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ABSTRACT

Performance analysis via stochastic simulation is often subject to input model uncertainty, meaning that the

input model is unknown and needs to be inferred from data. Motivated especially from situations with limited

data, we consider a worst-case analysis to handle input uncertainty by representing the partially available

input information as constraints and solving a worst-case optimization problem to obtain a conservative

bound for the output. In the context of i.i.d. input processes, such approach involves simulation-based

nonlinear optimizations with decision variables being probability distributions. We explore the use of

a specialized class of mirror descent stochastic approximation (MDSA) known as the entropic descent

algorithm, particularly effective for handling probability simplex constraints, to iteratively solve for the local

optima. We show how the mathematical program associated with each iteration of the MDSA algorithm can

be efficiently computed, and carry out numerical experiments to illustrate the performance of the algorithm.

1 INTRODUCTION

We consider stochastic simulation with uncertain input specifications. This arises in many contexts when

only finite data is available for calibrating the input model. Conventional approaches to handle such

uncertainty include goodness-of-fit tests (e.g. Banks et al. 2000), Bayesian model selection or averaging

(e.g. Chick 2001), and bootstrapping (e.g. Barton et al. 2013). In this paper, we consider an alternative,

worst-case approach, which can be particularly relevant when data is limited or unavailable, or when the

modeler wants to assess risk beyond what data could tell. This approach comprises solving optimization

programs on the space of input models, with constraints representing the partially known information on

these inputs. The optimal values of these programs give the worst- or the best-case performance measures

under the uncertainty.

More concretely, consider a stochastic simulation problem of computing Ep[h(X)], where X =
(X1, . . . ,XT ) are the i.i.d. replications from a common input model represented by the probability dis-

tribution p. In other words, Xt
i.i.d.∼ p. h(·) is some function that captures the system logic applied to X,

and Ep[·] denotes the expectation with respect to the i.i.d. replications of Xt’s each with distribution p. As

an example, one can think of X as a sequence of interarrival or service times, and p is the corresponding

interarrival or service time distribution. h(X) can be the indicator function of long waiting time for customer

T , so that Ep[h(X)] is the corresponding long waiting time probability.

Our premise is that p is unknown, but some information is available. These information can be

represented by constraints on p, denoted A . Our goal is to perform a worst-case analysis to calculate

min
p∈A

Ep[h(X)] or max
p∈A

Ep[h(X)]. (1)
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For instance, A can specify that the first two moments of p are within certain ranges. In this case, we

can write

A = {p : µ ≤ EpX1 ≤ µ, σ ≤ EpX2
1 ≤ σ}

for some numbers µ ≤ µ and σ ≤ σ .

As another example, suppose that the modeler adopts a baseline model b, e.g. exponential distribution,

and believes that it is close to the truth. Then we can use the constraint

A = {p : d(p,b)≤ η}

where d(·, ·) is some statistical distance defined between two distributions, i.e. a notion of distance that

is not restricted to any specific parametric models, and η > 0 is a threshold parameter that describes the

level of uncertainty.

The key is that in both examples, the modeler represents the information on the input model nonpara-

metrically, without committing to a specific parametric class that can be potentially misspecified. Later in

this paper, we shall use the above two examples of A to illustrate our optimization procedure.

The worst-case formulation like (1) is inspired from the literature of distributionally robust optimization

(DRO). This literature considers decision-making under ambiguity of the underlying probabilistic models

(e.g. Delage and Ye 2010, Goh and Sim 2010, Ben-Tal et al. 2013), often cast in the form of minimax

problems. Glasserman and Xu (2014) further studies the solutions to these problems via simulation.

However, unlike the standard DRO literature that possess convex formulations and linear (or stage-wise

linear) objectives, the objective function in (1) is not linear, or even convex in p in general, since computing

the expectation Ep[·] actually involves a T -fold convolution of p due to the i.i.d. structure. The objective

function in (1) is also accessible only via simulation in our context of interest. These challenges obstruct

the direct usage of previous techniques. Moreover, because of non-convexity, we would set our goal as to

obtain a local optimum for (1).

Formulation (1) also faces two additional challenges. The first is that p can be high-dimensional. In

fact, for a continuous input distribution, p is infinite-dimensional. In this paper we shall restrict ourselves

to discrete finite-support distributions, with the understanding that discretization is used a priori to handle

continuous distributions. Second, (1) consists of constraints that can be computationally costly to various

extents.

Ghosh and Lam (2015) discusses some of the above challenges and proposes a constrained stochastic

approximation (SA) algorithm based on the Frank-Wolfe (FW) method in nonlinear programming (which

they call FWSA), by successively solving linear-objective subprograms that give the best feasible direction

at each iteration. They show almost sure convergence and analyze the convergence rate of the algorithm.

This paper describes an alternative to FWSA by using the idea of mirror descent (MD) (e.g. Nemirovski

and Yudin 1983, Nemirovski et al. 2009). In fact, we will focus on a specialized class of mirror descent

stochastic approximation (MDSA) that is based on a so-called entropic distance-generating function. The

deterministic version of this algorithm is known as the entropic descent algorithm (EDA) (e.g. Beck and

Teboulle 2003). The motivation of this alternative is two-fold. The first is that MD method, and in

particular EDA, is known to scale favorably with the decision space’s dimension when the space is a

probability simplex. Since we consider potentially discrete distributions that have many support points (or

very fine discretization of continuous distributions), this property of MD is attractive for our problem. While

theoretical guarantees of this sort have been shown only for convex programs, our preliminary experimental

results show the algorithm works well for some potentially non-convex settings. Second, unlike FWSA,

MDSA does not require a growing sample size for gradient estimation. This can potentially save huge

computational effort as iteration increases.

The rest of the paper is organized as follows. Section 2 introduces MDSA. Section 3 discusses gradient

estimation. Section 4 analyzes the solution to the mathematical program required in each iteration of

MDSA. Finally, Section 5 shows some numerical results for an M/GI/1 example.
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2 MIRROR DESCENT STOCHASTIC APPROXIMATION

The MD procedure was first proposed by Nemirovski and Yudin (1983) for convex deterministic optimization.

One of its earlier motivations is to define a proper gradient descent type algorithm for decision variable that

lies on function spaces. In general, the gradient of the objective lies in the dual of the decision space, which

is different from the primal, and so the usual iteration routine by moving the current solution along the

gradient direction is not well-defined (the standard Euclidean space is an exception because it is isometric

to its dual space). MD resolves this issue by first mapping the solution into the dual space, followed by

applying the gradient descent in the dual space and at the end mapping back into the primal. This method

can as well be used for decision variables in the Euclidean space: By appropriately defining the space and

its norm that are pertained to the geometry of the constraints, it can achieve a rate of convergence that is

favorably scaled with the dimension of the problem.

We first give a general description of MD, focusing on a generic minimization problem minx∈X Z(x).
Adopting Nemirovski et al. (2009), we first define a distance-generating function ω(·) and a norm ‖ ·‖ on

the space X . The function ω(·) needs to be strongly convex with respect to the norm ‖ · ‖, meaning that

ω(y)−ω(x)≥ ∇ω(x)′(y− x)+
α

2
‖y− x‖2

for some constant α > 0 and any x,y ∈ X , which is equivalent to

(y− x)′(∇ω(y)−∇ω(x))≥ α‖y− x‖2.

Next we define the prox-function V (·, ·) as

V (x,z) = ω(z)−ω(x)−∇ω(x)′(z− x). (2)

In other words, V (·, ·) is the remainder of the first order approximation of ω(·). We then define the

prox-mapping proxx(y) as

proxx(y) = argminz∈X y′(z− x)+V (x,z).

For an optimization minx∈X Z(x), the MD method iteratively updates xk+1 from xk by using xk+1 =
proxxk

(γk∇Z(xk)) where γk is some step size. If ∇Z(xk) can only be assessed through unbiased samples,

then an estimate ∇̂Z(xk) is used, in which case it becomes MDSA.

We put the above discussion into our context. Our objective function is Z(p) = Ep[h(X)]. We consider

p in the probability simplex on n fixed support points {u1, . . . ,un}, denoted by P = {(p1, . . . , pn) : ∑
n
i=1 pi =

1, pi ≥ 0 for all i = 1, . . . ,n}. The feasible region A ⊂ P is our space in consideration. We shall use the

entropic distance-generating function

ω(p) =−
n

∑
i=1

pi log pi. (3)

The corresponding prox-function is

V (p,q) =
n

∑
i=1

qi log
qi

pi

(4)

where p = (p1, . . . , pn),q = (q1, . . . ,qn)∈A , which can be seen by plugging (3) into (2). The MD iteration

using the prox-mapping is

pk+1 = proxpk
(γk∇Z(pk)) = argminp∈A γk∇Z(pk)

′(p−pk)+V (pk,p).

This procedure is known as the entropic descent algorithm (EDA).
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Since ∇Z(pk) is not known exactly in the stochastic simulation context, one needs to estimate it by

sampling. In the next sections, we shall discuss two issues with implementing a stochastic version of EDA:

The first is how to obtain an estimate of the gradient, and the second is on efficient methods for solving

the subprogram that defines the prox-mapping.

In the convex optimization setting where unbiased samples for ∇Z is available, it is known that the

convergence rate of the optimality gap, i.e. E[Z(xk)−Z(x∗)] for MDSA is of order 1/
√

k. Compared to the

projective gradient method, i.e. carrying out an Euclidean projection on the feasible region at each iteration,

which is in fact a special case of MDSA by taking ω(x) = (1/2)‖x‖2
2 where ‖ · ‖2 denotes L2-norm, the

convergence constant in front of 1/
√

k for EDA can be
√

n/ logn times smaller (Nemirovski et al. 2009).

This makes EDA favorable for large n, and motivates our use of EDA in this paper.

Another motivation for using MDSA is that, in contrast to FWSA proposed in Ghosh and Lam (2015),

we do not increase the sample size with the iteration number. To explain the difference in the required

sample sizes on an intuitive level, we note that FWSA consists of solving a subprogram at each iteration

with a linearized objective in order to obtain the best feasible direction. This subprogram introduces bias

in estimating the best feasible direction, even when the gradient itself can be estimated unbiasedly. The

increase in sample size with respect to iteration is therefore designed to offset this bias. On the other

hand, prox-mapping possesses contraction properties similar to a projection, which facilitates the analysis

for MDSA using a notion of distance derived from the prox-function rather than by looking at the bias

separately.

3 GRADIENT ESTIMATION

Note that since p ∈ P is a discrete distribution, we can write

Z(p) = Ep[h(X)] = ∑
i1

· · ·∑
iT

h(xi1 , . . . ,xiT )pi1 · · · piT (5)

so that Z(p) is a high-dimensional polynomial in the variables p. Although explicit form (5) is available,

there are often numerous summands in (5) that renders exact computation infeasible, and so simulation

has to be used. In carrying out gradient estimation for (5), one issue is that naive differentiation of (5)

with respect to each coordinate of p does not lead to any implementable procedure, because it results in a

high-dimensional multivariate polynomial that has no probabilistic meaning.

To get around the above issue, Ghosh and Lam (2015) proposes using the Gateaux derivative on a

functional of probability distribution for simulating the gradient of (5), and we shall use it here. Given a

p, consider a mixture of p with the point mass at each coordinate, i.e. ei = (0, . . . ,1, . . . ,0)′ where the 1 is

at the i-th coordinate. This mixture is written as (1− ε)p+ εei for i = 1, . . . ,n. Then consider

ψi(p) =
d

dε
Z((1− ε)p+ εei)

∣∣∣∣∣
ε=0

(6)

and define ψψψ(p) = (ψ1(p), . . . ,ψn(p))
′. This vector ψψψ(p) captures all the necessary gradient information

of Z(p) within the space P , in the following sense:

Theorem 1 (Adapted from Ghosh and Lam (2015)) The vector ψψψ(p) defined in (6) satisfies

∇Z(p)′(q−p) = ψψψ(p)′(q−p) (7)

for any p,q ∈ P , and can be evaluated by writing as

ψi(p) = Ep[h(X)si(X)] (8)

where

si(x1, . . . ,xT ) =
T

∑
t=1

I(xt = ui)

pi

−T. (9)
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Here I(·) is the indicator function, and (u1, . . . ,un) are the support points for the probability simplex P .

Since the operations in MDSA only involve ∇Z(p)′(q− p) but not the gradient itself directly, (7)

dictates that one can use ψψψ(p) to replace ∇Z(p). The functions si in (9) can be regarded as a nonparametric

version of the score function (Ghosh and Lam 2015), and with (8) one can use h(X)si(X) as an unbiased

estimator for the gradient information vector ψψψ(p). In summary, given pk, our MDSA computes at iteration

k

pk+1 = proxpk
(γkψ̂ψψ(pk))

where

ψ̂ψψ(pk) =
1

M

M

∑
j=1

(h(X)si(X)) j

and (h(X)si(X)) j, j = 1, . . . ,M denote the samples using M independent sample paths of X.

4 COMPUTING PROX-MAPPING

We focus on two examples in this section.

4.1 Kullback-Leibler (KL) Divergence Constraint

Let

A =

{
p ∈ P :

n

∑
i=1

pi log
pi

bi

≤ η

}
(10)

where b = (b1, . . . ,bn) is some baseline distribution. This type of constraints has been used commonly in

robust control (e.g. Hansen and Sargent 2008, Petersen et al. 2000) and mathematical finance (e.g. Glasserman

and Xu 2014, Glasserman and Xu 2013), among other disciplines. The prox-mapping proxp(ξξξ ) for

p = (p1, . . . , pn) ∈ P and ξξξ = (ξ1, . . . ,ξn) ∈ R
n is described as follows:

Proposition 1 For the feasible region defined in (10), the prox-mapping for the minimization problem in

(1) using prox-function defined in (4) is given by proxp(ξξξ ) = ((proxp(ξξξ ))1, . . . ,(proxp(ξξξ ))n) as below:

First define

ϕ(p,ξξξ ) =
∑

n
i=1 pie

−ξi

(
log

pi

bi
−ξi

)

∑
n
i=1 pie−ξi

− log
n

∑
i=1

pie
−ξi

and

κ(β ;p,ξξξ ) =
∑

n
i=1 p

1
1+β

i b
β

1+β

i e
− ξi

1+β

(
log

pi

bi
−ξi

)

(1+β )∑
n
i=1 p

1
1+β

i b
β

1+β

i e
− ξi

1+β

− log
n

∑
i=1

p
1

1+β

i b
β

1+β

i e
− ξi

1+β .

If ϕ(p,ξξξ )≤ η , then

(proxp(ξξξ ))i =
pie

−ξi

∑
n
j=1 p je

−ξ j

else if ϕ(p,ξξξ )> η , then

(proxp(ξξξ ))i =
p

1
1+β

i b
β

1+β

i e
− ξi

1+β

∑
n
j=1 p

1
1+β

j b
β

1+β

j e
− ξ j

1+β

where β is the positive root of the equation

κ(β ;p,ξξξ ) = η . (11)
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Proposition 1 reveals that the prox-mapping under KL constraint is either an exponential twisting with

exponent −ξi, or an exponential twisting together with a “geometric mixture” of p and b given by p
1

1+β

i b
β

1+β

i .

Note that the main computation in the prox-mapping is merely a one-dimensional root-finding problem for

β .

Proof of Proposition 1. Consider

proxp(ξξξ ) = argminq∈A ξξξ
′
(q−p)+V (p,q)

where V (p,q) is defined in (4), which can be rewritten as the solution of

min ξξξ
′
(q−p)+∑

n
i=1 qi log

qi

pi

subject to ∑
n
i=1 qi log

qi

bi
≤ η

∑
n
i=1 qi = 1

qi ≥ 0 for all i = 1, . . . ,n.

(12)

Relaxing the first constraint in (12), we have the Lagrangian

ξξξ
′
(q−p)+

n

∑
i=1

qi log
qi

pi

+β

(
n

∑
i=1

qi log
qi

bi

−η

)
(13)

where β is the Lagrange multiplier. By Theorem 1, P.220 in Luenberger (1968), since the program (12)

is convex, if we can find β ≥ 0 and q ∈ A such that q minimizes (13) over P for the fixed β ≥ 0, and

that β and q satisfy the complementary slackness condition β
(

∑
n
i=1 bi log

qi

bi
−η

)
= 0, then this q is an

optimal solution for (12).

Suppose that β = 0. Then (13) reduces to

ξξξ
′
(q−p)+

n

∑
i=1

qi log
qi

pi

. (14)

To minimize (14) over q ∈ P , we consider a further relaxation of the constraint ∑
n
i=1 qi = 1 to get

ξξξ
′
(q−p)+

n

∑
i=1

qi log
qi

pi

+λ

(
n

∑
i=1

qi −1

)
. (15)

Differentiate (15) with respect to each qi and set it to zero to get

ξi + logqi +1− log pi +λ = 0

or

qi ∝ pie
−ξi .

The constraint ∑
n
i=1 qi = 1 implies that

qi =
pie

−ξi

∑
n
j=1 p je

−ξ j
. (16)

It is easy to check that q defined by (16) satisfies the KKT condition as the minimizer of the convex

minimization program of (14) over q ∈ P .

Now, we go back to the original problem (12). From the discussion above, q defined by (16) is an

optimal solution for (12) if it is feasible in A . In other words, we have to check that ∑
n
i=1 qi log

qi

bi
≤ η .
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Substituting (16) into ∑
n
i=1 qi log

qi

bi
gives ϕ(p,ξξξ ), and so the condition becomes ϕ(p,ξξξ )≤ η . This gives

rise to the first case in Proposition 1.

Suppose that ϕ(p,ξξξ )> η . Then the q considered in (16) is not feasible, and we must choose β > 0.

Relaxing the constraint ∑
n
i=1 qi = 1 on the Lagrangian (13), we have

ξξξ
′
(q−p)+

n

∑
i=1

qi log
qi

pi

+β

(
n

∑
i=1

qi log
qi

bi

−η

)
+λ

(
n

∑
i=1

qi −1

)
. (17)

Differentiate with respect to each qi and set it to zero gives

ξi + logqi +1− log pi +β (logqi +1− logbi)+λ = 0

or

qi ∝ p
1

1+β

i b
β

1+β

i e
− ξi

1+β .

The constraint ∑
n
i=1 qi = 1 gives

qi =
p

1
1+β

i b
β

1+β

i e
− ξi

1+β

∑
n
j=1 p

1
1+β

j b
β

1+β

j e
− ξ j

1+β

. (18)

q defined by (18) satisfies the KKT condition as the minimizer of (17) over q ∈ P . Going back to the

original problem (12), this q is an optimal solution if β is chosen such that ∑
n
i=1 qi log

qi

bi
= η . Substituting

(18) into ∑
n
i=1 qi log

qi

bi
gives κ(β ;p,ξξξ ) and so ∑

n
i=1 qi log

qi

bi
= η is equivalent to (11). Note that we can

always find a positive root for (11) in this case because when β = 0,

κ(0;p,ξξξ ) = ϕ(p,ξξξ )> η

while

κ(β ;p,ξξξ )→ 0

as β → ∞. Hence there must be a positive root for β since κ(β ;p,ξξξ ) is continuous in β .

4.2 Moment Constraint

Let

A =

{
p ∈ P :

n

∑
i=1

pirl(xi)≤ µl, l = 1, . . . ,m

}
(19)

where rl(·)’s are some basis functions. For instance, r1(x) = x and r2(x) = x2 correspond to the first two

moments. The prox-mapping proxp(ξξξ ) is described as follows:

Proposition 2 For the feasible region defined in (19), the prox-mapping for the minimization problem in

(1) using the prox-function defined in (4) is given by proxp(ξξξ ) = ((proxp(ξξξ ))1, . . . ,(proxp(ξξξ ))n), where

(proxp(ξξξ ))i =
pie

−ξi−∑
m
l=1 βlrl(xi)

∑
n
j=1 p je

−ξ j−∑
m
l=1 βlrl(x j)

and {βl, l = 1, . . . ,m} is the minimizer of

min
βl≥0,l=1,...,m

log
n

∑
i=1

pie
−ξi−∑

m
l=1 βlrl(xi)+

m

∑
l=1

βlµl. (20)
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The prox-mapping applies an exponential twisting on the probability distribution, with exponent

−ξi −∑
m
l=1 βlrl(xi). Each application of prox-mapping requires solving a convex optimization with only

non-negativity constraints in a dimension equal to the number of moment constraints. If the inequalities are

replaced by equalities, the procedure is exactly the same except that the corresponding Lagrange multipliers

βl in (20) become unconstrained.

Proof of Proposition 2. The prox-mapping proxp(ξξξ ) is found by solving

min ξξξ
′
(q−p)+∑

n
i=1 qi log

qi

pi

subject to ∑
n
i=1 qirl(xi)≤ µl, l = 1, . . . ,m

∑
n
i=1 qi = 1

qi ≥ 0 for all i = 1, . . . ,n.

(21)

Relaxing the first constraint, (21) has the same optimal value as the Lagrangian formulation

max
βl≥0,l=1,...,m

min
q∈P

ξξξ
′
(q−p)+

n

∑
i=1

qi log
qi

pi

+
m

∑
l=1

βl(rl(xi)qi −µl) (22)

since (21) is convex. Moreover, the saddle point solution of (22) is also optimal for (21). Consider the

inner minimization in (22). Relaxing further the constraint ∑
n
i=1 qi = 1, we have

ξξξ
′
(q−p)+

n

∑
i=1

qi log
qi

pi

+
m

∑
l=1

βl(rl(xi)qi −µl)+λ

(
n

∑
i=1

qi −1

)
.

Differentiate with respect to each qi and set it to zero, we have

ξi + logqi +1− log pi +
m

∑
l=1

βlrl(xi)+λ = 0

or

qi ∝ pie
−ξi−∑

m
l=1 βlrl(xi).

The constraint ∑
n
i=1 qi = 1 implies that

qi =
pie

−ξi−∑
m
l=1 βlrl(xi)

∑
n
j=1 p je

−ξ j−∑
m
l=1 βlrl(x j)

. (23)

q defined by (23) satisfies the KKT condition as the minimizer in the inner optimization in (22). Substituting

(23) into the inner objective function in (22) gives

− log
n

∑
i=1

pie
−ξi−∑

m
l=1 βlrl(xi)−

m

∑
l=1

βlµl −ξξξ
′
p

so that (22) becomes

max
βl≥0,l=1,...,m

− log
n

∑
i=1

pie
−ξi−∑

m
l=1 βlrl(xi)−

m

∑
l=1

βlµl −ξξξ
′
p

whose optimal solution is the same as that of (20).
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5 NUMERICAL EXPERIMENTS

This section describes numerical experiments conducted on the canonical simulation model of the M/GI/1

single-server queue to characterize the performance of the MDSA algorithm. This queueing model serves

as a good testing ground because a good approximation to the solution of the optimization problem (1)

where the set A is of form (10) is available via a deterministic re-formulation, which lets us observe the

rate of convergence in the objective value for our algorithm directly.

Consider an M/GI/1 queue where the arrival process is Poisson known with high accuracy to have

rate λ = 1. On the other hand, the time Xt taken to provide service to the t−th customer is uncertain but

is assumed i.i.d.. A simulation model estimates Z(p) = Ep[h(XT )], the long-run average of the waiting

times, i.e. the time between the customer’s arrival and for service to commence, of the first T customers:

Z(p) = E

[
1

T

T

∑
1

Wt

]
, where Wt = max{0,Wt−1 +Xt −At}.

Note that the t-th customer’s waiting time Wt is calculated by iterating over the celebrated Lindley’s

recursion, and At ∼ exp(1) is the inter-arrival time of the (t −1)-th customer.

We carry out optimization (1) that captures the worst-case performance for Z(p) amongst service time

distributions p that is η distance away from b in terms of KL divergence (focusing on the minimization

formulation):

min
p∈P

Z(p) s.t. ∑
i

pi log

(
pi

bi

)
≤ η (24)

where P denotes the probability simplex on {u1, . . . ,un}. Here we choose ui’s as the uniform discretization

of the interval [0,1], i.e. ui = (i+1)/n, and the nominal distribution b is the corresponding discretization of

a mixture distribution 0.3 × Beta(2,6) + 0.7 × Beta(6,2) over the interval [0,1], i.e. bi is the probability

mass of this continuous distribution assigned to the interval [ui−1,ui].
As T grows, the average waiting time converges to the corresponding steady-state value, which is

given in closed form for M/GI/1 queues when the traffic intensity ρp = Ep[Xt ] is less than 1, by the

Pollaczek-Khinchine formula (Khintchine 1932) as:

Z∞(p) =
ρpEp[X1]+Varp(X1)

2(1−ρp)
.

So, when T is large, an approximation Z∗
∞ to the worst-case performance estimate can be obtained by

replacing Z(p) in the problem (24) with Z∞(p). (In experiments, a choice of T = 2000 seems to show close

agreement.) With Ep[X1] = ∑ pixi and Ep[X
2
1 ] = ∑ pix

2
i , an approximation for the minimization problem (24)

is given by the steady-state formulation (SS) (shown below) which is in the form of a so-called convex-

concave-fractional program. As Ghosh and Lam (2015) has noted (also see Boyd and Vandenberghe 2009),

(SS) can be reformulated as an equivalent convex optimization problem (SS′) using the variable substitutions

t = 1/(2(1−∑ pixi)) and yi = pit. An approximation for the worst-case maximization problem can be

similarly derived.

min
p

∑ pix
2
i

2(1−∑ pixi)
(SS)

s.t. ∑
i

pi log

(
pi

bi

)
≤ η

∑ pi = 1

0 ≤ pi ≤ 1, ∀i = 1, . . . ,n

min
p

∑yix
2
i (SS′)

s.t. ∑yi log

(
yi

tbi

)
≤ ηt

2t −2∑yixi = 1

∑yi = t

0 ≤ yi ≤ t ∀i = 1, . . . ,n
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The key parameters in the MDSA algorithm are the fixed sample-size M and the step-size sequence

γk. We take the latter to be of the form γk = k−α . We shall experiment on the convergence behavior of the

algorithm for varied M and α . Note that Nemirovski et al. (2009) study the case α = 0.5 in particular.

All the experimental results were terminated for the MDSA algorithm at iteration k when at least one

of the following criteria are met:

1. The relative difference between objective value Z(pk) and the average of the observed values in 30

previous iterations, (∑30
v=1 Z(pk−v))/30, is below 5×10−6, or

2. The gradient estimate ψ̂(pk) has l2-norm smaller than 1×10−3, or

3. The change in iterates pk and pk+1 has l1-norm smaller than 1×10−6, or

4. The iteration count k reaches 200.

(a) α = 1.5, M varied as shown (b) M = 76,800, α varied as shown

Figure 1: Approximated Optimality gap of the MDSA algorithm iterates as function of iteration count

(both in log-scale). On the left, the step-size exponent α is held constant at 1.5 while the sample size M is

varied. Conversely, the plot on the right holds the sample-size M at 76,800 while the step-size exponent

α is varied.

Fig. 1 captures the performance of the MDSA algorithm as a function of the sample size M and step-size

exponent α parameters. It plots the (approximate) optimality gap as a function of the iteration count of

the algorithm, where the parameters are set to be η = 0.025, n = 100 and T = 2000. As can be expected,

Fig. 1a shows that the performance of the MDSA algorithm generally improves as the the sample size M

used to evaluate the gradient ψ(p) is increased. Note that Fig. 1a is plotted in log-scale, and the relatively

constant slopes among different M’s show that M seems to have primarily an effect on the constant factor

that accompanies the first order rate of convergence of the MDSA method as a function of the iteration

count. Note that for very large M values, the numerical accuracy issues intervene, resulting in the breaks

observed in the data series.

Fig. 1b plots the performance as the step-size exponent α is varied. Compared to M, α affects a bit

more the slopes of the trends (although still not very significantly), which demonstrates some effects on

the rate of convergence of MDSA in the power order of the iteration count. The result shows that the best

performance is achieved when α ≈ 1.5. When α is too aggressive (say α ≥ 2.0) the step-sizes become too

small which limits the movement of the solution iterates. On the other hand, too small an α (say α ≤ 1.25)
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may lead to overshooting the best next iterate; this can be inferred from the noisier sample paths for small

α . (The noise observed in the sample paths for α = 1.5 or 1.75 at the lower-right end of the plot is more

likely due to numerical accuracy issues in deriving the approximation from (SS’).)

(a) α = 1.5, M varied as shown (b) M = 76,800, α varied as shown

Figure 2: Approximated Optimality gap of the rolling simple average of the previous thirty MDSA algorithm

iterates as function of iteration count (both in log-scale). On the left, the step-size exponent α is held

constant at 1.5 while the sample size M is varied. Conversely, the plot on the right holds the sample-size

M at 76,800 while the step-size exponent α is varied.

Next, we also experiment some averaging on the MDSA scheme. This sort of averaging has been

considered in Nemirovski et al. (2009), where the weights are defined as a specific function of the step-size,

and a uniform version has also been widely used in the classical SA literature (e.g. Polyak 1990 and Ruppert

1991). Conceptually, averaging helps tamp down the effect of the noise induced by the fixed sample size at

every iteration. Fig. 2 provides the performance of a simple rolling average of the previous thirty iterates.

We see that the trends noticed in Fig. 1 emerge more clearly in Fig. 2, with the noise of the trends being

smaller across the board.
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