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ABSTRACT

Many Monte Carlo computations involve computing quantities that can be expressed as g(EX), where g

is nonlinear and smooth, and X is an easily simulatable random variable. The nonlinearity of g makes the

conventional Monte Carlo estimator for such quantities biased. In this paper, we show how such quantities

can be estimated without bias. However, our approach typically increases the variance. Thus, our approach

is primarily of theoretical interest in the above setting. However, our method can also be applied to the

computation of the inner expectation associated with Eg(EX |Z)), and in this setting, the application of this

method can have a significant positive effect on improving the rate of convergence relative to conventional

“nested schemes” for carrying out such calculations.

1 INTRODUCTION

Many applications of simulation involve the computation of “smooth functions” of expectations, specifically

quantities of the form

α = g(EX), (1.1)

where X is an R
d-valued simulatable random variable (rv) and g :Rd →R is “smooth” in some neighborhood

N of κ containing µ
∆
= EX . By smooth in N , we mean that g is analytic within N (in the sense that g

is infinitely differentiable at κ , and g’s Taylor expansion converges absolutely in N ). The reader should

think of κ as an auxiliary parameter in the design of the estimator, often one can select κ = 0.

One important problem of this form is the ratio estimation problem, in which d = 2 and g(x1, x2) = x1/x2.

This, in turn, arises naturally in a number of different application settings.

Setting 1: Suppose that we wish to compute the average productivity per hour of labor expended. Suppose

that Yi is the total number of items produced on day i, and τi is the total number of labor hours expended

on day i. Assuming the (Yi, τi)’s are independent and identically distributed (iid), the average productivity

per labor hour expended over the first n days is (Y1 + · · ·+Yn)/(τ1 + · · ·+ τn), which converges almost
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surely (a.s.) to EY1/Eτ1 as n → ∞, assuming that E|Y1|< ∞. So, the long-run productivity per labor hour

is given by α = EY1/Eτ1.

Setting 2: Consider a nonnegative positive recurrent real-valued regenerative stochastic process, with

regeneration times 0 ≤ T (0)< T (1)< · · · . Then, t−1
∫ t

0 X(s)ds → α = EY1/Eτ1 a.s. as t → ∞, where

Y1 =
∫ T (1)

T (0)
X(s)ds,

τ1 = T (1)−T (0).

In this case, α = EY1/Eτ1 is the steady-state mean of X (see, for example, p.170 of (Asmussen 2000)).

Setting 3: Suppose here that X is a nonnegative non-delayed real-valued regenerative stochastic process.

Observe that the expected infinite-horizon discounted “reward”

α = E

∫ ∞

0
e−λ tX(t)dt

can be expressed as α = EY1/Eτ1, where

Y1 =
∫ T (1)

0
e−λ tX(t)dt,

τ1 = 1− exp(−λT (1));

see (Fox and Glynn 1989). Thus, α can be expressed as a ratio of two expectations.

Of course, many other important quantities take the form of (1.1):

variance of W :

α = g(EW 2, EW ), where g(x1, x2) = x1 − x2
2.

standard deviation of W :

α = g(EW 2, EW ), where g(x1, x2) = (x1 − x2
2)

1
2 .

squared coefficient of variation of W :

α = g(EW 2, EW ), where g(x1, x2) = (x1 − x2
2)/x2

2.

coefficient of correlation between W and Z:

α = g(EW 2, EZ2, EW, EZ, EWZ), where g(x1, . . . , x5) = (x5 − x3x4)/((x1 − x2
3)(x2 − x2

4))
1
2 .

Such problem structures can also arise, for example, in the context of optimization in the presence of

uncertainty. Suppose, for example, that we wish to do portfolio optimization using a Markowitz formulation

in which the asset returns are characterized through their expectations, variances, and covariances; see p.67-72

of (Lai and Xing 2010) for details. In this case, one can view the maximum expected return of the variance-

constrained portfolio as a smooth (deterministic) function of the underlying asset means, variances, and

covariances. Therefore, if one has a complicated asset return model in which simulations are used to generate

potential asset return realizations so as to numerically estimate the asset means/variances/covariances, the
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computation of the maximum expected portfolio return is then of the type discussed in this paper. (Of

course, computing the derivatives of g is more cumbersome for this problem, but nevertheless is possible.)

Suppose that we simulate X1, . . . , Xn from the distribution of X and form the sample mean Xn
∆
=

n−1 ∑
n
i=1 Xi. It is well-known that the conventional Monte Carlo estimator g(Xn) for α is biased. In

particular, under modest additional conditions on X and g,

Eg(Xn) = α +
1

n

d

∑
i=1

d

∑
j=1

Hi jCi j +δn (1.2)

as n → ∞, where H = (Hi j : 1 ≤ i, j ≤ d) is the Hessian of g evaluated at µ , C = (Ci j : 1 ≤ i, j ≤ d) is the

covariance matrix of X , and δn = o(1/n) as n → ∞; see (Cramér 1999) p.346-349 for a rigorous discussion

of moment expansions closely related to (1.2). (Recall that a deterministic sequence (δn : n ≥ 0) is said to

be o(1/n) as n → ∞ if nδn → 0 as n → ∞.)

Because the magnitude of the bias term in (1.2) is typically unknown a priori, it is of interest to explore

the degree to which unbiased estimation is possible. This paper is therefore concerned with the theoretical

question of whether such smooth functions of expectations can be estimated without bias, in such a way

that the canonical “square root convergence rate” of typical Monte Carlo computations is presented. We

caution that the unbiased estimators proposed here will typically exhibit central limit theorems (CLT’s)

displaying slower rates of convergence than those associated with the conventional estimator g(Xn). Thus,

the methods discussed here are primarily of theoretical interest, although perhaps relevant in applications

settings where concern about bias is of paramount interest.

In (Blanchet and Glynn 2015), we discuss an alternative approach that builds on a randomization idea

explored in (Rhee and Glynn 2012). Both approaches can be used in the setting of nested simulation

methods for computing quantities of the form α = Eg(E(X |Z)) (with g smooth) to obtain “square root

convergent” algorithms, thereby beating the best currently available Monte Carlo convergence rates; see

(Andradóttir and Glynn 2015).

This paper is organized as follows. Section 2 develops the basic idea used here to construct unbiased

estimators for g(EX), based on Taylor expansions, while Section 3 provides an alternative estimator. Finally,

Section 4 shows how either of the estimators constructed in Sections 2 and 3 can be used to obtain “square

root convergent” estimators for Eg(E(X |Z)).

2 THE BASIC IDEA

We describe here the basic idea underlying our Taylor expansion-based approach to computing unbiased

estimators for α = g(EX)). Since the conventional estimator g(Xn) is unbiased when g is affine, the

simplest such example where bias appears occurs in the quadratic case. However, if d = 1 and g(x) = x2,

V
∆
= X1X2 is an unbiased estimator for g(EX), provided that we take X1 and X2 to be two independent

copies of X . Hence, if we generate iid replicates V1, . . . ,Vn of V and form V n = n−1(V1+ · · ·+Vn), V n will

be an unbiased estimator of α that will satisfy a central limit theorem (CLT) with associated square-root

convergence rate, provided that varX < ∞.

To carry this idea out more generally, assume (for notational convenience) that d = 1. Expanding g

about κ , we get

g(EX) =
∞

∑
k=0

g(k)(κ)

k!
(µ −κ)k.

Suppose now that N is a Z+-valued rv with associated probability mass function (pn : n ≥ 0). Then,

g(EX) = E
g(N)(κ)

N!

(µ −κ)N

pN

.
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To construct an unbiased estimator for g(EX), we start by generating N. Conditional on N, we simulate

N iid replicates X1, . . . , XN of the rv X , and set

V =
g(N)(κ)

N!

∏
N
i (Xi −κ)

pN

.

The unbiased estimator for α is then V n, where V n is the sample mean constructed from n iid replicates

of V .

In order that V n exhibit a “square-root convergence rate” to g(EX), we require that varV < ∞. But

EV 2 =
∞

∑
k=0

g(k)(κ)2

k!2

(E(X1 −κ)2)k

pk

∆
=

∞

∑
k=0

ak

pk

.

Note that the Cauchy-Schwarz inequality implies that

∞

∑
k=0

ak

pk

=
∞

∑
k=0

pk

(√
ak

pk

)2

≥
(

∞

∑
k=0

pk

√
ak

pk

)2

=

(

∞

∑
k=0

√
ak

)2

.

Hence, if we set

p̃k =

√
ak

∑
∞
j=0

√
a j

,

then

EV 2 ≥
(

∞

∑
k=0

√
ak

)2

=
∞

∑
k=0

ak

p̃k

∆
= ẼV 2,

where Ẽ(·) is the expectation operator corresponding to the probability under which N has probability mass

function (p̃k : k ≥ 0). In other words, the variance-minimizing choice for the distribution of N is

p̃k =
|g(k)(κ)|

k!
(E(X1 −κ)2)

k
2 ,

in which case the variance of V is given by

˜varV =

(

∞

∑
k=0

|g(k)(κ)|
k!

(E(X1 −κ)2)
k
2

)2

−α2.
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Of course, this assumes that (E(X1 −κ)2)
1
2 ∈ N .

One might perhaps hope that setting κ = µ is an optimal variance-minimizing choice for the algorithmic

parameter κ , from a theoretical perspective. (Of course, this could never be implemented at a practical

level, because µ is unknown. But one could hope to choose κ close to µ , or to adaptively estimate the

choice of κ based on prior samples.) However, this fails to be true, in general. To see this, suppose that

g(x) = x2 − x. In this case,

√
EV 2 = |g(κ)|+ |g′(κ)|

√

E(X −κ)2 +
|g′′(κ)|

2
(E(X −κ)2)

= |κ2 −κ|+ |2κ −1|
√

varX +(κ −µ)2 +(varX +(κ −µ)2)

∆
= h(κ).

So, if µ > 1, h′(µ) = 2µ −1+
√

varX > 0, so κ = µ is not a minimizer of h(·).
The estimator described above is variance-minimizing. In most computational settings, the most sensible

measure to optimize is the computational efficiency of the estimator. In this formulation, we seek the

distribution for N that minimizes the asymptotic variance of the estimator available after expending c units

of computer time. (In contrast to variance minimization, this requires taking into account the average time

required to generate the Vi’s.) As is well-known (see (Glynn and Whitt 1992)), we should therefore choose

the distribution of N to minimize

E(time to generate V ) ·varV.

In this context, we shall assume that the expected time to generate V is proportional to N (since this

corresponds to the number of copies of X that must be generated). Thus, we wish to find the distribution

of N that minimizes
(

∞

∑
k=0

kpk

)(

∞

∑
k=0

ak

pk

−α2

)

over all probability mass functions (pk : k ≥ 0). According to Theorem 4 of (Rhee and Glynn 2015), the

minimizer (p∗k : k ≥ 0) is given by

p∗k =

√

ak

α2 +d∗k
,

where d∗ is the unique root (in d) of the equation

∞

∑
k=0

√

ak

α2 +dk
= 1.

We note that guaranteeing unbiasedness may come at a significant computational cost. In particular,

the asymptotic variance of even the optimal unbiased estimator associated with (p∗n : n ≥ 0) will typically

be larger than that associated with the conventional estimator g(Xn) in the Introduction. In order to see the

types of issues that affect the variance of this estimator, just think of the case in which g(x) = xk for k ∈Z+,

and X is exponentially distributed with unit mean. Observe that the variance of the corresponding estimator

V = X1X2...Xk grows like 2k, whereas the asymptotic variance in the conventional biased estimator will

behave as k2, which arises in the corresponding Taylor expansion around x = µ in the delta method. Due

to this issue we therefore take the view that this approach to construct unbiased estimators for g(µ) is

primarily of theoretical interest
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We close this section by briefly indicating how one could generate this to the higher-dimensional setting

where d > 1. In this context,

g(µ) =
∞

∑
k=0

1

k!

d

∑
i1=1

· · ·
d

∑
ik=1

∂ kg(κ)

∂κi1 · · ·∂κik

k

∏
j=1

(µi j
−κi j

)

= E
dN

pN

∂ Ng(κ)

∂κM1
· · ·∂κMN

N

∏
j=1

(µM j
−κM j

)

= E
dN

pN

∂ Ng(κ)

∂κM1
· · ·∂κMN

N

∏
j=1

(X j
M j

−κM j
)

∆
= EV,

where N is a Z+-valued rv with probability mass function (pk : k ≥ 0), M1, . . . , MN are iid uniform rv’s in

{1, . . . , d}, and X1 = (X1
1 , . . . , X1

d ), . . . , XN = (XN
1 , . . . , XN

d ) are N iid copies of X .

3 AN ALTERNATIVE ESTIMATOR

There is an alternative randomization that we can use to develop an unbiased estimator for α = g(EX),
based on the Taylor expansion ideas of Section 2. Focusing, for simplicity, on d = 1, we write

g(EX) =
∞

∑
k=0

g(k)(κ)

k!
(µ −κ)k

= E
N

∑
k=0

g(k)(κ)

k!

(µ −κ)k

P(N ≥ k)

= E
N

∑
k=0

g(k)(κ)

k!

∏
k
j=1(X j −κ)

P(N ≥ k)

∆
= EV,

where N is aZ+-valued rv, and X1, X2, . . . are iid copies of X independent of N. The choice (P∗(N ≥ n) : n≥ 0)
that maximizes the computational efficiency of V is the minimizer of

(

∞

∑
n=0

β n

Fn

)

·
(

∞

∑
n=0

Fn

)

, (3.1)

subject to the constraints F0 = 1, F i > 0, and F i ≥ F i+1 for all i ≥ 0, where

β 0 = g(κ)−α2

and

β k =
g(k)(κ)2

(k!)2
(E(X −κ)2)k +

2g(k)(κ)

k!

∞

∑
j=k+1

g( j)(κ)

j!
(E(X −κ)2)k(µ −κ) j−k.

In deriving (3.1), we assume that the computational time required to generate V is proportional to the

number N of Xi’s that must be simulated per V . We refer the reader to Section 3 of (Rhee and Glynn 2015)

for a discussion of the minimizer of (3.1).
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4 IMPLICATIONS FOR COMPUTING Eg(E(X |Z))

Problems in which computations of α
∆
= Eg(E(X |Z)) arise (with g smooth and nonlinear) occur in several

different applications settings; see (Andradóttir and Glynn 2015). We assume that almost surely conditional

on Z = z, we can simulate iid copies X1(z), X2(z), . . . from the distribution P(·, z)
∆
= P(X ∈ ·|Z = z). The

natural estimator for α here involves first generating an iid sample Z1, . . . , Zm from the distribution of

Z. Then, for each value Zi, we can generate X1(Zi), . . . , Xn(Zi) from P(·, Zi) and form the sample mean

Xn(Zi) = (1/n)∑
n
j=1 X j(Zi). Finally, we estimate α via (1/m)∑

m
i=1 g(Xn(Zi)). This class of estimators has

been considered in (Andradóttir and Glynn 2015). They show that the best possible convergence rate, in

the computational budget c, is achieved when m is order c2/3 and n is of order c1/3, in which the associated

rate of convergence is of order c−1/3. Thus, this estimator does not achieve the best possible “square root

convergence rate” associated with Monte Carlo.

On the other hand, suppose that we apply one of the unbiased estimation methods discussed earlier in

this paper. In this algorithm, we first draw Z1 from the distribution of Z. Conditional on Z = z, we now

generate an unbiased estimator V1(z) for g(E(X |Z = z)) using one of the two “V estimators” described in

Sections 2 and 3. Hence, W1
∆
=V1(Z1) is unbiased as an estimator for α . Hence, by repeating this process

n−1 additional iid times, thereby producing W1, . . . ,Wn, we can obtain W n = (1/n)∑
n
i=1Wi. The CLT then

implies that the estimator W n enjoys a rate of convergence of order c−1/2 in the computational budget c

(i.e. a “square root convergence rate”) whenever varW1 < ∞.

Thus, the use of the unbiased estimation methods of this paper can have a profound impact on the

quality of the estimators available in this setting, serving to improve the convergence rate from c−1/3 to

c−1/2.
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