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ABSTRACT

Reliable simulation estimation builds on accurately specified input models. In the context of simulating

tail events, knowledge on the tail of the input model is especially important, yet is often hard to obtain

due to a lack of data. In this paper, we consider tail event estimation without any knowledge on the input

tail, but rather only making a general assumption that it is convex. We focus on the standard problem

of estimating the probability for i.i.d. sum, and set out goal as to compute its worst-case bound among

all summand distributions that have convex tails. Our main procedure relies on a stochastic, and in a

sense infinite-dimensional, version of the Frank-Wolfe method in nonlinear programming. We demonstrate

through a numerical example how the level of knowledge on the tail of the summands relates to the

conservativeness in computing bounds for the aggregate tail quantity.

1 INTRODUCTION

This paper explores simulation-based estimation of probabilities related to tail events without full knowledge

of the input model, especially its tail. The motivation is that, in most practical scenarios, information on

the tail of an input model is difficult to obtain because of the inavailability of data. Specifically, we shall

consider the standard problem of simulating the tail probability of i.i.d. sum, but each summand random

variable has a distribution that is known only up to a certain threshold, but nothing beyond that. Our

goal is to construct a methodology that can output reasonable estimate for the tail probability under such

uncertainty.

The problem we post is generally ill-posed when no additional assumption is imposed, in the sense

that the tail probability estimate of the i.i.d. sum can be anywhere from 0 to 1. Our first step to avoid

such issue is to make a geometric assumption: the tail density of the i.i.d. random variables is convex.

This assumption is clearly satisfied by any known parametric distributions, including normal, exponential,

lognormal, Weibull etc., as well as distributions that are more pertinent to tail events like the generalized

extreme value distribution, and therefore we believe it is a reasonable assumption to make.

Our approach is a worst-case analysis: imposing convexity as a constraint, we aim to find the most

extreme tail probability of i.i.d. sum. This requires solving an optimization program that has decision

variable being a probability density. This optimization has a nonlinear objective function and is infinite-

dimensional. Our main contribution of the paper is to demonstrate a stochastic version of the Frank-Wolfe

(FW) method that is well-suited for the problem, including being able to run in the infinite-dimensional

space by exploiting the problem structure. In fact, due to this structure, our algorithm will operate on a

space of what we call “augmented” probability densities, which is designed to handle sequences of densities

that are not tight and have masses escaping to infinity. In overall, the implementability of the algorithm

will provide a tractable way to obtain robust estimate of tail probabilities when the input model’s tail is

not fully known.
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We close this introduction by discussing some related work. Our worst-case framework is inspired by

the literature on distributionally robust optimization (Delage and Ye 2010, Ben-Tal et al. 2013), which

considers decision-making in stochastic environment where the underlying probability is not fully known

and is assumed to lie in an uncertainty set. There is also literature on so-called moment problems and

Chebyshev’s inequalities, applied to stochastic programming and decision analysis (Birge and Wets 1987,

Smith 1995). In contrast to these literature, we impose tail convexity constraint, studied in Lam and Mottet

(2015) and is also related to the general framework of moment problems in distributional class in Popescu

(2005). References on the FW method can be found in Bertsekas (1999), and our stochastic version of FW

is related to Ghosh and Lam (2015) and Goeva et al. (2014), which consider optimization over discretized

input models as means for measuring model uncertainty or carrying out model calibration.

The paper is organized as follows. We present our formulation and notation in Section 2, and provide

an overview of our procedure in Section 3. Then we discuss several aspects of the procedure, including

the gradient form in Section 4, the solution to linearized subprograms in Section 5, and the construction

of augmented probability densities in Section 6. We lay out the algorithmic details of our FW procedure

in Section 7, followed by some numerics in Section 8. We discuss future work in Section 9.

2 FORMULATION

We are interested in estimating P(Sn > b) where Sn = X1 + · · ·+Xn, Xi’s are i.i.d. random variables and b is

some large number. We assume that Xi has density f (x) for x ∈R but is known only up to some threshold

a. In other words, f (x) = g(x) for some known function g for x≤ a.

Beyond a, we assume that f is convex. We denote

A = { f (x),x ∈ R : f (x) = g(x) for x≤ a, f (x) is convex for x≥ a} (1)

as the set of densities that are equal to g for x ≤ a and is convex beyond a. Our goal is to compute the

worst-case tail probability

max
f∈A

Pf (Sn > b) (2)

where Pf denotes the probability measure generated by the i.i.d. random variables each with density f .

It is easy to check that the feasible region A is convex. However, the objective function in (2), which

can be written as

Pf (Sn > b) =
∫

· · ·
∫

x1+···+xn>b
f (x1) · · · f (xn)dx1 · · ·dxn (3)

is not linear, nor convex with respect to f in general. In view of this, we shall set our target as to obtain a

local optimum for (2).

3 MAIN ELEMENTS OF OUR PROCEDURE

The strategy that we shall undertake borrows from the FW method (Bertsekas 1999; also known as the

conditional gradient method) in nonlinear programming. This method applies when the feasible region

is convex. It is an iterative scheme that, at each iteration, linearizes the objective function and solves a

subprogram with linear objective and the given feasible region in order to find a direction to move along.

To explain further, let us denote Z( f ) = Pf (Sn > b). At each iteration k, given the current solution fk, one

would need to solve

max
f∈A
〈∇Z( fk), f − fk〉 (4)

where ∇Z( f ) denotes some notion of the gradient of Z(·) with respect to f , and 〈·, ·〉 is some suitable inner

product. Say the optimal solution of (4) is rk. Then one would update the solution fk+1 = fk +εk(rk− fk) =
(1− εk) fk + εkrk for some step size εk.
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For our particular problem, it is difficult to evaluate the objective function or its gradient directly

because this would involve high-dimensional convolution when n is large. So one has to resort to simulation

estimation. Hence one would need to replace ∇Z( fk) by some estimate ∇̂Z( fk), and the corresponding

stepwise subprogram will be

max
f∈A
〈∇̂Z( fk), f − fk〉 (5)

with the update being fk+1 = (1− εk) fk + εkr̂k where r̂k is the optimal solution of (5)

In the following sections, we will present the above notions and steps in detail.

4 LINEARIZATION OF OBJECTIVE FUNCTION

We first discuss the notion of gradient for Pf (Sn > b) with respect to the density f . This is summarized as:

Lemma 1 For any probability densities f1 and f2, we have

Pf2
(Sn > b) = Pf1

(Sn > b)+
∫ ∞

−∞
ζ (x; f1)( f2(x)− f1(x))dx+O(‖ f1− f2‖2

1) (6)

as ‖ f1− f2‖1→ 0, where

ζ (x; f1) = nPf1
(Sn−1 > b− x)

and ‖ f1− f2‖1 =
∫ ∞
−∞ | f1(x)− f2(x)|dx denotes the L1-distance between f1 and f2.

Proof of Lemma 1. The proof follows from an expansion

Pf2
(Sn > b)

=
∫

· · ·
∫

∑
n
i=1 xi>b

n

∏
i=1

f2(xi)dxi

=
∫

· · ·
∫

∑
n
i=1 xi>b

n

∏
i=1

( f1(xi)+( f2(xi)− f1(xi)))dxi

=
∫

· · ·
∫

∑
n
i=1 xi>b

(

n

∏
i=1

f1(xi)+
n

∑
i=1

∏
j=1,...,n

j 6=i

f1(x j)( f2(xi)− f1(xi))

+
n

∑
r=2

∑
(i1,...,ir)∈P(n,r)

∏
j=1,...,n

j 6=iu,u=1,...,r

f1(x j)
r

∏
l=1

( f2(xil )− f1(xil ))

)

n

∏
i=1

dxi

where P(n,r) denotes the set of all permutations of r items from {1, . . . ,n}. Now, integrating the first

term in the integrand gives Pf1
(Sn > b). Integrating the second term gives

n

∑
i=1

∫







∫

· · ·
∫

∑l=1,...,n
l 6=i

xl>b−xi

∏
j=1,...,n

j 6=i

f1(x j)dx j






( f2(xi)− f1(xi))dxi

= n

∫

Pf1
(Sn−1 > b− x)( f2(x)− f1(x))dx

by noting that xi’s are exchangeable. Note that each summand in the third term contains two or more

factors of f2(xil )− f1(xil ), and the integral of the term is absolutely bounded by

C

∫ ∫

| f2(x)− f1(x)|| f2(y)− f1(y)|dxdy

for some C > 0. Combining the above gives (6).
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The function ζ (·; f1) can be interpreted as the first order gradient of Pf (Sn > b) at f1. When f1 and

f2 are very close in terms of the L1-distance, the second order term in (6) becomes relatively negligible.

The function ζ (·; f1) is essentially the Gateaux derivative of Z( f1) and is related to the so-called influence

function (Huber 2011) in robust statistics, which is an important tool in measuring the infinitesimal effect

on a given statistics due to changes in the distribution of data.

Therefore, from (6), given a density f1, the first order approximation of Pf2
(Sn > b) centered at f1 is

given by

Pf2
(Sn > b)≈ Pf1

(Sn > b)+E f2
[ζ (X ; f1)]−E f1

[ζ (X ; f1)].

This suggests that at each iteration k in our optimization procedure, given fk, one would solve max f∈A E f [ζ (X ; fk)]

as the subprogram. When ζ (X ; fk) is not computable exactly, an estimated version ̂ζ (X ; fk) will be sub-

stituted.

5 WORST-CASE CHARACTERIZATION FOR LINEAR OBJECTIVES

We discuss how to solve max f∈A E f [ζ (X)] for a given function ζ (·). This borrows results from Lam and

Mottet (2015). To formulate the optimization more explicitly, let us pin down the necessary information

from the known function g. We define:

1. η = g(a) as the value of g at a.

2. −ν = g′−(a) as the left derivative of g at a.

3. β =
∫ ∞

a g(x)dx as the tail distribution at a, which is equal to 1− ∫ a
−∞ g(x)dx.

We assume that η ,ν ,β are all positive. Then the formulation max f∈A E f [ζ (X)] can be written as

max f

∫ a
−∞ ζ (x)g(x)dx+

∫ ∞
a ζ (x) f (x)dx

subject to
∫ ∞

a f (x)dx = β

f (a) = η

f ′+(a)≥−ν

f convex for x≥ a

f (x)≥ 0 for x≥ a.

(7)

In this optimization, the first constraint makes sure that f is a valid probability density by equating the

tail probability at a to β . The second constraint states that f has to be a continuous extrapolation from g,

since f is convex. The third constraint specifies that the right derivative of f at a needs to be at least −ν ,

because of the convexity assumption again. The whole set of constraints therefore ensures that f is a valid

density that is a convex extrapolation from g.

The following result is adopted from Lam and Mottet (2015):

Theorem 1 Consider the optimization max f∈A E f [ζ (X)]. Suppose that ζ (·) is bounded, non-negative

and non-decreasing, and η ,ν ,β > 0. If η2 > 2βν , there is no feasible solution. Otherwise, optimality is

characterized by either one of the two scenarios:

1. There is an optimal density that is piecewise linear with at most two line segments for x > a. The

first line segment has slope −ν and the second line segment hits the x-axis. (The first line segment

can be degenerate, i.e. zero length.)

2. There is no optimal density. Instead, there is a sequence of densities f (s),s = 1,2, . . . whose objective

value converges to the optimum. Each of these f (s) has at most three line segments. The first line

segment has slope −ν and the third line segment hits the x-axis. The third line segment becomes

closer and more parallel to the x-axis as s→ ∞. (The first and the second line segments can be

degenerate.)
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Hence, solving (7) reduces to finding the kinks of piecewise linear functions. Algorithm 1 depicted

below can classify between the above two scenarios and also solve for the optimal density or sequence of

densities explicitly.

Let us explain the output of Algorithm 1. The output f (x) encodes either an optimal density, in the

first case of Theorem 1, or the pointwise limit of a sequence of densities f (s) that converges to optimality,

in the second case of Theorem 1. We emphasize the fact that in the second case, the algorithm does not

return the sequence f (s) but only its pointwise limit f (x). Note that the limit density f (x) is not a valid

density itself, in the sense that it does not integrate to 1. The quantity q∗ encodes the amount of probability

mass that has “escaped” to infinity.

The variable x1 represents the location of the first kink in the optimal piecewise linear density (or limit

density). The function W (x1) is introduced to find this first kink and, in the second case of Theorem 1,

an additional function V (x1,ρ) is needed. When x̃1 = argmaxx1∈[0,µ−ε]W (x1) 6= µ − ε , we have q∗ = 0,

which signifies that the optimality characterization falls into the first case in Theorem 1. On the other

hand, if x̃1 = µ−ε , then q∗ > 0 which brings to the second case. The tolerance parameter ε is introduced

to detect whether the maximum of W (x1) or V (x1,ρ) occurs at x1 = µ . Note that the definitions of W (x1)
and V (x1,ρ) both have singularities at x1 = µ (it can be checked that the values of W (x1) and V (x1,ρ)
remain bounded as x1→ µ). Introducing ε and checking x̃1 = µ − ε is an implementable way to detect

that the solution is at the singularity µ .

In the last scenario in the algorithm, when x∗1 = µ and ρ∗ = µ2, we define p∗1 = 1 and x∗2 = x∗1, or in

other words output f (x) = η−ν(x−a) for a≤ x≤ x∗1 +a and 0 for x≥ x∗1 +a.
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Algorithm 1 Procedure for solving (7)

Input: η , ν , β , ζ (x), and a small “tolerance” parameter ε > 0

Definition: Let

H(x) =
∫ x

0

∫ u

0
ζ (v+a)dvdu

λ = limsup
x→∞

H(x)

x2

W (x1) =
σ −µ2

σ −2µx1 + x1
2

H(x1)+
µ− x2

1

σ −2µx1 + x2
1

H

(

σ −µx1

µ− x1

)

V (x1,ρ) =
ρ−µ2

ρ−2µx1 + x2
1

(

H(x1)−λx2
1

)

+
µ− x2

1

ρ−2µx1 + x2
1

(

H

(

ρ−µx1

µ− x1

)

−λ

(

ρ−µx1

µ− x1

)2
)

+λσ

Initialization:

µ ← η
ν

σ ← 2β
ν

q∗← 0 ⊲ By default, the escaping mass is null.

Procedure:

if σ < µ2 then

STOP. There is no feasible solution.

else if σ = µ2 then































Exclusion of trivial scenarios.

x̃1← µ

ρ∗← µ2

else

x̃1← argmaxx1∈[0,µ−ε]W (x1)
if x̃1 6= µ− ε then

ρ∗← σ







Case 1 : Light tail.

else

(x̃1,ρ
∗)← argmaxx1∈[0,µ−ε],ρ∈[µ2,σ ]V (x1,ρ)

if x̃1 = µ− ε then



















































































Treatment of non-trivial scenarios.

x̃1← µ

ρ∗← µ2







































Case 2 : Heavy tail.

end if

q∗← ν
2
(σ −ρ∗)

end if

x∗1← x̃1

p∗1←
ρ∗−µ2

ρ∗−2µx∗1+x∗1
2

x∗2←
ρ∗−µx∗1

µ−x∗1

f (x)←







η−ν(x−a) for a≤ x≤ x∗1 +a

η−νx∗1−ν(1− p∗1)(x−a− x∗1) for x∗1 +a≤ x≤ x∗2 +a

0 for x≥ x∗2 +a

end if

return ( f (x),q∗)
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6 AUGMENTED PROBABILITY DENSITIES

6.1 The Calculus of Augmented Probability Densities

The type of outputs in Algorithm 1 forms a natural space for running our FW algorithm, and here we shall

describe it in more detail. We define an “augmented” probability density as ( f (x),q), where f (x)≥ 0 for

−∞ < x < ∞,
∫ ∞
−∞ f (x)dx≤ 1, and q = 1− ∫ ∞

−∞ f (x)dx.

We define the expectation of a bounded function h(x), with limit h(∞) = limx→∞ h(x), under an

augmented density ( f (x),q) as

E f ,q[h(X)] =
∫ ∞

−∞
h(x) f (x)dx+h(∞)q. (8)

More complicated functionals of an augmented density can be defined by viewing q as an “escaping”

probability mass to positive infinity. For instance, for X1,X2 i.i.d. with augmented density ( f (x),q), we

would define

Pf ,q(X1 +X2 > b) =
∫ ∞

−∞

∫ ∞

−∞
I(x1 + x2 > b) f (x1) f (x2)dx1dx2 +(1− (1−q)2).

To interpret the above, one can think that if say a particular realization of X1 has “escaped”, then X1 must

be larger than b. The first term above corresponds to the part that both X1 and X2 do not escape. The

second part corresponds to the scenario that at least one of them escape.

To simulate quantities dictated by an augmented density ( f (x),q), one can use a mixture of f̃ (x) =
f (x)/(1− q) and the escaping mass q, by noting that f̃ (x) is a valid density. For instance, for X1,X2

i.i.d. with augmented density ( f (x),q),

Pf ,q(X1 +X2 > b) = (1−q)2

∫ ∞

−∞

∫ ∞

−∞
I(x1 + x2 > b)

f (x1)

1−q

f (x2)

1−q
dx1dx2 +(1− (1−q)2)

= (1−q)2Pf̃ (X1 +X2 > b)+(1− (1−q)2) (9)

where Pf̃ (·) is the probability measure generated by i.i.d. X1 and X2 each under the density f̃ , and

(1− (1−q)2) above can be evaluated exactly.

For another example, say Pf ,q(X1 + X2 ∈ [b,c]) for X1,X2 i.i.d. with augmented density ( f (x),q), we

can express as

Pf ,q(X1 +X2 ∈ [b,c]) = (1−q)2Pf̃ (x1 + x2 > b).

The term corresponding to the escaping mass disappears now because if say X1 escapes, then the event

X1 +X2 ∈ [b,c] cannot happen.

6.2 Consistency between Optimal Density Sequence and Augmented Density

One key observation when building the above rules for augmented densities is that they are consistent with

the limiting behavior of the optimal sequence of densities in the second case of Theorem 1. It can be

shown that for an optimal density sequence for problem (7) given by f (s) that has pointwise limit f ,

E f ,q[h(X)] = lim
s→∞

E f (s) [h(X)]

where E f ,q[h(X)] is defined by rule (8). Moreover, consistency is also preserved for the tail probability of

i.i.d. sum, namely

Pf ,q(Sn > b) = lim
s→∞

Pf (s)(Sn > b) = (1−q)nPf̃ (Sn > b)+(1− (1−q)n)

where Pf ,q is defined by rule (9) and f̃ (x) = f (x)/(1− q). The proof of these results will be shown

elsewhere.
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7 ITERATIVE SCHEME VIA FRANK-WOLFE STOCHASTIC APPROXIMATION

Our FW algorithm will operate in the augmented density space. Since the linearization at each iteration

has to be simulated, it can be viewed as a constrained stochastic approximation (SA) method. It is stated

as:

Algorithm 2 Iterative procedure for solving (2)

Input: the function g(x),x≤ a, the level b, step size εk, sample size mk for each step k.

Initialization: an augmented density ( f1(x),q1) where f1(x) meets the constraints of problem (7). For

instance, one can take ( f1(x),q1) to be the augmented density representing argmax f∈A Pf (X > b), i.e. the

output from Algorithm Algorithm 1 by putting ζ (x) = I(x > b) where I(·) denotes the indicator function.

(Other initializations will also work.)

Procedure: For each iteration k = 1,2, . . ., given an augmented density ( fk(x),qk):

1. Compute

ζ̂k(x) =
1

mk

mk

∑
i=1

I(Sn−1 > b− x)

using mk sample paths of Sn−1, where Sn−1 = X1 + · · ·+ Xn−1 for i.i.d. Xi’s generated under f̃k(x) =
fk(x)/(1−qk).
2. Run Algorithm 1 with input function ζ̂k(x) to get an output (rk(x),uk).
3. Update ( fk+1(x),qk+1) = (1− εk)( fk(x),qk)+ εk(rk(x),uk).

We explain some details related to the subprogram step. By Lemma 1, one should post the subprogram

at iteration k as max f∈A E f [nPfk,qk
(Sn−1 > b−X)], where ( fk(x),qk) is the current augmented density. Then

by the rules in Section 6.1 we have

Pfk,qk
(Sn−1 > b− x) = (1−qk)

n−1Pf̃k
(Sn−1 > b− x)+(1− (1−qk)

n−1).

Hence optimizing E f [Pfk,qk
(Sn−1 > b−X)] is equivalent to optimizing E f [Pf̃k

(Sn−1 > b−x)]. The quantity

ζ̂k(x) is an unbiased estimator for Pf̃k
(Sn−1 > b− x).

Note that the updating step ( fk+1(x),qk+1) = (1− εk)( fk(x),qk)+ εk(rk(x),uk) represents a mixture of

( fk(x),qk) and (rk(x),uk), which is defined as the mixture over both the density part and the escaping mass

part. In other words, we have fk+1(x) = (1− εk) fk(x)+ εkrk(x) and qk+1 = (1− εk)qk + εkuk.

8 NUMERICAL EXAMPLE

Consider the setting where f is known to be an exponential distribution with rate λ , up to a. We apply

Algorithm 2 to estimate a local optimum for max f∈A Pf (Sn > b). We set n = 8, b = 10, and λ = 1. We

vary a from the 70-th percentile of the exponential distribution to the 99-th percentile. For each a, we

apply our Algorithm to find the locally optimal augmented density, and we simulate P(Sn > b) using that

to get an estimate of the maximum objective value.

Note that even though the gradient estimator ζ̂k(x) at each iteration is unbiased, the estimated best

feasible direction obtained through solving the optimization subprogram is in general biased. Consequently,

in our implementation we use a growing sample size mk = 10k1.1 along the iterations. We use a standard

SA step size specification εk = 1/k. Some theoretical guarantees regarding this specification for FWSA,

though in a separate context, are reported in Ghosh and Lam (2015).

Since g is taken to be Exp(1), we know that the actual distribution of Sn is a Gamma distribution with

shape and rate parameters equal to n and 1 respectively. The actual value of P(Sn > b) is therefore the tail

distribution of the Gamma distribution evaluated at the point b. This provides a benchmark for measuring

the level of conservativeness of the output from Algorithm 2.
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Figure 1 shows the estimated value of Pf100
(Sn > b), i.e. we ran 100 iterations, for different values

of the threshold a. In terms of convergence, we found that in this example Algorithm 2 almost reached

equilibrium in one iteration, and so 100 iterations was likely more than enough. On the other hand, we also

tried the same set of experiments for the corresponding minimization problem, and found that the algorithm

converged in around 20 iterations. In Figure 1, it can be seen that, when a is at the 70-th percentile, the

estimate of P(Sn > b) of about 0.7 is very conservative, compared to the true value of around 0.2 dictated

by the Gamma distribution. Nevertheless, the estimate gets progressively less conservative as a gets larger,

until it drops to almost the true value at the 99-th percentile.

Figure 1: Estimated optimal upper bound of Pf100
(S8 > 10) for Xi∼Exp(1) known up to different percentiles.

Lastly, we provide some discussion on how to simulate f̃k at each iteration, which is used to generate

copies of Sn−1 and subsequently ζ̂k(x) in Algorithm 2. To simulate a copy from f̃k, we can use the method

of inverse distribution function. First, since fk is a mixture of augmented densities, we start with generating

one of the components with the mixture probabilities. This component will have density λe−λx up to a,

and then followed by a straight line with some slope −s1 up to x1, and slope −s2 up to x2 which touches

the x-axis. To simulate from this component conditional on being not escaping, we can generate a uniform

400



Lam and Mottet

random variable U over the interval [0,1−qk]. Then, letting F(a) = 1−e−λx and f (a) = λe−λa, we output















































− 1
λ log(1−U)

for U ≤ F(a)

a+
f (a)+
√

f (a)2−2s1(U−F(a))

s1

for F(a)≤U ≤ F(a)+ f (a)(x1−a)− s1(x1−a)2

2

x1 +
f (a)−s1(x1−a)+

√

( f (a)−s1(x1−a))2−2s2(U−F(a)− f (a)(x1−a)+
s1(x1−a)2

2
)

s2

for F(a)+ f (a)(x1−a)− s1(x1−a)2

2
≤U ≤ x2.

This can be seen by solving for the inverse at each segment (the exponential, and the two quadratic segments)

in the distribution function. For the first quadratic segment, one needs to solve, for a given U ,

F(a)+ f (a)(x−a)− s1(x−a)2

2
= U

in x, and for the second quadratic segment, one solves

F(a)+ f (a)(x1−a)− s1(x1−a)2

2
+( f (a)− s1(x1−a))(x− x1)−

s2(x− x1)
2

2
= U.

9 DISCUSSION AND FUTURE WORK

This paper demonstrates an iterative scheme, based on a stochastic version of the FW method, to find

worst-case estimates of the tail probability of i.i.d. sum assuming the distribution of the summands is known

only up to a specific threshold. We have described how to handle the infinite-dimensional nature of the

problem, and also the possibility of non-existence of an optimal solution in any stepwise subprogram by

introducing the notion of augmented probability density. Several future investigation directions are in line.

The first to obtain some theoretical convergence guarantees of the proposed algorithm. Second, for a high

threshold b, naive Monte Carlo for estimating ζ̂k(x) in each iteration, like what we have used, will be too

slow. The use of importance sampling will be investigated. Third, we also plan to generalize the result

to other types of objectives in addition to the tail probability of i.i.d. sum. Lastly, all results in this paper

assume complete information on the non-tail part of the distribution, whereas in most cases it is partially

known through data. In the future, we plan to extend our analysis to joint uncertainty on both the tail and

the non-tail regions.
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