from being

normally distributed in Biller and Corlu (2015) where we discuss when it becomes important to couple our

procedures with the method of batching to ensure the normality of the batched simulation output data. We

also assume that X1,X2, . . . ,Xk are mutually independent and compared based on their true means. Finally,

we let the best design have the largest true mean and denote the ordered means by µ[k] ≥ µ[k−1] ≥ ·· · ≥ µ[1].

The goal of a subset selection procedure is to obtain a (random) subset I ⊆ {1,2, . . . ,k} of k alternatives

such that the probability of including the best system design in this subset, P{[k] ∈ I} is at least 1−α
with α ∈ (0,1− k−1). Under the assumptions of known output variances σ2

i , i = 1,2, . . . ,k and n equal

simulation replications across all of the k system designs, the subset I is characterized by Gupta (1965) as

I :=







i : 1 ≤ i ≤ k, 1 ≤ j ≤ k, i 6= j, and X̄i ≥ X̄ j − z
(1−α)1/(k−1)

(

σ2
i +σ2

j

n

)1/2






. (1)

X̄i := ∑
n
ℓ=1 Xiℓ/n is the sample mean of the simulation output data collected for system i and z

(1−α)1/(k−1) is

the (1−α)1/(k−1)− quantile of the standard normal cumulative distribution function. Nelson et al. (2001)

extend this single-stage subset selection procedure to permit unequal and unknown variances while Wilson

(2001) enhances the lower bound on the probability of correct selection with a decomposition lemma for

the screen-to-the-best procedure of Nelson et al. (2001). Boesel et al. (2003) further extend this procedure

to allow unknown output variances σ2
i , i = 1,2, . . . ,k with unequal sample sizes ni, i = 1,2, . . . ,k. The

following rule is presented with X̄i := ∑
ni

ℓ=1 Xiℓ/ni for i = 1,2, . . . ,k and all values of j 6= i ∈ {1,2, . . . ,k}:
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X̄i ≥ X̄ j −

(

t2

(1−α)1/(k−1),ni−1

S2
i

ni

+ t2

(1−α)1/(k−1),n j−1

S2
j

n j

)1/2

(2)

with S2
i := ∑

ni

ℓ=1(Xiℓ− X̄i)
2/(ni−1) as the unbiased sample variance estimator of σ2

i and t
(1−α)1/(k−1),ni−1

as

the (1−α)1/(k−1)− quantile of the Student’s t distribution with ni−1 degrees of freedom for i = 1,2, . . . ,k.

Both the decision rule in (1) and the decision rule in (2) are obtained under the assumption of complete

knowledge about the input distribution parameter vectors Ψi, i = 1,2, . . . ,k. In this paper, we relax this

assumption and answer the following two questions: (1) When the input parameter vectors are estimated

from the limited amounts of input data, how to capture the input parameter uncertainty in the simulation

output data? (2) Given the characterization of the input parameter uncertainty in the simulation output data,

how to redesign the subset-selection procedure to deliver a subset which still includes the best still with

a probability that exceeds some user-specified value? We answer the first question in Section 2.1 where

we present the simulation replication algorithm as a method of capturing the input parameter uncertainty.

We answer the second question in Section 2.2 where we introduce a subset selection procedure accounting

for the input uncertainty. Then, we illustrate the use of the procedure in Section 3 to find the inventory

system designs maximizing the service level in the presence of limited amounts of historical demand data.

Finally, we conclude with a summary of findings in Section 4.

2 SUBSET SELECTION UNDER PARAMETER UNCERTAINTY

We present the simulation replication algorithm to represent the input parameter uncertainty in Section 2.1 and

redesign the subset-selection decision rule (2) to account for the input parameter uncertainty in Section 2.2.

2.1 Representing Input Parameter Uncertainty

In this section, we review the simulation replication algorithm for the decomposition of the simulation

output variance into terms related to stochastic uncertainty and parameter uncertainty. We refer the reader to

Barton (2012) for a comprehensive review of the methods of capturing parameter uncertainty in simulations.

Chick (2001) is the first to propose a simulation replication algorithm that has allowed simulation

analysts to capture parameter uncertainty by sampling input distribution parameters from their density

functions before each simulation replication. Focusing on the ith system design, we provide the simulation

replication algorithm in Figure 1 as presented in Zouaoui and Wilson (2003) due to its ability to separately

quantify the amounts of stochastic uncertainty and input parameter uncertainty in the simulation output data.

Later in Section 2.2, we build on this output decomposition to reformulate the subset-selection procedure.

It is important to note that Zouaoui and Wilson (2003) present the simulation replication algorithm

in Figure 1 as Bayesian with the ability to incorporate expert opinion into the representation of the input

parameter uncertainty in simulation. This may potentially be a point of confusion for the reader because

our decision rule in Section 2.2 and evaluations in Section 3 are frequentist. It is important to clarify

that a Bayesian simulation replication algorithm can be readily replaced by its frequentist counterpart

via the use of sampling density functions instead of posterior density functions for capturing the input

parameter uncertainty. More specifically, the probability distribution functions pi (Ψi|di), i = 1,2, . . . ,Ri

from which we generate the unknown input parameters Ψir in Figure 1 can be the sampling distributions

for the maximum likelihood estimates of these unknown input parameters. A sampling density function

tells us which values the input parameters, which are the random variables, can have and how likely it is

for the parameters to assume those values (Rohatgi 1976). Thus, the use of the sampling density functions

in the simulation replication algorithm allows us to account for the uncertainty around the input-parameter

estimates in the simulation outputs. Alternatively, the input parameter uncertainty can be captured by the

posterior density functions of the unknown input parameters with the ability to account for the opinions
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for r = 1,2, . . . ,Ri replications do

generate the rth input parameter vector Ψir from pi (Ψi|di);

for ℓ = 1,2, . . . ,ni do

generate the random-number input uiℓr;

perform the ℓth simulation run using uiℓr and Ψir;

calculate the output response Xiℓr := Gi(uiℓr,Ψir);

end for

compute X̄ir := ∑
ni

ℓ=1 Xiℓr/ni;

end for

compute X̄i := ∑
Ri

r=1 X̄ir/Ri as an estimate of E[Xi|di].

Figure 1: Simulation replication algorithm.

of the experts, as described in Zouaoui and Wilson (2003). Whether a Bayesian or frequentist approach is

used to represent parameter uncertainty is not a requirement of our subset selection procedure. Independent

of which one of these two approaches is followed to quantify the parameter uncertainty in the simulation

output data, we build on the underlying output variance decomposition to reformulate the subset-selection

procedure in the following section.

In Figure 1, we denote the ith system parameter vector sampled in the rth (outer) replication of the

simulation replication algorithm by Ψir. In addition, we use Xiℓr for representing the output response from

the ℓth (inner) simulation run, which is driven by the sampled values of the random-number input uiℓr

and the input parameter vector Ψir. The outer loop of the simulation replication algorithm estimates the

uncertainty around the parameter vector Ψi by independently sampling new values of the input parameters

from their joint density function pi(Ψi|di) across Ri different simulation runs. The inner loop estimates the

stochastic uncertainty by performing ni independent runs conditional on these parameter values. Hence,

this algorithm can be considered as an uncertainty decomposition algorithm (Zouaoui and Wilson 2003).

Next, we formulate the output process of the simulation replication algorithm for Xiℓr, ℓ = 1,2, . . . ,ni,

r = 1,2, . . . ,Ri to obtain a characterization of the output response variance in terms of the stochastic

uncertainty σ2
i and the input parameter uncertainty τ2

i . Following Zouaoui and Wilson (2003), we express

the output response from the rth simulation run of system i as Xiℓr = Gi(uiℓr,Ψir) = gi(Ψir)+σiZiℓr. Under

the hierarchical normal model, we assume that Ziℓr, ℓ = 1,2, . . . ,ni are independent and identically distributed

normal random variables, each with a mean of zero and a standard deviation of one. We use σiZiℓr to represent

the deviation of the simulation output from the response surface gi(Ψir) due to the stochastic uncertainty

whose source is the random-number input uiℓr for that run. Under the assumptions of E[σiZiℓr | di,Ψir] = 0

and V[σiZiℓr | di,Ψir] = σ2
i , it holds that E[Xiℓr | di,Ψir] = gi(Ψir) and V[Xiℓr | di,Ψir] = σ2

i for ℓ = 1,2, . . . ,ni

and r = 1,2, . . . ,Ri. Furthermore, we assume that gi(Ψir) = βi +ηi(Ψir), where βi := EΨir
[gi(Ψir)|di] is an

unbiased estimator of the mean output response, EΨir
[ηi(Ψir) | di] is equal to zero, and VΨir

[ηi(Ψir) | di] := τ2
i

stands for the uncertainty associated with the unknown input parameters of the ith system design. This

well-known response-surface representation (Rao 1997) has been also suggested by Freimer and Schruben

(2002), Ankenman and Nelson (2012), and Song and Nelson (2013) for the characterization of the input

uncertainty in the simulation output processes. We use this representation in a similar manner to decompose
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ith design response variance into components of stochastic uncertainty (σ2
i ) and parameter uncertainty (τ2

i ):

V[Xiℓr|di] = VΨir
[E [Gi(uiℓr,Ψir)|di,Ψir] |di]+EΨir

[V [Gi(uiℓr,Ψir)|di,Ψir] |di]

= VΨir
[gi(Ψir)|di]+EΨir

[V [σiZiℓr|di,Ψir] |di]

= VΨir
[βi +ηi(Ψir)|di]+EΨir

[

σ2
i |di

]

= τ2
i +σ2

i . (3)

Zouaoui and Wilson (2003) present procedures to estimate βi, τi, and σ2
i using the output data Xiℓr,

ℓ = 1,2, . . . ,ni, r = 1,2, . . . ,Ri. Our purpose is, however, not the estimation of these parameters of

the simulation response model. We develop subset selection procedures by building on the variance

decomposition in (3) as we account for the stochastic and parameter uncertainties in the simulation outputs.

2.2 Subset Selection with Simulation Replication Algorithm

In this section, we represent the simulation output processes of the simulation replication algorithm by

Xiℓr = βi + ηir(Ψir)+ σiZiℓr, r = 1,2, . . . ,Ri, ℓ = 1,2, . . . ,ni, i = 1,2, . . . ,k. We also use SR2
i for denoting

R−1
i (Ri −1)−1 ∑

Ri

r=1(X̄ir − X̄i)
2. Building on the structure of the simulation replication algorithm presented

in Section 2.1, we consider a decision rule of the form X̄[k] ≥ X̄[i] −L[k][i], i = k − 1,k − 2, . . . ,1 with

L 2
[k][i] = t2

[k]SR2
[k] + t2

[i]SR2
[i] such that P{X̄[k] ≥ X̄[i]−L[k][i], i = k−1,k−2, . . . ,1} ≥ 1−α . First, we note that

X̄[i]r ∼ N

(

β[i],τ
2
[i] +

σ2
[i]

n[i]

)

and X̄[i] ∼ N

(

β[i],
τ2
[i]

R[i]
+

σ2
[i]

R[i]n[i]

)

, i = 1,2, . . . ,k.

Defining χ2(a) as a chi-squared random variable with a degrees of freedom, we represent L 2
[k][i] as follows:

L
2
[k][i] = ∑

j∈{[k],[i]}

t2
j

1

R j(R j −1)

R j

∑
r=1

(X̄ jr − X̄ j)
2

= ∑
j∈{[k],[i]}

t2
j

1

R j(R j −1)

(

R j

∑
r=1

(X̄ jr −β j)
2
−R j (X̄ j −β j)

2

)

= ∑
j∈{[k],[i]}

t2
j

1

R j(R j −1)

((

τ2
j +

σ2
j

n j

)

χ2(R j)−

(

τ2
j +

σ2
j

n j

)

χ2(1)

)

= ∑
j∈{[k],[i]}

t2
j

(

τ2
j

R j

+
σ2

j

R jn j

)

(

χ2(R j −1)

R j −1

)

.

This leads to the following characterization for the probability of including the best system design [k] in

the subset I := {i : 1 ≤ i ≤ k, 1 ≤ j ≤ k, i 6= j, and X̄i ≥ X̄ j −Li j} with i = k−1,k−2, . . . ,1:

P











Z2
[k][i] ≤ ∑

j∈{[k],[i]}

t2
j







τ2
j

R j
+

σ2
j

R jn j

τ2
[k]

R[k]
+

σ2
[k]

R[k]n[k]
+

τ2
[i]

R[i]
+

σ2
[i]

R[i]n[i]







(

χ2(R j −1)

R j −1

)











≥ 2(1−α)
1

k−1 −1.
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t j := t(1−α)1/(k−1),R j−1 for j ∈ {[k], [i]} and i = k−1,k−2, . . . ,1, ensure the inclusion of the best [k] in the

subset I with probability at least 1−α (Banerjee 1961). We are now ready to present our decision rule:

Decision Rule When the stochastic simulation of each of the k system designs is conducted with the simulation

replication algorithm outlined in Figure 1, the use of the following decision rule for i ∈ {1,2, . . . ,k} and all

values of j ∈ {1,2, . . . ,k} which are different from i ensures the inclusion of the best design in the selected

subset with a probability of at least 1−α:

X̄i ≥ X̄ j −

(

t2

(1−α)1/(k−1),Ri−1

Ri

∑
r=1

(X̄ir − X̄i)
2

Ri(Ri −1)
+ t2

(1−α)1/(k−1),R j−1

R j

∑
r=1

(X̄ jr − X̄ j)
2

R j(R j −1)

)1/2

. (4)

As long as we independently sample the input distribution parameters Ψir, r = 1,2, . . . ,Ri, i = 1,2, . . . ,k
and the random-number inputs uiℓr, r = 1,2, . . . ,Ri, ℓ = 1,2, . . . ,ni, i = 1,2, . . . ,k, this decision rule remains

the same independent of whether we assume identical or different sources of uncertainty for the input

random variables. Furthermore, this decision rule does not require any restrictive conditions among the

output response functions unlike the case in which parameter uncertainty is captured by the method of

asymptotic normality approximation (Corlu and Biller 2013).

3 APPLICATION TO STOCHASTIC INVENTORY SYSTEM SIMULATIONS

This section investigates the performance of subset-selection rules with applications to inventory simulations.

We provide the design of experiments in Section 3.1 and present the results and insights in Section 3.2.

3.1 Design of Experiments

We consider k := 40 different stochastic inventory system designs, each of which is composed of two items.

The objective is to identify the inventory system with the maximum joint demand fulfillment probability;

i.e., the probability of fully satisfying all item demands. In the inventory system design i ∈ {1,2, . . . ,k},

we assume normally distributed demands with a mean of µi,1 := 500− (200/(k−1))(i−1) and a standard

deviation of σi,1 := 0.25µi,1 for the first item as well as a mean of µi,2 := 600+(200/(k−1))(i−1) and

a standard deviation of σi,2 := 0.15µi,2 for the second item. Using Φ−1(·) for representing the inverse

cumulative distribution function of the standard normal random variable, we set the base-stock levels to

µi,1 +Φ−1((0.98− (0.40/(k−1))(i−1))1/2)σi,1 and µi,2 +Φ−1((0.98− (0.40/(k−1))(i−1))1/2)σi,2 for

item 1 and item 2, respectively. Therefore, if the parameters of the normal demand distributions were

known with certainty, then the inventory system design 1 would have the highest fulfillment probability

of 0.98 and system design k would have the minimum fulfillment probability of 0.58 (i.e., 0.98−0.40).

Hence, the index of the best system design [k] with the largest true mean performance measure is 1 and

the index of the system design [1] with the smallest true mean performance measure is k. Furthermore, the

true mean performance measures of the stochastic inventory system designs [i] and [i+1] differ from each

other by 0.40/(k−1) for i = 1,2, . . . ,k−1. Therefore, it becomes more difficult to screen out the inferior

system designs with the increasing number of system designs under consideration.

In the absence of known demand parameters, we assume the availability of m ∈ {10,30} observations

in each historical data set for the estimation of the unknown demand parameters. Our goal is to identify the

pair of items which delivers the maximum joint demand fulfillment probability under demand parameter

uncertainty. First, we follow the practice of accounting for only the stochastic uncertainty in the inventory

system simulation. Therefore, we drive the inventory system simulation with the demand parameter

estimates which are obtained from a single realization of the demand history, and we apply the subset

selection decision rule in (2) to the simulation output data for α = 0.10. Letting the number of simulation

replications, n take the values of 10, 30, or 100, we present our findings of the following three performance

measures, each of which is computed across 1000 macro-replications: The average probability of including

442



Corlu and Biller

the best system design in the selected subset (AP of including the best), the average computational time

(in seconds), and the mean of the subset size. We present the results in Table 1. Next, we follow the

practice of accounting for both the stochastic uncertainty and the parameter uncertainty in the simulation

output process, and apply the subset selection procedure in (4) to the simulation output data. We present

our computational findings in Tables 2 and 3.

3.2 Results and Insights

Our results demonstrate the importance of accounting for parameter uncertainty in subset selection to

improve the probability of including the best system design in the selected subset especially when the

demand history is short and the subset selection procedure is used to screen a large number of competing

system designs. Ignoring the parameter uncertainty in the application of the screen-to-the-best procedure

provides 0.748 (Table 1) as the average probability of including the best system design in the selected

subset when we perform 10 simulation replications (n = 10), and assume the availability of 10 observations

in the historical data set (m = 10).

Table 1: Parameter uncertainty is ignored and screen-to-the-best procedure is used for subset selection.

AP of Including the Best Computational Time Mean of the Subset Size

n m = 10 m = 30 m = 10 m = 30 m = 10 m = 30

10 0.748 0.938 2.511 2.528 2.514 2.302

30 0.618 0.912 6.617 6.505 1.586 1.500

100 0.588 0.808 20.792 20.611 1.298 1.280

We also identify 2.511 seconds as the average computational time and 2.514 as the average size of the

selected subset. Biller and Corlu (2015) further identify the standard deviation of the subset size as 1.235.

However, when we account for both the stochastic uncertainty and the parameter uncertainty in subset

selection and use the method of simulation replication algorithm to represent the parameter uncertainty in

the simulation output data, we identify the average probability of including the best system design in the

selected subset as 0.785 with an average computational time of 1045.8 seconds and an expected subset size

of 1.242 (and a standard deviation of 0.518 for the subset size). In comparison to the practice of ignoring

input parameter uncertainty in subset selection, this corresponds to a relative improvement of 4.95% (i.e.,

from 0.748 in Table 1 to 0.785 in Table 2) in the average probability of including the best system design in

the selected subset. Despite its computational intensity, we further decrease the average subset size from

2.511 to 1.242. Hence, our subset selection procedure building on the use of the simulation replication

algorithm to represent parameter uncertainty not only improves the average probability of including the best

system design in the selected subset but also reduces the average subset size in comparison to the subset

selection procedure which ignores the parameter uncertainty. The improvement in the average probability

of including the best system design in the selected subset becomes even more evident with the increasing

number of simulation replications. When n = 30, we increase the average probability of having the best

system design in the subset by 13.3% (i.e., from 0.618 in Table 1 to 0.700 in Table 2), accompanied by

a reduction of 21.7% in the average subset size. We further increase this probability by 14.6% (i.e., from

0.588 in Table 1 to 0.674 in Table 2) with a reduction of 6.4% in the average subset size when n = 100.

Table 2: Parameter uncertainty is captured by the simulation replication algorithm.

AP of Including the Best Computational Time Mean of the Subset Size

n m = 10 m = 30 m = 10 m = 30 m = 10 m = 30

10 0.785 0.792 1045.8 1048.5 1.242 1.108

30 0.700 0.798 3108.9 3112.4 1.242 1.116

100 0.674 0.813 10369.6 10469.7 1.215 1.111
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An observation we make from the results reported in Table 1 is that both the average probability

of including the best system design in the selected subset and the mean of the subset size decrease

with the number of replications performed for the simulation of each stochastic inventory system design.

This observation can be explained by the effect of the simulation replication number, n to decrease the

magnitude of L 2
i j := t2

(1−α)1/(k−1),n−1
(S2

i +S2
j)/n, which arises in the decision rule comparing X̄i to X̄ j in (2)

with n = ni = n j. Although we make a similar observation for m = 10 in Table 2, this observation does

not extend to m = 30. More specifically, we observe the average probability of including the best system

design in the selected subset to increase with the number of simulation replications. This is because the

parameter density functions provide more information about the unknown demand parameters when there

are 30 observations in the historical data set in comparison to having 10 historical data observations, and

increasing the number of replications allows us to incorporate more information about the distributions of

the input random variables, conditional on the density function of the unknown demand parameters, into

the simulation outputs.

Table 3: The average probabilities of the selected subsets to contain only the best system design (i.e.,

I1 = {[k]}), the best two system designs (i.e., I2 = {[k], [k−1]}), and the best three system designs (i.e.,

I3 = {[k], [k−1], [k−2]}) when the number of simulation replications is 10; i.e., ni = 10 for i = 1,2, . . . ,k.

Ignoring Parameter Uncertainty Accounting for Parameter Uncertainty

Subset m = 10 m = 30 m = 10 m = 30

I1 0.138 0.220 0.536 0.704

I2 0.264 0.476 0.778 0.908

I3 0.420 0.716 0.866 0.976

Finding significant discrepancies among the mean subset sizes reported in Tables 1 and 2 motivates us

to further investigate the contents of the selected subsets delivered by the subset selection procedures. In

Table 3 where we perform 10 replications for the simulation of each inventory system design, we present

first the average probability that the selected subset contains only the best inventory system design (i.e.,

I = {[k]}), then the average probability of including only the best two system designs in the selected subset

(i.e., I = {[k], [k−1]}), and finally the average probability of containing only the best three system designs

in the selected subset (i.e., I = {[k], [k−1], [k−2]}). By focusing on the same experimental design with

m = 10 and n = 10, we find that there is more to understand about the performance of our subset selection

procedures than the insights gained by comparing Table 1 to Table 2. In the case of implementing the

subset selection procedure without taking the input parameter uncertainty into consideration, we correctly

identify the best inventory system design with the maximum joint demand fulfillment probability among 40

competing system designs only for 13.8% of the time. However, accounting for input parameter uncertainty

via the use of our subset selection procedure increases this frequency to 53.6% with an improvement of

almost four fold. Furthermore, redesigning the subset selection procedure to account for input parameter

uncertainty increases the average probability of identifying the best two system designs from 26.4% to

77.8% and the average probability of identifying the best three system designs from 42.0% to 86.6%.

Therefore, there is considerable benefit to the use of a subset selection procedure which accounts for input

parameter uncertainty to effectively screen out the inferior system designs.

4 CONCLUSION

We study a subset selection procedure when the parameters of the input distributions are unknown and there is

only a limited amount of historical data available for parameter estimation. We redesign the subset selection

procedure to account for parameter uncertainty and apply this procedure to stochastic inventory system

simulations with the purpose of finding the inventory system designs maximizing the service level in the

presence of limited amounts of historical demand data. Computational results demonstrate the importance
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of accounting for parameter uncertainty in subset selection to improve the probability of including the best

system design in the selected subset especially when the demand history is short and the subset selection

procedure is used to screen a large number of competing system designs. We refer the reader to Biller

and Corlu (2015), where the potential effects of batching and common random numbers for enhancing the

performance of our subset selection procedure are investigated.
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