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Abstract

Traditional stochastic approximation (SA) schemes employ a single gradient or a fixed batch of noisy

gradients in computing a new iterate. We consider SA schemes in which Nk samples are utilized at step

k and the total simulation budget is M, where ∑
K
k=1 Nk ≤ M and K denotes the terminal step. This paper

makes the following contributions in the strongly convex regime: (I) We conduct an error analysis for

constant batches (Nk = N) under constant and diminishing steplengths and prove linear convergence in

terms of expected error in solution iterates based on prescribing Nk in terms of simulation and computational

budgets; (II) we extend the linear convergence rates to the setting where Nk is increased at a prescribed

rate dependent on simulation and computational budgets; (III) finally, when steplengths are constant, we

obtain the optimal number of projection steps that minimizes the bound on the mean-squared error.

1 INTRODUCTION

First suggested by Robbins and Monro (1951) in the context of root finding problems, stochastic ap-

proximation schemes (Kushner and Yin 2003, Borkar 2008) have proven to be effective on a breadth

of stochastic computational problems including convex optimization, variational inequality problems, and

Markov decision processes. Stochastic approximation schemes closely resemble deterministic counterparts

such as gradient descent, which under strong convexity assumptions, exhibit exponentially fast rates of

convergence.

By introducing batch sizes, one may embed both stochastic approximations and gradient descent into a single

parametric family of algorithms so that at one extreme (batch size equal to unity), we recover stochastic

approximations, and at the other extreme (batch size equal to infinity), we obtain gradient descent. Given

a fixed budget and various choices of steplengths, our goal is to study how one may choose batch sizes in

order to minimize a certain bound on the rate of convergence. This bound, in turn, is built to recover the

standard rates of convergence well known for stochastic approximation algorithms. In order to describe our

contributions more precisely, let us discuss the stochastic approximation method in the context of stochastic

convex optimization:

min
x∈X

E[ f (x,ξ (ω))], (1)

where X ⊆ R
n, ξ : Ω → R

d , f : Rn ×R
d → R and (Ω,F ,P) denotes the associated probability space and

E[•] denotes the expectation with respect to P[•]. We shall assume that X is a compact and convex set and

f (x) is a convex function in x where f (x) := E[ f (x,ξ (ω))]. In fact, we shall focus on problems wherein

the function f (x) is continuously differentiable and strongly convex. Recall that strong convexity implies

that there exists an η > 0 such that (∇x f (x)−∇x f (y))T (x− y)≥ η‖x− y‖2. Moreover, we shall assume

that f (x) has Lipschitz continuous gradients, that is, ‖∇x f (x)−∇x f (y)‖ ≤ L‖x− y‖ for some L > 0. We
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use ‖•‖ to denote the Euclidian norm. Note that since X is compact, we have that there exists D > 0 such

that maxx∈X ‖x− x∗‖2 ≤ D, where x∗ is an optimal solution of (1).

Vanilla implementations of stochastic approximation schemes have comprised of the following update rule:

Given an x1 ∈ X , an SA scheme is based on the following update rule:

xk+1 := ΠX (xk − γk(∇x f (xk)+wk)) , k ≥ 1

where wk := ∇x f (xk;ωk)−∇x f (xk) and ∇x f (x,ξ (ω)) is referred to as ∇x f (x,ω). If {γk} is a square-

summable but non-summable sequence, then {xk} → x∗. We shall write Fk , {x1,ω1, . . . ,ωk} and

assume that E[‖wk‖2 | Fk] ≤ ν2 for some v ∈ (0,∞). Under strong convexity, it is known that when

x ∈ int(X), E[ f (xk;ωk)− f ∗] = O(1/k). Meanwhile, it is well known that iterating the sequence xk+1 :=
ΠX (xk −∇x f (xk)), which corresponds to gradient descent, we have that f (xk)− f (x∗) = O

(

ρk
)

for some

ρ ∈ (0,1). (As a side note, when both strong convexity and differentiability of the function are weakened,

E[ f (xk;ωk)− f ∗] = O(1/
√

k), shown to be unimprovable by Nemirovski and Yudin (1983).)

Scheme Sample size: Nk Steplength: γk qk βK Rate for K ≤ K̄ Optimal K

Const. N, Const. γ Nk := N = ⌈βKq−K⌉ γk := γ q := (1−2ηγ + γ2L2)
(

M
K
−1
)

qK Linear K∗ solves (4)

Const. N, Dim. γ Nk := N = ⌈βKq−K
K ⌉ γk := θ/k qk := (1−2ηγk + γ2

k L2)
(

M
K
−1
)

qK
K Linear -

Inc. N, Const. γ Nk := ⌈ βK

qk ⌉ γk := γ q := (1−2ηγ + γ2L2) (M−K)

∑K
k=1 q−k Linear K∗ solves (6)

Inc. N, Dim. γ Nk := ⌈ βK

∏k
j=1 q j

⌉ γk := θ/k qk := (1−2ηγk + γ2
k L2) (M−K)

∑K
k=1

1

∏k
j=1

q j

Linear -

Table 1: Budget constrained stochastic approximation schemes (Simulation budget = M)

Research question: We consider a generalization where at step k, Nk samples of the gradient are obtained.

As a consequence, given a randomly generated x1 ∈ X , the sequence {xk+1} is given by the following

update rule:

xk+1 := ΠX

(

xk − γk

∑
Nk

j=1 ∇x f (xk,ω j,k)

Nk

)

, k ≥ 1. (SAk)

One may immediately note that when Nk := 1 for all k, this reduces to the standard SA scheme, and if

Nk = ∞, and γk = γ , the scheme reduces to gradient descent. In the context of this scheme, we consider

the following question. Given a simulation budget of M samples and a computational budget of

K projection steps, how should Nk be selected as a function of M,K, and problem parameters so

as to attain bounds on the rate of convergence that resemble the exponential rate of convergence

seen in deterministic schemes such as gradient descent? To this end, this paper makes the following

contributions:

(I) We consider a constant sample-size batch (Nk = N) SA scheme under constant (γk = γ) and

diminishing (γk = θ/k) steplength regimes. Specifically, given simulation and computational budgets,

we prove linear convergence in a mean-squared sense (see Proposition 2 and Theorem 3 below)

when N is selected in accordance with M,K, and problem parameters;

(II) Next, we extend the two prior SA schemes to allow for an increasing sequence of sample sizes

Nk and provide a scheme for updating the sample size in terms of simulation and computational

budgets that allows for recovering the linear rate of convergence when steplength sequences are

either constant or diminishing (see Proposition 5 and Theorem 6 below);

(III) Finally, when steplengths are constant, we resolve the question of the optimal number of projection

steps that minimize the bound on the mean-squared error (see Proposition 4 and Lemma 7 below).

When the projection operation in (SAk) is on relatively complex set and the simulation budget is M, standard

SA schemes take K = M projection steps, each requiring the solution of a (possibly challenging) convex
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program. We observe that in our preliminary numerics suggest that accurate solutions are available when

K << M. Furthermore, in constant steplength regimes, an optimally chosen K (denoted by K∗) is much

smaller than M.

We summarize our main findings in the Table 1 and conclude with a brief discussion of the relation

between our findings and prior research on the analysis of stochastic approximation schemes related to the

choice of steplengths and sample sizes for gradient estimates. The bottom line in this discussion is that

our contribution differs from previous work in that we consider a fixed budget M and combine different

choices of steplengths and batch sizes. Additional results in the literature are discussed next:

Steplength choices: The choice of the steplengths, γk, can prove devastating from the standpoint of algo-

rithm performance, motivating diverse efforts to design schemes where steplengths are chosen in a sensible

fashion. Nemirovski et al. (2009) presented a constant steplength scheme where the choice is contingent on

the termination length and achieves the optimal rate. While these choices require an a priori specification

of the termination length, such schemes naturally provide approximate solutions at best. Asymptotically

exact schemes have been developed by Yousefian et al. (2012) in which the steplength sequence is selected

in accordance with problem parameters (such as Lipschitz constant, convexity constant etc.) and are seen

to display the optimal rate. Adaptively chosen steplengths have also been considered with a study of the

associated rates (See (Cicek, Broadie, and Zeevi 2011) and references therein).

Constant sample size SA schemes: Constant sample size SA schemes are generally referred to as mini-

batch SA schemes and there has been significant analysis of the associated error bounds (cf. (Ghadimi,

Lan, and Zhang 2014)). However, much of this work has assumed that the size of the batch is taken as

a parameter. In contrast, the present work additionally focuses on determinining the optimal batch size

so as to recover fast rates of convergence while accommodating a budget constraint on the number of samples.

Variable sample size SA schemes: Amongst related prior work is that in which sample-averages of

gradients are utilized within the gradient method with changing sample sizes (cf. (Friedlander and Schmidt

2012, Byrd, Chin, Nocedal, and Wu 2012, Pasupathy, Glynn, Ghosh, and Hashemi 2014)). In particular,

Friedlander and Schmidt investigate how rates of deterministic methods can be achieved through increasing

sample sizes. Our work differs in that we assume that the sampling budget is constrained and precise

schemes for updating the sampling size are provided so as to recover linear rates of convergence.

The remainder of the paper is organized as follows. In Section 2, we consider the constant sample

size regime where Nk = N while in Section 3, we investigate the increasing sample size regime. The paper

concludes after providing a set of numerics in Section 4.

2 STOCHASTIC APPROXIMATION WITH CONSTANT SAMPLE SIZES

In this section, we consider the setting in which a fixed sample size is utilized at every step. Our original

research question then reduces to what the size of this sample should be given that a fixed simulation

budget is available. In fact, based on this sample size, the overall number of computational steps can be

defined. We begin with a simple bound on the conditional second moment of the error.

Lemma 1 Consider the variable sample SA scheme denoted by (SAN) and suppose f (x) is a strongly

convex function with convexity constant η . Furthermore suppose f is continuously differentiable in x with

Lipschitz continuous gradients with constant L. Then for every nonnegative k, the following holds

E[‖xk+1 − x∗‖2 | Fk]≤ (1−2ηγk + γ2
k L2)‖(xk − x∗)‖2 +

γ2
k ν2

Nk

.
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Proof. We begin by noting that xk can be expressed as follows:

xk+1 = ΠX

(

xk − γk

∑
Nk

j=1 ∇x f (xk,ωk, j)

Nk

)

= ΠX

(

xk − γk

∑
Nk

j=1(∇x f (xk)+wk, j)

Nk

)

= ΠX

(

xk − γk

(

∇x f (xk)+
∑

Nk

j=1 wk, j

Nk

))

= ΠX (xk − γk (∇x f (xk)+ w̄k,Nk
)) ,

where w̄k,Nk
:=

∑
Nk
j=1 ∇ f (xk,ωk, j)

Nk
. By leveraging the non-expansivity of the Euclidean projector, we may express

‖xk+1 − x∗‖2 as follows:

‖xk+1 − x∗‖2 = ‖ΠX(xk − γk(∇x f (xk)+ w̄k,Nk
)−ΠX(x

∗− γk∇x f (x∗))‖2

≤ ‖(xk − γk(∇x f (xk)+ w̄k,Nk
)− (x∗− γk∇x f (x∗))‖2

= (1−2ηγk + γ2
k L2)‖(xk − x∗)‖2

−2γkw̄T
k,Nk

((xk − x∗)− γk(∇x f (xk)−∇x f (x∗))+ γ2
k ‖w̄k,Nk

‖2.

Taking conditional expectations on Fk, we obtain the following inequality:

E[‖xk+1 − x∗‖2 | Fk]≤ (1−2ηγk + γ2
k L2)‖(xk − x∗)‖2 + γ2

kE[‖w̄k,Nk
‖2 | Fk],

where E[w̄k,Nk
| Fk] = 0. Furthermore, since we have that E[‖wk‖2 | Fk]≤ ν2, it follows that E[‖wk,Nk

‖2 |
Fk]≤ ν2

Nk
. The result follows.

Our first result assumes that a fixed number of samples, namely N, are employed at each iteration

implying that the no more than K , ⌊M
N
⌋ steps are taken where

N :=

{

⌈βKq−K⌉, if γk := γ

⌈βKq−K
K ⌉, if γk := θ/k

and βK :=

{

(

M
K
−1
)

qK , if γk = γ
(

M
K
−1
)

qK
K . if γk = θ/k

(2)

Note that the choice of βK is based on the specification KβKq−K = M −K. We now analyze the error

bounds at the Kth iteration under constant and diminishing steplength regimes.

Proposition 2 Consider the scheme where N is defined as per (2). Then the following hold:

(i) Suppose γk := γ for all k and q , (1−2ηγ + γ2L2). Then the mean-squared error may be bounded

as follows:

E[‖xK+1 − x∗‖2]≤
(

D+
min(K,(1−q)−1)γ2ν2

βK

)

qK , ∀k ≥ 1.

(ii) Suppose γk := θ/k for all k and qk , (1− 2ηγk + γ2
k L2). Then the mean-squared error may be

bounded as follows:

E[‖xK+1 − x∗‖2]≤
(

D+
π2θ 2ν2

6βK

)

qK
K , ∀k ≥ 1.

Proof. We begin by considering the general case in which the steplength is denoted by γk. Then after

K gradient steps, the mean-squared error is given by the following:

E[‖xK+1 − x∗‖2 | FK ]≤ (1−2ηγK + γ2
KL2)‖(xK − x∗)‖2 +

γ2
Kν2

N
.
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Taking unconditional expectations, we obtain the following:

E[‖xK+1 − x∗‖2]≤ qKE[‖(xK − x∗)‖2]+
γ2

Kν2

N
,

where qK := (1−2ηγK + γ2
KL2). Consequently, we have the following:

E[‖xK+1 − x∗‖2]≤ qKqK−1E[‖(xK−1 − x∗)‖2]+qK

γ2
K−1ν2

N
+

γ2
Kν2

N

≤ D
K

∏
i=1

qi +
K

∏
i=2

qi

γ2
1 ν2

N
+ · · ·+qKqK−1

γ2
K−2ν2

N
+qK

γ2
K−1ν2

N
+

γ2
Kν2

N
. (3)

(i) Suppose γk := γ for all k, implying that qk = q for all k. Therefore, by recalling that q < 1 for sufficiently

small γ , we may further bound (3) by recalling that ∑
K−1
j=0 q j ≤ min((1−q)−1,K). It follows that

RHS of (3) = qKD+
K−1

∑
j=0

q j γ2ν2

N
≤ qKD+

min(K,(1−q)−1)γ2ν2

N
.

By choice, N = ⌈βKq−K⌉ ≥ βKq−K , allow for deriving the following bound:

qKD+
min(K,(1−q)−1)γ2ν2

N
≤ qKD+

min(K,(1−q)−1)γ2ν2qK

βK

.

In effect, we have that the following holds for k ≥ 1:

E[‖xK+1 − x∗‖2]≤ qK

(

D+
min(K,(1−q)−1)γ2ν2

βK

)

.

(ii) Suppose γk := θ/k for all k ≥ 1 and θ is sufficiently small. Then q1 := q(θ1)< 1 and since q(γ) is a

decreasing function in γ , qk ≤ qk−1 ≤ ·· · ≤ q2 ≤ q1 ≤ 1, facilitating the bound below:

RHS of (3) = D
K

∏
i=1

qi +
K

∏
i=2

qi

θ 2ν2

N
+ · · ·+qKqK−1

θ 2ν2

N(K −2)2
+qK

θ 2ν2

N(K −1)2
+

θ 2ν2

NK2

= qK
KD+

θ 2ν2

N

K−1

∑
j=0

∏
j
i=1 qK+1−i

(K − j)2
≤ qK

KD+
θ 2ν2

N

(

K−1

∑
j=0

1

(K − j)2

)

.

By recalling that ∑
K−1
j=0 1/(K − j)2 = ∑

K−1
j=1 1/ j2 ≤ ∑

∞
j=1 1/ j2 = π2

6
, we can further bound this expression

as follows:

qK
KD+

θ 2ν2

N

(

K−1

∑
j=0

1

(K − j)2

)

≤ qK
KD+

π2θ 2ν2

6N
.

Finally, by utilizing the requirement that N = ⌈βKq−K
K ⌉ ≥ βKq−K

K , we may derive the following bound:

E[‖xK+1 − x∗‖2]≤ qK
K

(

D+
π2θ 2ν2

6βK

)

, ∀k ≥ 1.

Remark: While a cursory look might suggest a geometric rate of convergence, a closer study suggests

that this is not the case given that βK and qK are both dependent on K. However, if K ≤ K̄, a consequence

of imposing a computational budget, we note that a linear rate of convergence may be obtained.
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Theorem 3 (Linear convergence rate under finite computational budget) Suppose K̄ projection steps

are available.

(i) Let γk = γ for all k. Then the following holds:

E[‖xk+1 − x∗‖2]≤ qk

(

D+
min

(

K̄,(1−q)−1
)

γ2ν2

βK̄

)

, for all k ≤ K̄.

(ii) Let γk = θ/k for all k. Then the following holds:

E[‖xk+1 − x∗‖2]≤ qk
K̄

(

D+
π2θ 2ν2

6βK̄

)

, for all k ≤ K̄.

Proof. (i) Suppose K ≤ K̄. Then by leveraging (2), we have that

βK =

(

M

K
−1

)

qK ≥
(

M

K̄
−1

)

qK ≥
(

M

K̄
−1

)

qK̄ , βK̄ .

It follows that when computational budget is bounded and steplengths are fixed, we have that for K ≤ K̄:

E[‖xK+1 − x∗‖2]≤ qK

(

D+
min(K̄,(1−q)−1)γ2ν2

βK̄

)

.

(ii) Consider the case where γk = θ/k. When computational budget is bounded and steplengths are

diminshing, by the decreasing nature of βK in k, we have that for K ≤ K̄:

E[‖xK+1 − x∗‖2]≤ qK
K

(

D+
π2θ 2ν2

6βK

)

≤ qK
K̄

(

D+
π2θ 2ν2

6βK̄

)

, ∀K ≤ K̄.

Remark: This result is instructive in that one can derive an error bound that reduces to that observed in

strongly convex deterministic regimes when the uncertainty disappears. Specifically, if ν = 0, we notice

that ‖xk+1 − x∗‖2 ≤ qK‖x0 − x∗‖2, in the constant steplength regime while in the diminishing steplength

regime, we obtain ‖xk+1 − x∗‖2 ≤ Πk
j=1qi‖x0 − x∗‖2 ≤ qk

k‖x0 − x∗‖2.

We conclude this section with an investigation of the optimal number of computational steps or K (or

equivalently the optimal N) in the constant steplength regime, obtained by minimizing the upper bound.

Proposition 4 (Optimal choice of K) Consider the SA scheme in which γk = γ and Nk = N for all k.

Then the following hold:

(i) The error bound h(K) is convex in K for all K where

h(K), qKD+
1

(

M
K
−1
)

γ2ν2

1−q
.

(ii) Suppose there exists a γ such that

log(1/q)(1−q)D > γ2ν2/M.

Then there is a unique root K∗ ∈ (0,M) to the equation

ln(1/q)(1−q)DqK =
γ2ν2M

(M−K)2
, (4)

and h(K∗)≤ h(K) for all K ∈ [0,M].
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Proof. (i): Consider h(K) which is defined as follows:

E[‖xK+1 − x∗‖2]≤ qK

(

D+
γ2ν2

βK

1

1−q

)

= qKD+
1

(

M
K
−1
)

γ2ν2

1−q
, h(K).

The first and second derivatives of h can then be derived.

h′ (K) = DqK ln(q)+
1

(

M
K
−1
)2

M

K2

γ2ν2

1−q
= DqK ln(q)+

M

(M−K)2

γ2ν2

1−q

h′′ (K) = DqK(ln(q))2 +
2M

(M−K)3

γ2ν2

1−q
> 0, for all K.

It follows that h(K) is convex in K.

(ii) An unconstrained minimizer K∗ is given by the solution to h′ (K) = 0, which is equivalent to (4). We can

see that K∗ ∈ (0,M) is unique because of two reasons: first the left hand side of (4) is decreasing in K, and

the right hand side increases up to infinity as K ր M; second, the left hand side equals log(1/q)(1−q)D,

at K = 0, which, by assumption, is strictly larger than γ2ν2/M, which in turn is the value of the righ hand

side at K = 0.

Remark: The reader may observe that an optimal selection of K∗ is always feasible and can be made

independently of γ if the budget M is large enough. We note that the optimal choice of K lies in the interior

of [0,M]. In fact, this choice of K∗ contrasts with the standard value of K = M which is a result of using

a single sample at every k. Furthermore, given K∗, one may then compute a βK∗ and an N∗ based on (2).

3 STOCHASTIC APPROXIMATION WITH INCREASING SAMPLE SIZES

In the prior section, we considered a setting where the sample size Nk was fixed for every step at N. In

this section, we consider an alternate approach in which the sample size is raised at every step through a

prescribed update rule, with the overall goal of obtaining linear convergence rates over a finite horizon.

Nk :=







⌈βK

qk ⌉, if γk := γ

⌈ βK

πk
j=1q j

⌉, if γk := θ/k
and βK :=











(M−K)

∑
K
k=1 q−k , if γk = γ
(M−K)

∑
K
k=1

1

∏k
j=1

q j

. if γk = θ/k
(5)

Proposition 5 Consider the scheme where Nk is defined as per (5). Then the following hold:

(i) Suppose γk := γ for all k. Then the mean-squared error may be bounded as follows:

E[‖xK+1 − x∗‖2]≤ qK

(

D+
γ2ν2K

βK

)

.

(ii) Suppose γk := θ/k for all k. Then the mean-squared error may be bounded as follows:

E[‖xK+1 − x∗‖2]≤ qK
K

(

D+
θ 2ν2π2

6βK

)

.

Proof. After K gradient steps, the mean-squared error is given by the following:

E[‖xK+1 − x∗‖2 | FK ]≤ (1−2ηγK + γ2
KL2)‖(xK − x∗)‖2 +

γ2
Kν2

NK

.
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Taking unconditional expectations, we obtain the following:

E[‖xK+1 − x∗‖2]≤ qKE[‖(xK − x∗)‖2]+
γ2

Kν2

NK

,

where qK := (1−2ηγK + γ2
KL2). Consequently, we have the following:

E[‖xK+1 − x∗‖2]≤ qKqK−1E[‖(xK−1 − x∗)‖2]+qK

γ2
K−1ν2

NK−1

+
γ2

Kν2

NK

≤ D
K

∏
i=1

qi +

(

K

∏
i=2

qi

)

γ2
1 ν2

N1

+ · · ·+qKqK−1

γ2
K−2ν2

NK−2

+qK

γ2
K−1ν2

NK−1

+
γ2

Kν2

NK

.

(i) Suppose γk := γ for all k, implying that qk = q for all k. Therefore, we may further bound the above

expression as follows:

D
K

∏
i=1

qi +
K

∏
i=2

qi

γ2
1 ν2

N1

+ · · ·+qKqK−1

γ2
K−2ν2

NK−2

+qK

γ2
K−1ν2

NK−1

+
γ2

Kν2

NK

≤ DqK +qK γ2ν2

βK

+ · · ·+qK γ2ν2

βK

+qK γ2ν2

βK

+qK γ2ν2

βK

= DqK +qK Kγ2ν2

βK

,

where βK = M−K

∑
K
k=1

1

qk

, implying that

E[‖xK+1 − x∗‖2]≤ qK

(

D+
γ2ν2K

βK

)

.

(ii) Suppose γk := θ/k for all k and by recalling that q is a decreasing function in γ , we may further

bound the above expression as follows:

D
K

∏
i=1

qi +
K

∏
i=2

qi

γ2
1 ν2

N1

+ · · ·+qKqK−1

γ2
K−2ν2

NK−2

+qK

γ2
K−1ν2

NK−1

+
γ2

Kν2

NK

= D
K

∏
i=1

qi +
K

∏
i=2

qi

γ2
1 ν2

⌈βKq−1
1 ⌉

+ · · ·+qKqK−1

γ2
K−2ν2

⌈βK ∏
K−2
i=0 q−1

i ⌉
+qK

γ2
K−1ν2

⌈βK ∏
K−1
i=0 q−1

i ⌉
+

γ2
Kν2

⌈βK ∏
K
i=0 q−1

i ⌉

= D
K

∏
i=1

qi +
K

∏
i=2

qi

γ2
1 ν2

⌈βKq−1
1 ⌉

+ · · ·+qKqK−1

γ2
K−2ν2

⌈βK ∏
K−2
i=0 q−1

i ⌉
+qK

γ2
K−1ν2

⌈βK ∏
K−1
i=0 q−1

i ⌉
+

γ2
Kν2

⌈βK ∏
K
i=0 q−1

i ⌉

≤ D

(

K

∏
i=1

qi

)

+

(

K

∏
i=1

qi

)

K−1

∑
j=1

θ 2ν2

βK j2
=

(

K

∏
i=1

qi

)(

D+θ 2ν2
K−1

∑
j=1

1

βK j2

)

,

where the inequality follows from noting that ⌈βK ∏
K− j
i=0 q−1

i ⌉ ≥ βK ∏
K− j
i=0 q−1

i . By recalling that

∑
K−1
j=1 1/ j2 ≤ ∑

∞
j=1 1/ j2 = π2

6
, we can further bound this expression as follows:

(

K

∏
i=1

qi

)(

D+θ 2ν2
K−1

∑
j=1

1

βK j2

)

≤
(

K

∏
i=1

qi

)

(

D+
θ 2ν2π2

6βK

)

=⇒ E[‖xK+1 − x∗‖2]≤ qK
K

(

D+
θ 2ν2π2

6βK

)

.

We now examine the convergence rate when constrained by a finite computational budget.
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Theorem 6 (Linear convergence rate under finite computational budget) Suppose K̄ projection steps

are available.

(i) Let γk = γ for all k. Then the following holds:

E[‖xk+1 − x∗‖2]≤ qk

(

D+
γ2ν2K̄

βK̄

)

, ∀k ≤ K̄.

(ii) Let γk = θ/k for all k. Then the following holds:

E[‖xk+1 − x∗‖2]≤ qk
K̄

(

D+
θ 2ν2π2

6βK̄

)

, ∀k ≤ K̄.

Proof. (i): Consider the error given by qK
(

D+ γ2ν2K

βK

)

. If K ≤ K̄, then we have that

βK =
M

∑
K
k=1

1
qk

≥ M

∑
K̄
k=1

1
qk

, βK̄ .

It follows that when computational budget is bounded and steplengths are fixed, we have that for K ≤ K̄:

E[‖xk+1 − x∗‖2]≤ qk

(

D+
γ2ν2k

βK

)

≤ qk

(

D+
γ2ν2K̄

βK̄

)

, ∀k ≤ K̄.

(ii): When computational budget is bounded and steplengths are diminshing, we have that for K ≤ K̄:

E[‖xK+1 − x∗‖2]≤ qK
K

(

D+
θ 2ν2π2

6βK

)

≤ qK
K̄

(

D+
θ 2ν2π2

6βK̄

)

, ∀K ≤ K̄.

We conclude this section with a discussion of how to optimally choose K when steplength sequences are

constant and sample sizes are increasing. We discuss the convexity of a bound on the mean-squared error

which allows for deriving an optimal choice of K. Rather than minimize the bound derived in Theorem 6

(i), we minimize an upper bound based on the following observation: Since βK = M−K

∑
K
j=1

1

q j

, it follows that

βK ≥ M−K
Kq−K from noting that 1/q j ≥ 1/qK , leading to the following bound:

DqK +
γ2ν2KqK

βK

≤ DqK +
γ2ν2K

(M
K
−1)

.

Lemma 7 Consider the SA scheme in which Nk is increasing as per the prescribed rule and γk = γ for

all k. Then the function is h(K) convex in K where h(K) = DqK + γ2ν2

(M−K)

K2

. Furthermore, the optimal choice

K∗ ∈ (0,M) is the unique solution to the equation

DqK ln(1/q) =
γ2ν2K

(M−K)2
((2M−K)) . (6)
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Proof. Since βK = M−K

∑
K
j=1

1

q j

for j <K, it follows that βK ≥ M−K
Kq−K from noting that 1/q j ≥ 1/qK . Consequently

DqK + γ2ν2KqK

βK
≤ DqK + γ2ν2

(M−K)

K2

and

h′ (K) = DqK ln(q)− γ2ν2

(M−K)2

K4

(

−2M

K3
+

1

K2

)

= DqK ln(q)+
γ2ν2

(M
K
−1)2

(

(2
M

K
−1)

)

h′′ (K) = DqK ln2(q)+
M

K2
2

γ2ν2

(M
K
−1)3

(

(2
M

K
−1)

)

+
γ2ν2

(M
K
−1)2

(

(− M

K2
)

)

= DqK ln2(q)+
Mγ2ν2

(M
K
−1)2K2

(

4(M/K)−2

((M/K)−1))
−1

)

= DqK ln2(q)+
Mγ2ν2

(M
K
−1)2K2

(

3(M/K)−1

((M/K)−1))

)

≥ 0, when K ≤ M.

We select K∗ satisfying the equation h′ (K) = 0, which is equivalent to (6). The fact that there is a unique

K∗ ∈ (0,M) satisfying (6) follows from the fact that the left hand side of (6) is decreasing in [0,M] with

initial value equal to D ln(1/q) > 0 at K = 0; meanwhile, the right hand side of (6), whose nonnegative

derivative has been evaluated in the analysis of h′′ (K), increases up to infinity as K ր M.

4 NUMERICAL RESULTS

We provide some preliminary numerical investigations on a stochastic quadratic program defined as follows:

min
x∈X

E

[

1

2
xT Q(ξ )x−dT x

]

,

where X , [0,10]n. We assume that E[Q(ξ )] = 2I+RT R where R is a randomly generated n−dimensional

square matrix (using a uniform distribution over [0,1]) and I denotes the identity matrix. Furthermore

d =−2e where e denotes the column of ones in n−space. The optimal solution lies in the interior of the set

and is given by Q−1d where Q =E[Q(ξ )]. We examine the performance of four SA schemes when M = 1e6.

Performance of SA schemes: In Table 2, we consider constant sample size SA schemes with constant and

diminishing steplength sequences (with θ = 1). It can be seen that while deterministic projected gradient

schemes require 20 projection steps to reach an error of 2.3e-5, the constant sample-size schemes provide

solutions with an error of the order 1e-2 in the same number of steps. Minimizing the theoretical error

bound in the constant steplength regime leads to a K∗ = 48 which corresponds well with what is seen from

the profile of the thoeretical error. When one compares the diminishing steplength scheme, it can be seen

that there is a significant improvement in terms of empirical performance. This is not surprising since the

diminishing nature of steplength helps mute the stochastic error. It is also observed that the theoretical

error bound tends to have a minimzer around K∗ = 40 and then slowly edges upward, a characteristic

that is supported by the empirical behavior. When one examines increasing sample-size schemes with

# ‖xdet
K − x∗‖ kdet ‖x− x∗‖ kconst Theor. bound

10 2.288e-05 20 1.471e-02 12 9.536e-01

20 2.288e-05 20 9.058e-03 22 2.421e-01

30 2.288e-05 20 1.189e-02 33 6.331e-02

40 2.288e-05 20 1.319e-02 42 2.398e-02

50 2.288e-05 20 1.424e-02 52 2.079e-02

60 2.288e-05 20 1.607e-02 62 2.238e-02

70 2.288e-05 20 1.757e-02 72 2.415e-02

80 2.288e-05 20 1.888e-02 82 2.582e-02

48 2.288e-05 20 1.647e-02 51 2.066e-02

# ‖xdet
K − x∗‖ kdet ‖x− x∗‖ kconst Theor. bound

10 2.288e-05 20 6.862e-03 11 9.535e-01

20 2.288e-05 20 6.240e-03 21 6.577e-01

30 2.288e-05 20 5.708e-03 32 5.961e-01

40 2.288e-05 20 6.027e-03 41 5.703e-01

50 2.288e-05 20 5.978e-03 51 5.562e-01

60 2.288e-05 20 5.973e-03 61 5.473e-01

70 2.288e-05 20 5.976e-03 71 5.413e-01

80 2.288e-05 20 5.922e-03 81 5.369e-01

90 2.288e-05 20 5.849e-03 92 5.335e-01

Table 2: Constant sample size SA schemes with constant and diminishing steplengths

constant and diminishing steplength sequences, the results tend to be somewhat better. For instance, with
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SA schemes with constant steplength and increasing sample sizes, it is seen that the obtained accuracy is

of the order of 1e-3 and is nearly an order of magnitude better than the constant sample size counterpart.

The diminishing steplength counterpart provides similar results but with somewhat poorer theoretical error

bounds. We should note that the theoretical error bound employed is slightly weaker than that proved in

theory and we expect the bounds to be tighter in practice.

# ‖xdet
K − x∗‖ kdet ‖x− x∗‖ kconst Theor. bound

10 2.288e-05 20 1.411e-02 12 9.536e-01

20 2.288e-05 20 3.385e-03 22 2.421e-01

30 2.288e-05 20 3.385e-03 32 6.331e-02

40 2.288e-05 20 3.385e-03 42 2.398e-02

50 2.288e-05 20 3.389e-03 52 2.079e-02

60 2.288e-05 20 3.392e-03 62 2.238e-02

70 2.288e-05 20 3.389e-03 72 2.415e-02

80 2.288e-05 20 3.389e-03 82 2.582e-02

38 2.288e-05 20 3.384e-03 40 2.711e-02

# ‖xdet
K − x∗‖ kdet ‖x− x∗‖ kconst Theor. bound

10 2.288e-05 20 4.264e-01 4 9.535e-01

20 2.288e-05 20 3.920e-03 11 6.577e-01

30 2.288e-05 20 3.410e-03 18 5.961e-01

40 2.288e-05 20 3.676e-03 24 5.703e-01

50 2.288e-05 20 3.739e-03 30 5.562e-01

60 2.288e-05 20 3.790e-03 36 5.473e-01

70 2.288e-05 20 3.824e-03 42 5.413e-01

80 2.288e-05 20 3.874e-03 48 5.369e-01

90 2.288e-05 20 3.770e-03 54 5.335e-01

Table 3: Increasing sample size SA schemes with constant and diminishing steplengths

Optimal choices of K and N: In the prior subsections, we have examined the question of minimizing

the theoretical bound in K to ascertain the optimal number of projection steps (and therefore the optimal

sample size). In Figure 1, we plot the theoretical and empirical error for constant steplength SA schemes

with constant and increasing sample sizes. From this figure, we see that the theoretical error bound is

minimized in both regimes and this behavuor is matched to some degree by the empirical error.
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Figure 1: Theoretical vs Empirical error (const steplength and constant (l) and increasing (r) sample sizes

Linear convergence rates with finite computational budget: A key question that has motivated this

work is whether one can develop methods that provide faster convergence rates which are valid in a finite

(rather than non-asymptotic) regime. We note that by imposing a budget on the computational complexity,

we may derive precisely such rates and these rates. Naturally these rates are weaker than the empirical

behavior but Figure 2 demonstrates that the linear nature of these rates.
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Figure 2: Linear convergence: (const steplength and constant (l) and increasing (r) sample sizes)

Computational benefits: A key concern in the implementation of standard stochastic approximation

schemes is the effort associated with projection on convex sets which are not necessarily simple (such

as box constraints, for instance). These projection problems lead to nonlinear convex programs and in

traditional SA implementations with a budget of M samples, such problems are solved M times. In the

proposed schemes, we observe that K∗ << M and the computational benefits are seen to be significant.

5 CONCLUDING REMARKS

We present a set of stochastic approximation schemes that can contend with bounds on the simulation

budget under either constant or increasing sample sizes with either constant or diminishing steplength

sequences. In particular, we show that by suitable allocation policies of the simulation budget, the schemes
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display linear convergence when the computational budget is restricted. Notably, the number of projection

steps that minimize the theoretical error bound can be specified when steplengths are constant and sample

sizes are either constant or increasing. Finally, preliminary numerics suggest that the schemes perform

well in that they produce reasonably accurate solutions with significant computational benefit.
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