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ABSTRACT

In this article we present the concept of green simulation, which views simulation outputs as scarce

resources that should be recycled and reused. Output recycling, if implemented properly, can turn the

computational costs in an experiment into computation investments for future ones. Green simulation

designs are particularly useful for experiments that are repeated periodically. In this article we focus on

repeated experiments whose inputs are observations from some underlying stochastic processes. Importance

sampling and multiple importance sampling are two particular output recycling implementations considered

in this article. A periodic credit risk evaluation problem in the KMV model is considered. Results from

our numerical experiments show significant accuracy improvements, measured by mean squared errors, as

more and more outputs are recycled and reused.

1 Introduction

As a decision support tool, simulation experiments are usually designed for specific tasks and simulation

outputs are often discarded when the designated tasks are completed. Consequently, in the field of design and

analysis for simulation experiments, studies have usually been done for “simulation from scratch”, which

are designs that take little consideration of using preexisting simulation outputs or storing current simulation

outputs for future usage. For instance, space-filling designs such as random sampling, 2k factorial, and

Latin Hypercube (LH), etc select design points without considerations of any other design point that exists

in the design space (see Sanchez (2005), for example). There is little literature on experiment designs

that consider storing simulation outputs to facilitate other tasks than the one for which the simulation is

designated.

In many applications, simulation experiments, whether deterministic or stochastic, can be expensive to

run because the increasing complexity of systems being modeled often outraced the advances in computational

power. For example, Craig et al. (1997) consider an oil reservoir simulator using finite element grid in

which simulating one output can take one to three days. In reinsurance industry, stochastic simulations

of rare catastrophes could be time consuming to produce a result of demanded accuracy. In these cases,

simulation outputs are scare resources and should be properly stored and reused for future experiments.

Even for simulations that are not as computationally demanding, preexisting outputs from the same or

similar experiments may provide useful information to improve the efficiency of the current experiment.

Output recycling, if implemented properly, could turn computational costs in an experiment into investments

for future experiments. As suggested by an anonymous reviewer, the idea of green simulation and output

recycling could potentially be applicable to various optimization via simulation (OvS) algorithms (see Fu

(1994), Hong and Nelson (2009) and references therein). In particular, in some OvS algorithms, such

as stochastic ruler and its variants (see Yan and Mukai (1992) and Alrefaei and Andradóttir (2001), for
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example), a common simulation model is used in each iteration at possibly different solutions. Hence

one should recycle outputs from previous iterations to more accurately estimate the current objective and

potentially be able to terminate the algorithm early. Maggiar et al. (2015) propose an application of

output recycling in the context of stochastic optimization where the underlying function evaluations are

computationally intensive.

We consider green simulation experiment designs in which outputs are recycled from one experiment to

another to increase the efficiency of the latter. Although the idea of green simulation can be applied in more

general settings, in this paper we limit our attentions to experiments that are repeated periodically under

the same setups but different inputs, where the recycling scheme is seen to be the most effective. Repeated

simulation experiments are not uncommon in practice. For example, risk management simulations such as

those presented in Liu et al. (2010) and Liu and Staum (2010) may be repeated periodically to reevaluate

risk exposures as market conditions changes over time. Simulations based on asset-liability management

models (see Gerstner et al. (2008) and references therein, for example) may be run periodically due

to changes in systemic and idiosyncratic risk factors. In repeated simulations, outputs in any previous

experiment contribute to the understandings of the simulation model, i.e., the input-output relationship,

and hence provides guidance to the current experiment. Metamodeling methods such as stochastic kriging

(see Ankenman et al. (2010)) can be possible implementations of output recycling (see Feng (2016),

for example). In this article we consider importance sampling, particularly multiple importance sampling

(see Veach and Guibas (1995) and Owen and Zhou (2000)), to recycle simulation outputs from previous

experiments. Our numerical experiments show that the recycling scheme increases the accuracy of the

estimator over time even when a constant number of random samples are generated in each period.

The rest of this article is organized as follows. In Section 2 we present the mathematical framework

in which green simulation is considered and the methods that are used to implement output recycling.

In Section 3 we consider a periodic credit risk evaluation example and present numerical results of the

example. In Section 4 we summarize the article and provides future outlooks for green simulation.

2 GREEN SIMULATION: OUTPUT RECYCLING IN REPEATED EXPERIMENTS

Let {Xk : k = 1,2, · · ·} be a discrete-time Markov process with state space X ⊆ R
n and known transition

probability measure ϕ . We define a function h(y;x) such that for any fixed x̄ ∈ X the function h(y; x̄) is a

well-defined probability density function with support Y ⊆ R
d . For any fixed time tk, let h(y;Xk) be the

conditional density for random vector Yk given the state Xk. Given the observed state xk at time tk, we are

interested in approximating

f (xk) = E [F(Yk)|Xk = xk] =
∫

Y

F(y)h(y;xk)dy (1)

via simulation. The function F(·) : Y 7→ R represents the simulation model of interest. We envision that

output recycling is particularly useful in cases where the simulation model F(·) is computationally intensive.

The idea of green simulation can be broadly applicable with different frameworks and implementations.

In this article we present a framework that is applicable to repeated simulations such that:

1. The same simulation model, F(·), is used when an experiment is launched at each time tk, k = 1,2, · · · .
2. The underlying stochastic process, {Xk : k = 1,2, · · ·}, affects the simulation model in that the

distribution of the random vector Yk depends on the state Xk.

We are interested in approximating (1) using not only outputs from the experiment launched at time k but

also those from all experiments that were launched previously, if any. We assume that the simulation model

depends on the state variable Xk only via the distribution of the random vector Yk ∼ h(y;Xk). Although the

methodologies presented in this article can be applied in more general settings, we restrict our attentions to

the above framework for ease of exposure. For ease of discussions, hereinafter we will refer to time k as the
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current time and the experiment launched then as the current experiment. In addition, let Y
( j)
k be random

samples of the random vectors in the current experiment, we will refer to
{

F
(

Y
( j)
k

)

: j = 1, · · · ,Nk

}

as

the outputs from the current experiment, or simply the current outputs.

To put the above abstract settings into perspective, consider the following repeated risk evaluation

problem that may occur in financial applications. Suppose one needs to evaluate the risk exposure of a

given portfolio via simulation to assess the adequacy of its risk capital. The random vectors Yk, used in the

simulation model F(·) depend on the state variables Xk, for example, certain stock prices. Given the current

stock prices xk at time k, a simulation experiment is launched and random vectors Y
( j)
k , j = 1, · · · ,Nk are

simulated. The simulation output F
(

Y
( j)
k

)

is the indicator of incurring a high loss due to default given

the j-th random vector. The sample average of all these outputs is regarded as the standard Monte Carlo

estimate of the risk measure in question. Suppose that such risk evaluation is conducted periodically to

ensure consistent compliance to certain regulatory requirements. Simulation outputs from one experiment

contains useful information for another because the risk value evaluations in the experiments are the same.

One should seek ways to recycle and reuse simulation outputs from all previous experiments to increase

the efficiency of the current experiment.

2.1 Standard Monte Carlo

Given an observation of the current state Xk = xk at time tk, k = 1,2 · · · . Suppose Y
(1)
k , · · · ,Y (Nk)

k are sampled

from h(y;xk), it is common to use the standard Monte Carlo (SMC) estimator of f (xk) of the form

f̂ SMC(xk) =
1

Nk

Nk

∑
j=1

F
(

Y
( j)
k

)

. (2)

For fixed xk, f̂ SMC(xk) is a unbiased estimator and the convergence of f̂ SMC(xk) to f (xk) as the sample size

Nk → ∞ is elementary by the strong law of large number.

As (2) reveals, the current SMC estimator uses only the Nk outputs generated in the current experiment

while outputs from previous experiments are ignored, even when available. Moreover, in traditional

experiment designs the current outputs are usually discarded when the designated tasks at the current time

are completed.

In repeated simulations, since the simulation model is the same at all times so outputs from one

experiment contain valuable information for another. Therefore recycling simulation outputs from previous

experiments, if available, could significantly increase the efficiency of the current one. If the simulation

model is complex, the computations involved in F(y) could be much more time-consuming than evaluating

the densities h(y;x). Therefore recycling outputs from previous experiments could be beneficial even at the

expense of some additional density evaluations. This observation hints towards using importance sampling

as a way to recycle simulation outputs when available, which will be presented in the next section.

2.2 Ordinary Importance Sampling

Importance sampling is a collection of variance reduction methods to estimate properties of a target

distribution via random samples from other sampling distributions. Readers are encouraged to refer to

Tokdar and Kass (2010), Owen (2013) and references therein for a detailed review on importance sampling.

In the following discussions we present a output-recycling technique in the context of repeated simulations

based on the idea of importance sampling.

Given an observation of the current state Xk = xk, we are interested in approximating f (xk) using all

available outputs. When the current experiment is launched at time tk, we assume that all outputs up to the

current time, i.e,
{

F
(

Y
( j)
i

)

: j = 1, · · · ,Ni, i = 1, · · · ,k
}

, are available. We further assume that an oracle

is available to evaluate all density functions h(y;xi), where i, i = 1, · · · ,k are all observed states up to the
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current time. Using the idea of importance sampling, we can combine outputs by averaging the products of

all outputs and their corresponding likelihood ratios. The resulting ordinary importance sampling estimator

is given by

f̂ OIS(xk) =
1

Ñk

k

∑
i=1

Ni

∑
j=1

h
(

Y
( j)
i ;xk

)

h
(

Y
( j)
i ;xi

)F
(

Y
( j)
i

)

(3a)

=
k

∑
i=1

pk
i





1

Ni

Ni

∑
j=1

h
(

Y
( j)
i ;xk

)

h
(

Y
( j)
i ;xi

)F
(

Y
( j)
i

)



 (3b)

where Ñk = ∑
k
i=1 Ni is the cumulative sample size up to the current time and pk

i = Ni/Ñk, i = 1, · · · ,k is

the proportion of samples in experiments up to the current time. The likelihood ratios hxk
/hxi

respects the

sampling distribution of simulated scenario Y
( j)
i and the target distribution in the current experiment. One

can show that f̂ OIS(xk) is a unbiased estimator of f (xk).
The two expressions in (3) suggests two viewpoints for f̂ OIS(xk):

1. A weighted average of all available outputs, weighted by the respective likelihood ratios, as shown

in (3a).

2. A weighted average of k single-batch importance sampling estimators, weighted by the proportions

of random samples generated in all experiments up to the current time, as shown in (3b). In this

view, one can see that f̂ SMC(xk) is part of f̂ OIS(xk): the squared bracketed terms in (3b) for i = k

is precisely f̂ SMC(xk).

Intuitively speaking, the OIS estimator is superior than the SMC estimator because the former includes

all available outputs while the latter includes only the current one. However, since importance sampling is

used as a way to exploit the “free” outputs, the OIS estimator may suffer variance inflation when the sample

likelihood ratios are too imbalanced. It is well-known that, with poorly chosen sampling distributions,

the OIS estimator could have variance larger than that of a SMC estimator or even an infinite variance.

Repeated simulations that we consider in this article may magnify this drawback because the target and

sampling distributions are determined by the underlying stochastic process, {Xk}, so the users have no

control over them. The OIS estimator may fail even when there is just one sampling distribution that creates

imbalanced likelihood ratios. This problem could be aggravated over time in an OIS estimator because

more and more sampling distributions are added to the estimator. It is not clear that whether the benefit

of including more outputs is greater than the drawback of imbalanced likelihood ratios. We will consider

a more robust estimator in repeated simulations in the next section.

2.3 Multiple Importance Sampling

Multiple importance sampling (MIS) is first introduced by Veach and Guibas (1995) for rendering problems

in computer graphics and is studied by Owen and Zhou (2000) as one effective importance sampling

method. It is initially proposed in cases where it is not clear what sampling distribution is suitable for a

particular problem so an alternative is to combine different sampling distributions.

In repeated simulations, the simulated scenarios Y
( j)
i in each experiment are sampled from a different

sampling distribution. As a group, however, the samples up to time tk have the following combined mixture

distribution

h∗k(y) =
k

∑
i=1

pk
i h(y;xi) (4)
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where pk
i are proportion of samples generated at time i, as defined in (3). More precisely, h∗k(y) is the

distribution of a random variable Y which is equal to each Y
( j)
i with probability 1/Ñk. From this point of

view, consider the following MIS estimator that combines outputs from all experiments up to time k:

f̂ MIS(xk) =
1

Ñk

k

∑
i=1

Ni

∑
j=1

h
(

Y
( j)
i ;xk

)

h∗k

(

Y
( j)
i

) F
(

Y
( j)
i

)

. (5)

Note that the above estimator is referred to as the “balance heuristic” in Veach and Guibas (1995) or

“deterministic mixture sampling” in Owen and Zhou (2000). It is a member of a broad class of estimators

bearing the term “multiple importance sampling”. In this article f̂ MIS(xk) is the only member in the MIS

class we consider so we refer it as the MIS estimator for simplicity.

We observe that (5) differs from (3a) in only the denominator in the likelihood ratios due to a different

viewpoint in the sampling distributions. This subtle difference makes (5) a better estimator than (3).

Since the time k target distribution is mixed into the combined mixture distribution, the likelihood ratio is

uniformly bounded above. In particular, for any y ∈ Y we have

h(y;xk)

h∗k (y)
=

h(y;xk)

∑
k
i=1 pk

i h(y;xi)
≤ h(y;xk)

pk
kh(y;xk)

=
Ñk

Nk

.

Since all likelihood ratios are bounded in (5), they cannot be too imbalanced.

In a way the combined mixture distribution provides a safeguard to the likelihood ratios and prevents the

estimator from failing dramatically, as it could be the case in (3). Moreover, Veach and Guibas (1995) shows

that f̂ MIS(xk) is a “nearly optimal” way to combine available outputs from different sampling distributions.

From a qualitative perspective, the combined mixture density h∗k

(

Y
( j)
i

)

is evaluated without regard to

which distribution was Y
( j)
i sampled from. This ignorance seems questionable because some information

is lost. However, (Hesterberg 1988) argues from the Rao-Blackwell theorem that taking consideration of

which mixture component generated the sample may be disadvantageous.

In the next section we will compare and contrast the aforementioned three estimators in a more realistic

financial example where a risk assessment simulation experiment is carried out periodically.

3 EXAMPLE: PERIODIC CREDIT RISK EVALUATION IN KMV MODEL

In this section we consider a credit risk evaluation example that resembles characteristics of a Kealhofer-

McQuown-Vasicek (KMV) model. The KMV model was developed by the KMV corporation by applying

the framework of Merton (1974), in which the equity of a firm is a call option on the underlying asset

value of the firm with a strike price equal to the face value of the firm’s debt. A credit event, or a default,

happens when a firm depletes all its equity and the asset falls below its debt. Given a portfolio of corporate

bonds, we are interested in evaluating the probability of it incurring high losses by the end of a projection

period (e.g., 6 months) due to issuers’ defaults. The issuers’ assets are marginally log-normally distributed

and the correlation structure is specified by a student-t copula. This credit risk evaluation is conducted

periodically (e.g., weekly) for risk monitoring purpose.

3.1 Problem Statement

Consider a portfolio of n corporate bonds indexed by i = 1, · · · ,n. At any time tk the financing structure

of a solvent issuer i is given by the accounting equation

Stk,i = Etk,i +Di (6)

where Stk,i, Etk,i, and Dk,i denote the issuer’s asset, equity, and debt and time tk. We assume that asset

values {St,i, t ≥ 0} follows a Geometric Brownian Motion (GBM) with annualized return µi and volatility
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σi, for all i = 1, · · · ,n. We assume further that the debts for all issuers are constants for all time tk ≥ 0.

We say that the i-th issuer defaults at time tk ≥ 0 if Etk,i < 0 or equivalently Stk,i < Di. When the i-th issuer

defaults, the portfolio incurs a loss of Gi, i = 1, · · · ,n. This is often referred to as the loss given default,

or LGD, in the literature. We assume that the LGDs are constants for all time tk ≥ 0. The observed asset

values, xk = (Stk,1, · · · ,Stk,n) is the current state based on which the credit risk evaluation is conducted.

Experiments are launched periodically with a repeating period ∆t (e.g., one week) so the k-th experiment

is launched at time tk = k∆t, for k = 1,2, · · · . Note that although the asset values {St , t ≥ 0} are modeled as

GBMs, which are continuous stochastic processes, the states Xk are observed periodically at discrete times

tk, k = 1,2, · · · . Therefore the state process can nevertheless be defined as a discrete-time Markov process

as in Section 2. Let t be the projection period (e.g., 6 month) and let T be an evaluation period (e.g., 5

years) of interest. Given the current state, we are interested in estimating the probability that the portfolio

incurs a discounted loss higher than a threshold κ at time tk + t, for loss that incurs at time tk + t +T .

To elaborate, given an observation of the current state xk = (Stk,1, · · · ,Stk,n), the projected stock prices

Yk = (Stk+t,1, · · · ,Stk+t,n) is the random vector involved in the current experiment. Let the Stk+t,i be a

particular random sample of i-th issuer’s asset value at time tk + t, the i-th issuer’s default loss random

variable at time tk + t +T is given by

Li =







erT Gi, if Stk+t,i < Di

Gi, if Stk+t,i ≥ Di and Stk+t+T,i < Di

0, if Stk+t,i ≥ Di and Stk+t+T,i ≥ Di

(7)

where r is the risk free interest rate. The above random variable states that: If the i-issuer defaults at the

end of the projection period tk + t, it incurs the LGD then and accumulates such loss at the rate of interest.

If the i-th issuer is solvent at the end of the projection period but defaults at the end of the evaluation

period tk + t +T , then it incurs the LGD in the latter. If the i-th issuer is solvent at the end of both the

projection periods the evaluation periods, then it does not incur any cost.

Under the GBM assumption for assets, one can calculate the time-(tk + t) value of (7) using risk neutral

pricing. In particular, the last two lines in (7) resembles the payoff of a digital put option with strike price

Di. The discounted loss of the i-th issuer at time tk + t, given particular scenario y = (Stk+t,1, · · · ,Stk+t,n),
is given by

li(y) = e−rT
E

Q [Li|Stk+t,i]
= [Ii,k+t +(1− Ii,k+t)e

−rT Φ(di
2)]Gi

= max{Ii,k+t ,e
−rT Φ(di

2)}Gi

where Ii,tk+t = ✶{Stk+t,i < Di} is the default indicator, Φ(·) is the standard normal cumulative density

function, and

di
2 =

ln(Stk+t,i/Di)+(r−σ2
i /2)T

σi

√
T

is the i-th issuer’s distance to default in the KMV model. Therefore given a particular future scenario

Yk = y the portfolio’s discounted loss at time tk + t is given by

l(y) =
n

∑
i=1

li(y). (8)

Note that l(y) is a constant for a given future scenario Yk = y but is a random variable given the current

state because the future scenario is a random variable given the current state. In particular, the future

scenario given current state follows a joint lognormal distribution whose correlation structure is specified

by a student-t copula. Please refer to Cherubini et al. (2004) and Frey et al. (2001) backgrounds on

copulas. The risk evaluation problem at time tk is to estimate the following probability

f (xk) = Pr(l(Y )> κ|xk) = Pr(l(Y )> κ|Stk) (9)
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using simulation models that evaluates indicator functions

F(y) = ✶{l(y)> κ} (10)

for given scenario y.

Figure 1 provides a graphical illustrations for the first two experiments launched for a portfolio consisting

of only one corporate bond. The upper panel of Figure 1 illustrates the experiment at time t1: The left

half of the x-y plane shows three sample paths of asset price, conditioning on the observed state x1 = 100.

Note that simulating the whole sample path is only for illustration purpose and is unnecessary in the actual

experiment. The end of the sample paths denotes the samples of projected stock prices Y
( j)
1 , j = 1,2,3.

The density function of Y1 is shown in the right half of the x-y plane. For each projected stock price

a corresponding output F
(

Y
( j)
1

)

, j = 1,2,3, is calculated, which are marked by circles in Figure 1. As

defined in (9), F(y) is an indicator function and therefore only take values in {0,1}, therefore the outputs

in Figure 1 have values equal to zero (lying on the x-y plane) or one (with a stem of height 1). According

to the outputs shown in Figure 1, one would have f̂ SMC(x1) = f̂ OIS(x1) = f̂ MIS(x1) = 1/3.

Assuming that the observed state at time t2 is x2 = 95 (with transition probability ϕ(X2 = 95|X1 = 100)),
the lower panel of Figure 1 depicts the second experiment. The second experiment differs from the first one

in the observed state, which affects the density of the projected stock prices Y2, as shown by the difference

between h(y;x1) and h(y;x2) in the right half of the x-y plane. In addition to the outputs generated in

the second experiment, marked by circles, the outputs from the first experiment, marked by stars are also

available in the second experiment. Therefore the three estimators presented in Section 2 may give different

estimates.

3.2 Numerical Example

We implement a numerical example for the aforementioned risk evaluation problem using the following

parameters:

1. The portfolio consists of two corporate bonds whose initial prices, debts, and LGDs are given by

St1 =

[

100

90

]

, D =

[

85

85

]

, and G =

[

5

4

]

.

2. The risk management decisions such as the repeating period, projection period, and evaluation

period as well as the high-loss threshold are given by

∆t = 1/52, t = 0.5, T = 5, and κ = 6.

This mean the risk evaluation is conducted weekly. The goal of each experiment is to estimate the

probability of incurring a high loss in 6 months, where loss is defined as the 5-years discounted

loss given default.

3. The parameters for the underlying economy model are given by

µ =

[

15%

10%

]

, σ =

[

30%

20%

]

, and r = 5%.

4. The correlation structure between the two assets is model by the student-t copula with 3 degrees

of freedom and a correlation of 0.5.

We consider 103 sample paths, each with 26 weekly observations of asset values and thus induces

26 weekly risk evaluation experiments. We consider a fixed-budget experiment design and compare the
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⇓ ϕ(X2 = 95|X1 = 100) ⇓

Figure 1: Credit risk evaluation simulation experiments launched at times t1 and t2. The end point of a

sample path denotes a future scenario Y . Outputs of the current experiment is marked by a circle while

the preexisting outputs are marked by stars on top of a scenario. The density functions are drawn to scale.
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accuracies of the three estimators over time. For all experiments, N = 103 new outputs are generated and

the three estimators are compared to an accurate estimate, which is obtained from the SMC estimator

using 106 outputs. In each experiment, the squared error to the accurate estimate is recorded. For each

experiment time tk, k = 1, · · · ,26, the mean squared error (MSE) over 1000 sample paths is the figure of

merit of each of the three estimators. Figure 2 compares and contrast the accuracies of the three estimators.

Experiment Time Indices
0 5 10 15 20 25

M
S

E

# 10-4

0

0.2

0.4

0.6

0.8

1

1.2

1.4
SMC
OIS
MIS

Figure 2: MSEs and error bars for the SMC, OIS, and MIS estimators over a period of 26 weeks, as shown

by the solid, dotted, and dashed lines, respectively.

We see from the solid blue line in Figure 2 that the accuracy of the SMC estimator remains relatively

constant over time. This is expected because a fixed number of independent new outputs are generated

and used by the SMC estimator.

The yellow dotted line in Figure 2 shows that the accuracy of the OIS estimator increases initially, i.e.,

the first five weeks. This shows that recycling preexisting outputs is beneficial because the proximity of

observed states ensures the similarities of the density functions and thus the balance of sample likelihood

ratios. However, as the state variable evolves further from the initial state, the accuracy of the OIS estimator

worsens over time. This shows that the OIS estimator suffers the drawback imbalanced likelihood ratios

due to dissimilarities of sampling densities to the target density. Moreover, we can see from the last few

weeks in Figure 2 that OIS estimator can in fact be worse than the SMC estimator when more outputs are

included.

The dashed red line in Figure 2 shows an encouraging result: the accuracy of the MIS estimator,

measured by its MSE, improves over time. In particular, its accuracy is consistently better than that of

an SMC estimator by more than 10 times after the 15-th week. This shows that the MIS estimator is a

robust method to recycle and reuse preexisting simulation outputs. It can extract useful information from

preexisting outputs without suffering from the imbalanced likelihood ratios, as the case in OIS estimator.

Its improvement slows down because some outputs from the distant past may not be very useful of the

current experiment. Since the accurate value to which the MIS estimator compares is an SMC estimate

and thus itself has uncertainties. This partially explains why the accuracy of the MIS estimator has little

improvement after 20 weeks.
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4 SUMMARY AND FUTURE DIRECTIONS

In this article we propose the idea of green simulation designs: recycling preexisting simulation outputs

to improve the efficiency of the current experiment. We envision that green designs are particularly useful

for experiments that are repeated periodically. Importance sampling and multiple importance sampling

are considered as particular implementations of output recycling. Numerical example of periodic credit

risk evaluation problem is studied. Our numerical result shows that multiple importance sampling is an

effective and robust way to recycle and reuse preexisting outputs.

In the future we will theoretically study the multiple importance sampling estimator in the context

of green simulation and identify the conditions under which it will have certain convergence property.

We will also study other methods for output recycling, e.g., metamodeling, statistical learning, machine

learning, etc. Other green simulation designs such as fixed accuracy designs are also of interest to us. Last

but not least, we will explore various efficient implementations, such as parallel programming, of green

simulations.
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