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ABSTRACT

The indifference-zone (IZ) formulation of ranking and selection (R&S) is the foundation of many procedures

that have been useful for choosing the best among a finite number of simulated alternatives. Of course,

simulation models are imperfect representations of reality, which means that a simulation-based decision,

such as choosing the best alternative, is subject to model risk. In this paper we explore the impact of model

risk due to input uncertainty on IZ R&S. “Input uncertainty” is the result of having estimated (“fit”) the

simulation input models to observed real-world data. We find that input uncertainty may force the user

to revise, or even abandon, their objectives when employing a R&S procedure, or it may have very little

effect on selecting the best system even when the marginal input uncertainty is substantial.

1 INTRODUCTION

One of the most elemental problems in stochastic simulation is searching for which of k < ∞ alternative

system designs has the largest or smallest mean performance measure. Examples include selecting the

inventory policy with the smallest long-run average cost; selecting the portfolio with the largest expected

return; and selecting the manufacturing layout with the largest throughput. Ranking and selection (R&S)

addresses this type of problem.

Assuming an environment in which we can make replications, the standard output model for R&S is

Yi j = µi + εi j (1)

where Yi j is the output from the jth replication of systems i, µi is its expected value, and the εi j are, for

fixed i, mean zero, independent and identically distributed (i.i.d.) random variables whose distribution (and

in particular variance) may depend on i. In this paper we will assume that the εi j are known to be normally

distributed, so that only their variances and covariances matter. We also assume that a larger mean is better

and (unknown to us) µk ≥ µk−1 ≥ ·· · ≥ µ1. The goal is to efficiently use the stochastic simulation outputs

to correctly select system k, or a system whose mean is very close to µk, as best.

The joint distribution of the εi j and the true differences µk−µi, i 6= k are critical to correctly selecting the

best. The indifference-zone (IZ) formulation of R&S sidesteps the latter issue by delivering a compromise
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guarantee:

Pr{select k |µk −µk−1 ≥ δ} ≥ 1−α

where δ > 0 and 1/k < 1−α < 1 are user specified. The IZ parameter δ is interpreted as the smallest

difference in mean performance that is practically significant, and 1−α is the guaranteed probability of

correct selection (PCS) when the best is at least δ better than the rest. The IZ condition frees the R&S

procedure from depending on the true differences µk − µi. In fact if µk − µi < δ for some alternatives i,

then selecting one of the close ones is also acceptable. Good general references for IZ R&S procedures

are Bechhofer et al. (1995) and Kim and Nelson (2006).

Implicit in the use of a R&S procedure is the assumption that the simulation is a faithful representation

of the real or conceptual system it was created to model. Of course, the simulation is never a perfect model

of reality, so the decision of which alternative to select is subject to model risk. We will explore one aspect

of that risk: input uncertainty.

Stochastic simulations require a collection of fully specified input-distribution models, which we

denote generically by F = {F1,F2, . . . ,FL}. Interarrival-time and service-time distributions in queueing

simulations, time-to-failure distributions in manufacturing simulations, and distributions of injury or illness

type in emergency department simulations are typical examples of input models. The true but usually

unknown real-world distributions are denoted by Fc (c is for “correct”). In this paper we consider the

model risk due to having estimated or “fit” the input models; let F̂ denote the fitted collection of input

distributions. Unless we are very lucky, F̂ 6= Fc. In this paper we compare k alternative system designs

that may or may not share the same input distributions. Let Fc
i denote the true distributions for alternative

i, and let F̂i denote its fitted distribution.

To investigate this source of model risk, we extend Model (1) to include the dependence on the

distributions used in the simulation:

Yi j(Fi) = ηi(Fi)+ εi j(Fi) (2)

where ηi(Fi) is the mean of the simulation output when distribution Fi is used to simulate alternative i.

Thus, the mean responses depend on both the structural differences among the systems, represented by

ηi(·), and the input distributions that are ultimately used in the simulations, Fi. The true mean for alternative

i is therefore µi = ηi(F
c
i ). Ideally we would like to correctly select k⋆ where

k⋆ = argmaxi=1,2,...,kE[Yi(F
c
i )] = argmaxi=1,2,...,kηi(F

c
i ).

However, if we use F̂i in place of Fc
i , then without adjustment the R&S procedure only provides a statistical

guarantee of selecting

k̂ = argmaxi=1,2,...,kE[Yi(F̂i)|F̂i] = argmaxi=1,2,...,kηi(F̂i).

Notice that the expectation in the objective function is now conditional on F̂i, so unconditionally k̂ is a

random variable. Clearly, k̂ may not equal k⋆ with finite samples of real-world input data, in which case we

may choose a wrong system as the best. This type of risk is known as input-model risk or input uncertainty.

Being satisfied with k̂ as the best implies ignoring the input-model risk.

In this paper we investigate the impact of input uncertainty on the IZ R&S formulation. Our interest is

not in proposing new procedures, but rather in revealing the inherent strengths and weaknesses of the IZ

formulation in the face of input uncertainty. This will provide a foundation upon which procedures could

perhaps be built. General overviews of the input uncertainty problem include Barton (2012) and Song

et al. (2014). Corlu and Biller (2013) consider input uncertainty in subset selection, another approach to

R&S that does not involve an IZ parameter. Fan et al. (2013) present a robust IZ R&S formulation that

selects the best alternative with respect to the worst-case choices among a finite collection of possible input

models.
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The remainder of the paper is organized as follows. In the next section we introduce an output model

that is useful for representing the effect of input uncertainty, and we exploit it to define some key concepts

in Section 3. We specialize these concepts to two classes of IZ R&S procedures in Sections 4–5. Some

conclusions are offered in Section 6.

2 MIXED-EFFECTS MODEL

As stated, Model (2) is not sufficient to examine the impact of input uncertainty on IZ R&S. To support

our analysis, we expand the model further into a mixed-effects model of the simulation output (Kutner

et al. 2004):

Yi j(F̂i) = µi + γi +β (F̂i)+(µβ )i(F̂i)+ εi j(F̂i), (3)

where

µi = ηi(F
c
i ),

γi = E[ηi(F̂i)]−ηi(F
c
i ).

We also assume

β (F̂i)∼ (0,σ2
β ),

(µβ )i(F̂i)∼ (0,σ2
µβ i

), (4)

εi j(F̂i)∼ (0,σ2
i (F̂i)).

Under this model, E[ηi(F̂i)] = µi+ γi, which is the fixed effect of the ith system on its output. The random

effect β (F̂i) captures the impact of F̂i on the simulation output where the randomness is from the sampling

distribution of the input model F̂i. Notice that its variance will be a decreasing function of the real-world

sample size for input modeling. The interaction effect between the ith system and the estimated input

model F̂i is captured by (µβ )i(F̂i). Simulation error εi j(F̂i) depends on the system and the input model

used to run the simulation.

Our goal in this paper is to gain insight. Therefore, to simplify the analysis, we make the following

assumptions:

Assumption 1 All k systems share the same input models; i.e., Fc
1 = Fc

2 = · · ·= Fc
k.

Thus, we are considering the case when the systems are different in structural ways (e.g., number of servers

or inventory policy), but the underlying randomness is the same. Under Assumption 1 we can drop the

subscript i from F̂i and use F̂ to represent the common input model. Assumption 1 implies that given

F̂, β (F̂) is fixed for all k systems. Also, using common F̂ implies the interaction effects (µβ )i(F̂)’s are

correlated. The following assumption imposes a correlation structure among interaction effects.

Assumption 2 For any given F̂,
{
(µβ )i(F̂)

}k−1

i=1
are jointly normally distributed with ∑

k
i=1(µβ )i(F̂) = 0.

Assumption 2 implies that conditional on F̂, {(µβ )i(F̂)}
k−1
i=1 act like fixed effects that account for any

differences among the systems in how they are affected by F̂. If we scale the variance of the interaction

effects in (4) as σ2
µβ (k−1)/k for algebraic simplicity, then under Assumption 2, Cov[(µβ )i(F̂),(µβ )i′(F̂)] =

−σ2
µβ/k for i 6= i′. The normality assumption on {(µβ )i(F̂)}

k−1
i=1 is helpful for inference on the distribution

of Yk j(F̂)−Yi j(F̂).
We further assume the simulation error is normally distributed with variance depending on the system

and the real-world sample size; for simplicity the sample size is not captured in our notation.

Assumption 3 εi j(F̂)∼ N(0,σ2
i ) for i = 1,2, . . . ,k, j = 1,2. . . . .
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Finally, we assume the finite sample bias to be the same for all i. Equivalently, this can be written as

Assumption 4 E[ηi(F̂)]−E[ηℓ(F̂)] = ηi(F
c)−ηℓ(F

c) for i 6= ℓ.

Assumption 4 is strong: it implies that the finite sample bias is the same for all systems. This will not be

strictly true in general, but the assumption helps us analyze the problem structure.

Under these assumptions, we can rewrite Model (3) as

Yi j(F̂) = µi + γ +β (F̂)+(µβ )i(F̂)+ εi j(F̂), (5)

where

µi = ηi(F
c),

γi = γ for all i,

β (F̂)∼ (0,σ2
β ),

(µβ )i(F̂)∼ N

(
0,

k−1

k
σ2

µβ

)
,

Cov
[
(µβ )i(F̂),(µβ )i′(F̂)

]
=−

1

k
σ2

µβ for i 6= i′,

εi j(F̂)∼ N(0,σ2
i ).

As a result of Assumption 1–4, {Yk j(F̂)−Yi j(F̂)}
k−1
i=1 are jointly normally distributed with a well-defined

covariance matrix under Model (5); we exploit this structure later.

Model (5) captures the key features of input uncertainty that are relevant to making comparisons among

alternative systems. There is a bias, γ , due to using estimated input models; this bias arises even if the

input models are unbiased for Fc because simulations are typically nonlinear transformations. The bias

is averaged over the sampling distribution of F̂, while the common random effect β (F̂) is due to the

specific input models that are actually realized. The extent to which the individual systems are affected

differently by F̂ is captured by (µβ )i(F̂). Thus, the overall random effect of F̂ on the output from system

i is β (F̂)+(µβ )i(F̂), a common effect and a deviation specific to system i. The variance σ2
µβ represents

how heterogeneous this deviation might be; if σ2
µβ = 0 then all systems are affected in the same way, and

therefore not at all when looking at the differences between them. Finally, there is the usual stochastic

output variance of each system represented by εi j(F̂)∼ N(0,σ2
i ).

If we decide to use common random numbers (CRN) for replications across the systems for given F̂,

then the simulation errors εi j(F̂) and εi′ j(F̂) are no longer independent for fixed j. However, the εi j(F̂)’s are

the only part in Model (5) that is affected by CRN. Typically, we expect CRN to reduce Var[εk j(F̂)−εi j(F̂)].
In this paper, we assume CRN is not used unless otherwise noted.

3 KEY CONCEPTS

We focus on R&S procedures that guarantee a lower bound on the probability of selecting the best

when the configuration of the means is in the so-called preference zone suggested by Bechhofer (1954):

PZδ = {(µ1,µ2, . . . ,µk) : µk −µi ≥ δ ,∀i 6= k} for some δ > 0. Again, δ is the indifference-zone parameter,

which implies that the user is indifferent among systems whose means µi are within δ of µk.

Let PCSδ ,N denote the minimum PCS under PZδ when N= {N1,N2,N3, . . . ,Nk} replications are obtained

from the k systems. If there is no input-model risk, then for the normal-theory case there are many R&S

procedures that will deliver N to guarantee PCSδ ,N ≥ 1−α . In the presence of input-model risk, however,

the PCSδ ,N may not have a lower bound of 1−α no matter how large the Ni’s are.
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Suppose we obtain Ni observations from system i using input model F̂ and compare the sample means.

Under Model (5)

Ȳk(F̂)− Ȳi(F̂) = µk −µi +(µβ )k(F̂)− (µβ )i(F̂)+ ε̄k(F̂)− ε̄i(F̂) for i 6= k

where a “bar” indicates averaging. Notice that the common effect of the input model β (F̂) disappears

as all systems share the same F̂. Compared to the no-input-model-risk case, we have an extra term

τi(F̂) = (µβ )k(F̂)− (µβ )i(F̂) which represents the difference in how systems i and k are affected by the

choice of input model. If all systems are affected in precisely the same way then these terms are all zero

and input uncertainty, no matter how large marginally, would have no impact when looking at differences.

More generally, τi(F̂) has expected value 0 with respect to the sampling distribution of F̂, so it cannot

be averaged out by obtaining more simulation replications. Given F̂ we are stuck with the τi(F̂)’s that it

implies, and these terms cannot be estimated directly because they are confounded with the mean simulation

response µk −µi. Hence, defining PCSδ ,N as in a standard R&S procedure no longer makes sense.

Although we cannot directly estimate the (µβ )i(F̂) terms, we might be able to characterize their

distribution. For instance, under Model (5) they have mean zero and are jointly normally distributed with

variance and covariance determined by σ2
µβ . If we can somehow approximate this distribution then we

might, as a compromise, try to control the average PCS.

Definition 1 The average PCS is

PCS ≡
∫

Rk−1
Pr{Ȳk(F̂)> Ȳi(F̂) for all i 6= k|τ(F̂) = t}dG(t),

where τ(F̂) = {τ1(F̂),τ2(F̂), . . . ,τk−1(F̂)}
T whose joint cumulative distribution (cdf) is G, and t =

{t1, t2, . . . , tk−1}
T .

The average PCS is in the same spirit as PCS itself: PCS is the fraction of correct selections averaged

over many applications of the procedure. Average PCS extends this average to include the possible input

models that could have been obtained.

Using PCS is different from the robust selection-of-the-best method suggested by Fan et al. (2013),

where they have an “ambiguity set” A that contains q candidate distributions F̂ and correct selection is

defined as selecting system i that minimizes max
F̂∈A

ηi(F̂). Unlike their paper, we do not concentrate on

a particular candidate F̂, but instead define PCS by averaging PCS over the sampling distribution of F̂.

Based on Definition 1 we could lower-bound the average PCS over PZδ ; call this PCSδ ,N. For given N,

PCSδ ,N ≤ PCSδ ,N since there is input-model risk represented by the τi(F̂)’s. Although we cannot actually

guarantee PCSδ ,N ≥ 1−α when there is input-model risk, we might settle for a procedure that promises

PCSδ ,N ≥ 1−α . We suggest how this could be achieved in the next two sections.

Instead of compromising PCSδ ,N, we can think of compromising δ . Intuitively, as δ increases, PCSδ ,N

also increases as µk is assumed to be farther away from µi for i 6= k under PZδ and we are less affected

by the input-model risk. Under input-model risk, we define the effective indifference-zone parameter δeff

as follows:

Definition 2 Suppose N⋆ = {N⋆
1 ,N

⋆
2 , . . . ,N

⋆
k } are the numbers of replications specified by a procedure to

achieve PCSδ ,N⋆ ≥ 1−α in the no-risk case. Then the effective indifference-zone parameter is

δeff ≡ inf{ω > 0: PCSω,N⋆ ≥ 1−α}.

In words, δeff is the minimum difference we can detect by using the same number of replications as in

the no-risk case, but to obtain an average PCS greater than 1−α when there is input-model risk. Thus,

δeff ≥ δ .
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Notice that this definition implicitly assumes that the distribution of each Yi(F̂) does not change when

we change the mean configuration (PZδ ) by increasing δ . This assumption is not true in general as the

distribution of Yi(F̂) is affected by the change in its mean unless it is a distribution that is invariant under

mean translation. Under Model (5) this assumption holds because the normal distribution is a location

family.

We have PCSδ ,N⋆ ≤ PCSδ ,N⋆ for given N⋆. Can we improve PCSδ ,N⋆ by increasing N? To answer this

question, we define the minimum indifference-zone parameter under input-model risk, δmin, as follows.

Definition 3 The minimum indifference-zone parameter under input model-risk is

δmin ≡ inf{ω > 0: PCSω,∞ ≥ 1−α},

where PCSω,∞ = limNi→∞,∀i PCSω,N.

Therefore, δmin is the smallest difference we can ever detect in the presence of input-model risk.

Under the mixed-effects model δeff and δmin depend on the interaction variance σ2
µβ ; with larger

σ2
µβ , both δeff and δmin increase because F̂ has a more dramatically different effect on each alternative

system. If δ > δmin, then we can still achieve PCSδ ,N ≥ 1−α . However, if δ ≤ δmin, then we cannot

achieve PCSδ ,N ≥ 1−α because limNi→∞,∀i PCSδ ,N < 1−α . In this case, we can either decrease 1−α and

compromise the probability of correct selection or increase δ . To users, the former means that they are

willing to accept less certain selection of the best while retaining the IZ parameter δ they chose, whereas

the latter means that they are willing to select a near-best system with increased δ but with the same

certainty.

So far we have considered procedures that guarantee the desired PCS over the least-favorable config-

uration (LFC) in the preference zone. One criticism for this approach is that the resulting procedure tends

to be conservative if in fact the mean configuration is a more favorable element of PZδ .

For instance, if µk −µk−1 ≫ δ , then a procedure based on the LFC of PZδ may be too conservative. In

the no-risk case, conservatism makes us collect more replications than necessary to achieve PCS ≥ 1−α ,

but we do achieve it. With input-model risk, conservatism can lead to the conclusion that we cannot

guarantee to select the best system when in fact we can, at least for the average case. For example,

under PZδ if δ ≤ δmin, then we would conclude that we cannot achieve PCS ≥ 1−α without increasing

δ . However, if we have a favorable mean configuration, i.e., µk −µk−1 ≫ δmin, then we might still achieve

PCS ≥ 1−α without compromising δ . Therefore, the true mean configuration has a more significant

impact when we have input model risk than in the no-risk case.

Suppose the true mean configuration µ = (µ1,µ2, . . . ,µk)
⊤ and Fc are known in the no-risk case. Then

the PCS under this configuration based on N replications is

PCSµ,N = Pr{Ȳk(F
c)− Ȳi(F

c)− (µk −µi)> µi −µk, for all i 6= k}.

Clearly, if µk − µk−1 ≫ δ , then PCSµ,N > PCSδ ,N. The means of other systems also matter; the greater

each µk −µi is, the bigger PCSµ,N is. Notice that PCSµ,N does not involve δ as we do not assume PZδ

anymore. If we want to take advantage of the user’s indifference among systems up to mean difference

of δ , then we can use the probability of good selection (PGS), which is the probability of selecting a

system whose mean is within δ from the best (Nelson and Banerjee 2001). The PGS under the true mean

configuration µ is

PGSµ,δ ,N = Pr{Ȳk(F
c)− Ȳi(F

c)− (µk −µi)>−max[δ ,µk −µi], for all i 6= k}. (6)

Notice the dependence of PGS on δ . Nelson and Matejcik (1995) show that if the joint distribution of

{Y1,Y2, . . . ,Yk} are invariant under mean translation, then PGSµ,δ ,N ≥ PCSδ ,N. The normality assumption

of Model (5) satisfies the condition. Similar to Definition 1 we can define the average PGS under input

model risk as follows.
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Definition 4 The average PGS under the true mean configuration µ is

PGSµ,δ ,N =
∫

Rk−1
Pr{Ȳk(F̂)− Ȳi(F̂)− (µk −µi)>−max[δ ,µk −µi] for all i 6= k|τ(F̂) = t}dG(t),

where τ(F̂) = {τ1(F̂),τ2(F̂), . . . ,τk−1(F̂)}
T and G is its cdf, and t = {t1, t2, . . . , tk−1}

T .

It is clear that PGSµ,δ ,N is an increasing function of µk −µi, if µk −µi > δ . Therefore, even when minimum

indifference-zone parameter δmin > δ , there may still exist N such that PGSµ,δ ,N ≥ 1−α when the actual

difference µk −µk−1 > δmin.

In the next two sections we discuss how single-stage and sequential, eliminating R&S procedures are

affected by, and might be modified to account for, input-model risk using the concepts defined in this

section.

4 SINGLE-STAGE PROCEDURES

Many of the issues that arise when doing R&S in the presence of input uncertainty can be illustrated using

the known and equal-variances case, as decribed in Bechhofer (1954), and these issues arise in very much

the same way in two-stage procedures. All of the results assume Model (5) describes the simulation outputs.

Suppose we further assume that

εi(F̂)∼ N(0,σ2) (equal variances)

σ2,σ2
µβ are known.

Under these assumptions, we can devise a single-stage R&S procedure. Because of the equal-variance

assumption, we have equal sample sizes across all k systems. Therefore, we replace N with N in this

section. Given the IZ parameter δ and the assumptions above we can show that

PCSδ ,N ≥
∫ ∞

−∞
Φ


 δ√

σ2/N +σ2
µβ

+ z0




k−1

φ(z0)dz0, (7)

where φ and Φ are the probability density function (pdf) and cdf of the standard normal distribution,

respectively. If σµβ = 0, then (7) gives the lower bound on the PCS for the no-risk case. Notice that

for fixed N the right-hand side of (7) decreases as σ2
µβ increases. Thus, we need larger N to guarantee

PCS. This follows the discussion in Section 3 that the greater the difference in how each system’s mean is

affected by the choice of input models, the less certain we are about the selection of the best system.

Using (7), δeff can be obtained by solving

∫ ∞

−∞
Φ


 δeff√

σ2/N⋆+σ2
µβ

+ z0




k−1

φ(z0)dz0 = 1−α,

where N⋆ satisfies
∫ ∞
−∞ Φ

(
δ/

√
σ2/N⋆+ z0

)k−1

φ(z0)dz0 = 1−α . Clearly, δeff ≥ δ where the equality

holds when σ2
µβ = 0. We can also obtain δmin by solving

∫ ∞

−∞
Φ

(
δmin

σµβ

+ z0

)k−1

φ(z0)dz0 = 1−α.

This implies that once we are given σµβ and δ , we can tell if we would be able to achieve a given PCS

even before we simulate the systems. Also, as k increases with the same σ2
µβ , PCSδ ,N is lower when
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we compare larger numbers of systems. Therefore, the δmin required to attain PCS 1−α increases. This

provides intuition about how input model risk affects problems with increasing numbers of alternatives.

To examine the effect of CRN, suppose that the stochastic noise across systems, {εi j(F̂), i = 1,2, . . . ,k},

is jointly normally distributed with mean 0 and variance-covariance matrix

σ2




1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1




where ρ ≥ 0 represents the effect of CRN. Then the average PCS, given N replications, is

PCSδ ,N ≥
∫ ∞

−∞
Φ


 δ√

σ2(1−ρ)/N +σ2
µβ

+ z0




k−1

φ(z0)dz0.

This demonstrates that CRN reduces the sample size required to achieve a given PCS, but does not alter the

δmin that can be detected. In other words, CRN does not enhance the best resolution that can be attained

when there is input uncertainty.

So far in this section we tried to lower-bound the PCS over the PZδ . If we assume the true µ is known,

then we can derive PCSµ,N as

PCSµ,N =
∫ ∞

−∞
Πk−1

i=1 Φ


 µk −µi√

σ2/N +σ2
µβ

+ z0


φ(z0)dz0.

Similarly,

PGSµ,N =
∫ ∞

−∞
Πk−1

i=1 Φ


max[δ ,µk −µi]√

σ2/N +σ2
µβ

+ z0


φ(z0)dz0.

We see that if the µk −µi are large enough then any desired PCS or PGS can be obtained. Of course, µ is

a property of the problem and is unknown. However, we can attempt to provide a lower bound for PCSµ,N

and PGSµ,N by using estimates of µ . Nelson and Banerjee (2001) suggest providing 1−α lower confidence

bounds on PCSδ ,N and PGSδ ,N using joint lower confidence bounds for µk −µi for i = 1,2, . . . ,k−1. Their

approach relies on unconstrained multiple comparisons with the best intervals with fixed-width. We can

take a similar approach to provide lower confidence bounds on PCSµ,N and PGSµ,N that better reflect the

true mean differences.

5 SEQUENTIAL ELIMINATING PROCEDURES

The single-stage procedure in Section 4 does not select a winner until all observations from all k systems

have been collected; the same is true of most two-stage procedures. Because the IZ formulation guards

against a particularly difficult configuration of the means, such procedures may not be able to deliver a

PCS guarantee in the face of input uncertainty. As we illustrated, exploiting a more favorable configuration

can mitigate the effect input uncertainty. Fully sequential, eliminating R&S procedures are more sensitive

to the actual differences in the means, and may therefore be a good choice for selecting the best when

there is input-model risk. We investigate this conjecture here.

In a typical fully sequential, eliminating R&S procedure, we perform pairwise comparisons of sample

means of all systems and sequentially rule out inferior systems as we obtain more replications from the
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systems in contention. In the well-known KN procedure (Kim and Nelson 2001), the systems in contention

at the rth replication are

Ir =
{

i : i ∈ Ir−1 and Ȳi(r)≥ Ȳℓ(r)−Wiℓ(r),∀ℓ ∈ Ir−1\{i}
}
,

where Ȳi(r) is the sample mean of system i up to the rth replication and Wiℓ(r) indicates how far Ȳi(r) can drop

below other systems’ sample means without being eliminated. The value of Wiℓ(r) that guarantees PCS ≥
1−α in the preference zone is a function of r,δ ,α and S2

iℓ = ∑
n0

j=1(Yi j −Yℓ j − [Ȳi(n0)−Ȳℓ(n0)])
2/(n0 −1),

which is an estimator of σ2
iℓ = Var(Yi j −Yℓ j). This method relies on the fact that (Yk j −Yi j)/σik ∼ N(∆,1)

with ∆ > 0, so the sum of differences behaves like Brownian motion with drift ∆. Elimination occurs when

this sum of differences drifts outside a continuation region, and which system is eliminated depends on the

direction that it departs. When two systems i 6= k are compared in isolation, the probability of correctly

selecting system k is minimized over PZδ when µk = µi +δ in which case ∆ = δ/σik.

As seen in the previous section, when we have input uncertainty we have an extra term τi(F̂) =

(µβ )k(F̂)−(µβ )i(F̂) in the pairwise difference. Conditional on the value of τi(F̂), the drift of (Yk j−Yi j)/σik

changes: (Yk j −Yi j)/σik ∼ N((µk − µi + τi(F̂))/σik,1). Assuming µk ≥ µi + δ , three different cases can

arise:

1. τi(F̂)≥ 0

Then the drift of (Yk j −Yi j)/σik is larger than in the no-risk case, so if we applied the no-risk

procedure we would need fewer replications to make a correct selection.

2. −(µk −µi)< τi(F̂)< 0

Then the drift is smaller than in the no-risk case, but still positive. Whether or not the correct-selection

guarantee holds depends on whether or not the drift is smaller than δ .

3. τi(F̂)<−(µk −µi)
Then the drift is negative instead of positive, so we are actually more likely to choose system i rather

than system k as the best. As σ2
µβ increases the probability of Case 3 increases and it becomes

more difficult to reach the correct selection by comparing the sample means of the systems.

Can we reflect the impact of the input model risk in the design of the continuation region? If we assume

that σ2
µβ and σ2 are known, then r(Ȳk(r)− Ȳi(r))/σ2

ik

∣∣τi(F̂) for r = 1,2, . . . has the same joint distribution as

observing the continuous time Brownian motion B
µk−µi+τi(F̂)

(r/σ2
ik) at discrete times r = 1,2, . . . . Suppose

we have a triangular continuation region as in Hong (2006). Then the probability of system i 6= k eliminating

system k in isolation (incorrect selection due to the ith system or ICSi) is

Pr{ICSi|τi(F̂)} ≤ Pr

{
inf

t∈(0,+∞)
B

µk−µi+τi(F̂)
(t)<−a+bt

}

≤ Pr

{
inf

t∈(0,+∞)
B

δ+τi(F̂)−b
(t)<−a

}

= min
{

exp(−2a(δ + τi(F̂)−b)),1
}
.

Then,

E[Pr{ICSi|τi(F̂)}]≤ E
[
min

{
exp(−2a(δ + τi(F̂)−b)),1

}]
. (8)

By setting (8) equal to α/(k−1) for each i, we can guarantee PCS≥ 1−α . As we have two parameters, there

are many combinations of (a,b) that satisfy such a constraint. One suggestion is to fix a=− log(α/(k−1))/δ ,

which is the value we typically choose in the no-risk case, and solve (8) = α/(k−1) for b. Notice that a
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is always positive, if 0 < α < 1 and k ≥ 2. If σ2
µβ is large, then we are more likely to have Case 3 above

and b can be negative to meet PCS ≥ 1−α . Negative b means that the resulting continuation region is no

longer triangular; rather, the continuation region becomes wider as the number of replications increases

and the method essentially fails. Therefore, even though a fully sequential, eliminating procedure better

exploits the true mean differences, the use of an indifference-zone parameter in the design of the procedure

can cause it to fail even when the true means are in a favorable configuration.

6 CONCLUSIONS

In this paper we used a mixed-effects model of simulation output to study the impact of input uncertainty

on IZ R&S procedures. We find that a straightforward application of IZ selection can be misleading,

providing an invalid correct-selection guarantee. However, it may be possible to adjust IZ procedures to

guarantee an average PCS, averaged over the sampling distribution of the input models. Unfortunately,

there will be cases in which the IZ assumption leads to the conclusion that even an average PCS guarantee

cannot be delivered, when in fact it could be delivered if we had known that we were in a more favorable

configuration. Methods that try to exploit the true differences become even more desirable when there is

input-model risk.
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