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ABSTRACT 

We present a modeling approach to assist policymakers in identifying impacts on the U.S. air 
transportation system (ATS) due to the implementation of potential policies and the introduction of new 
technologies. Our approach simulates the responses of U.S. commercial airlines and other ATS 
stakeholders to these changes, which cumulatively result in consequences to the ATS. Our research is 
built upon an agent-based model—called the Airline Evolutionary Simulation (AIRLINE-EVOS)—which 
models airline tactical decisions about airfare and schedule, and strategic decisions related to fleet 
assignments, market prices, network structure, schedule evolution, and equipage of new technologies. 
AIRLINE-EVOS also models its own heterogeneous population of customer agents that interact with and 
respond to airline decisions. We describe this model, validation efforts, and a proof-of-concept 
experiment that demonstrates its capability for assessing policies that balance ATS stakeholder utilities to 
achieve greater system efficiency, robustness, and safety. 

1 INTRODUCTION 

The National Aeronautics and Space Administration (NASA) is directly addressing the fundamental 
research needs of the Next Generation Air Transportation System (NextGen), a substantial and long-term 
change in the management and operation of the current version of the U.S. ATS, the National Airspace 
System (NAS). NextGen policies will encompass all airports, airspace, commercial airlines, and other 
aviation operators under the authority of the Federal Aviation Administration (FAA), the civil aviation 
authority body of the United States. 
 In collaboration with NASA, LMI developed a research approach and computational framework to 
investigate system-wide ATS performance impacts due to ATS stakeholder behaviors—in particular, 
behaviors of U.S. commercial airlines—under the influences of NextGen and other potential future 
policies and technology. The ATS is a highly interdependent and complex network of systems and 
subsystems; operators, regulators, users, and the flying public; policies, procedures, and rules; and 
facilities and resources. A change in any aspect of this system has cascading effects that ultimately 
influence the safety, performance, environmental impact, and economics of the ATS as a whole. These 
stakeholder-level decisions and behaviors have both a tactical and a strategic perspective, and they are 
influenced by socioeconomics, technology, and policy interactions. A research approach to address this 
problem must explicitly account for these agent-level behaviors and interactions to provide the detailed 
insights necessary to guide policy and incentive designs that lead to multidimensional system 
performance improvements while balancing stakeholder perspectives. 
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2 RESEARCH APPROACH 

In our literature review, we found a number of approaches that have addressed aspects of our research 
objectives. However, those approaches generally treated individual aspects of our objectives in isolation, 
rather than comprehensively. A number of analytically based models, such as LMINET (Long et al. 
1999), and agent-based ATS-wide simulation models (Sweet et al. 2002; Bilamoria et al. 2000; Volf, 
Sislak, and Pechoucek 2011), have been developed to assess impacts on the ATS from flight activity, but 
they do not relate those impacts to airline decisions. Other agent-based modeling approaches address the 
dynamics of airline decisions, but are limited in scope with respect to number of airlines and/or markets 
(Kuhn Jr. et al. 2010; Darabi, Mostashari, and Mansouri 2014), do not leverage consequential ATS-wide 
impacts into airline decisions (Mavris and Garcia 2007), or they account for ATS-wide impacts in their 
approach but without high-fidelity modeling of aircraft operations and flight interactions in the airspace 
(Neidringhaus 2004; Gurtner, Valori, and Lillo 2014). Incorporation of such high-fidelity modeling  
enables greater flexibility for assessing fluid NextGen operational concept scenarios—especially those 
related to equipage of new technologies—as well as highly interdependent emergent effects such as 
airspace congestion. To achieve our research objective of supporting NextGen-related decision making, 
we needed to bridge these individual short-comings with an approach that integrates demand modeling, 
agent-level modeling of airline behaviors, high-fidelity ATS-wide simulation, and as a new feature, 
environmental modeling. 
 We began to address this challenge in Horio et al. (2014), in which we presented a computational 
framework—called the Air Transportation System Evolutionary Simulation (ATS-EVOS). ATS-EVOS 
integrated disparate simulation models that focused on specific component features of the ATS, such as 
travel modal choice and demand generation, airline behavior modeling, and ATS-wide assessments of 
performance and environmental impacts. Extending that research (Horio et al. 2015), we further 
developed the computational framework by implementing feedback loops between these modeling 
components. This feedback enables the dynamics of airline decisions to incorporate measures of ATS-
wide impacts, and account for influences related to operational performance, economic outcomes, 
competitive forces, and environmental impacts by learning from prior decisions and accounting for those 
experiences in future actions. Figure 1 shows a high-level diagram of the ATS-EVOS framework. 
 

 

Figure 1: High-level diagram of the ATS-EVOS framework showing how component models are used to 
comprehensively assess the impacts of airline behaviors in the ATS over time. 

 This paper presents the improvements and additional progress made in this research, specifically that 
which is related to the continued development of AIRLINE-EVOS, the airline behavior modeling 
component of our larger research framework, ATS-EVOS. AIRLINE-EVOS is an agent-based model 
(ABM) we developed in the Java programming language, designed to enable a better understanding of 
airline behavior and the functional relationships airlines have to the other ATS stakeholders, both current 
(airlines, customers, cargo carriers, the FAA) and projected, such as operators of unmanned aircraft 
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systems (UASs). The most significant improvements to AIRLINE-EVOS and our agent-based approach 
to modeling airline behaviors include: 
  New learning functionality that allows AIRLINE-EVOS to run the entire computational 

framework of models over multiple iterations, allowing the state of the system and agent 
behaviors to be influenced by prior states and evolve over time.  Airline agents have new strategic options available, including modifying departure time, and 
modifying their service network structure. These real-world strategies in tandem additionally 
allow airlines to augment their frequency of service to particular markets, and provide viable 
responses to certain new policy implementations, such as congestion pricing at airports.  Customer agents have an estimated parameter for willingness-to-pay (WTP), allowing for utility 
maximizing ticket purchase decisions to be more representative of real world behavior.  AIRLINE-EVOS—specifically airline pricing parameters and customer WTPs—has been 
calibrated to NASA demand forecasts, making the instantiation of customer agents in the model 
more representative for evaluations of potential policy impacts in projected future year scenarios.  AIRLINE-EVOS results after calibration were validated against empirical airfare data collected 
by the Bureau of Transportation Statistics (BTS), with promising results. 

3 AIRLINE-EVOS MODEL DESCRIPTION 

The following subsections provide a high-level description of the different agents, and of the behavioral 
mechanics of AIRLINE-EVOS. A more complete model description following the Overview, Design 
concepts, and Details (ODD) protocol (Grimm et. al. 2010), may be referred to in the appendix of Horio 
et al. (2015). 
 AIRLINE-EVOS models two types of entities within the system: airlines and customers. The model 
purpose is focused on the exploration of the dynamic interactions between customer ticket choices, airline 
decisions, and the performance of the ATS as a whole. In its current development, AIRLINE-EVOS has 
modeled 26 different airlines—which represent three different business model categories for legacy or 
network carriers, low-cost carriers, and regional carriers—and their interactions with approximately 
950,000 individual customers. Airline agents in a current-day schedule scenario manage 22,000 daily 
flights and offer airfares and itinerary offerings for over 54,000 potential O-D pairs. The model is able to 
exceed these parameters, however we have not fully explored its computational limits and cannot 
therefore specify parameter limits. 

3.1 Airline Agents 

Airlines have the explicit objective of maximizing short-term profit. We identified two key behaviors that 
airlines exhibit towards this objective, in response to policy changes and new technologies: airfare price 
manipulation, and schedule modifications. Airline agents make tactical and strategic changes to their 
airfares and schedules under the influence of reinforcement learning, to best enable themselves to 
generate profit and compete in markets; the agents gradually learn the ideal airfare for a particular market, 
and allow the airfare to drift when significant changes to the market affect the pattern of customer 
behavior. These dynamic pricing changes are based on customer advance purchase time characteristics 
and the available seats for a given flight, and give rise to several emergent behaviors in AIRLINE-EVOS. 
  Market-based dynamics of customers, with respect to purchasing behaviors over time, and travel 

trends by traveler type and origin-destination O-D pair (e.g., leisure travel trending towards lower 
volume in certain markets).  Competitive airline behaviors, with respect to how airlines change airfares over time, in the 
subsequent impact on profit, and the resulting evolution of market share. 
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  Airline operations, with respect to load factor trends and equipment gauging by market, in 

addition to decisions to equip new technology.  Other emergent effects at the ATS-level are expected to result after running AIRLINE-EVOS 
schedule output in the ATS-wide simulation component of our larger research framework. These 
operations-related performance metrics include measures of airspace congestion, delay, violation 
of safe separation, and others. 

 
Airlines also adjust the flight schedule by changing their equipment assignments, modifying their 

network structure, or changing departure times. Scheduling changes by the airline agents are strategic 
decisions that attempt to increase revenues by improving captured market share, and by better matching 
capacity with demand.  

These airline behaviors also take into account feedback they receive from operational models that 
simulate system-wide impacts from airline decisions. The feedback loop effectively allows airlines to 
observe the eventual success or failure of their attempts to capture greater profit through the individual 
decisions they make, and enables their actions to evolve over time, based on what they observe. For 
example, one particular airline decision may be revealed (through simulation) to be suboptimal due to 
unexpected congestion delays, whose costs negate any benefit expected prior to simulation. Emergent 
system impacts that result from airlines simultaneously making independent—but highly 
interconnected—decisions, may also generate unexpected effects that might influence future decisions. 
This is one of the modeling areas in which the most progress was made since Horio et al. (2014). 

3.2 Customer Agents 

In every iteration of the model, customers explicitly choose the ticket that will maximize their utility, 
taking into account their individual preferences, including market-specific WTPs. The traveling public is 
the only source of revenue in the system. This is of significant importance because their ticket purchase 
decisions serve as triggers for airline behaviors. Customer agents are modeled as heterogeneous agent 
populations, with a number of differentiating attributes, including the O-D pair that defines the agent’s 
desired route. In AIRLINE-EVOS, their behavior is strictly concerned with making a decision about 
whether or not to purchase an airline ticket, and if so, which ticket to purchase. They select which 
available ticket they will purchase, based on a cost- and inconvenience-minimizing utility function, with 
some degree of randomness. We assume that customer agents might be strongly influenced by other 
factors, such as loyalty programs, and therefore with some probability, do not strictly maximize utility 
decisions. After selecting airline tickets, the role of the customer agents in the model has been satisfied. 

3.3 Model Temporal Scale 

The spatial scale of the model is limited to the measure of great circle distances between origin and 
destination points in nautical miles, which is used for calculating fuel burn, travel duration, and operating 
costs. 
 Temporal scales in the model are dimensionless; explicit representation of a fixed time unit for each 
simulation cycle is not specified. Each iteration of AIRLINE-EVOS is reflective of an adaptive process in 
which airlines will assess their performance and make appropriate strategic changes to their airfare 
pricing and schedules in response to changes in the competitive environment. Competing airlines also 
make adjustments, to the effect that when they are responding to customer demand patterns, they are also 
responding to the competitive actions of other airlines. In an iterative way, the market is reengaged by all 
airlines after any changes, and the airlines determine success or failure of those changes with respect to 
profitability. The outcome of this assessment influences subsequent strategy decisions by the airline. Each 
learning iteration loop is considered the next available time for the airline to publish and implement a 
flight schedule change; it is not a specified increment of time. It is also assumed that all learning iterations 
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and the resulting model outcomes for experiment scenarios are within context of the same seasonal period 
of the starting schedule. 

3.4 Process Overview and Scheduling 

The following conceptual diagram in Figure 2, shows the mechanics, and related inputs and outputs for 
the AIRLINE-EVOS model. 

 

 

Figure 2: Conceptual model diagram for AIRLINE-EVOS. 

Following the outline in Figure 2, a customer agent population is generated for each O-D pair based on 
market elasticity assumptions, calibrated (Kumar et al. 2015) to historical ticket sales data (Department of 
Transportation 2015), and to experiment scenario results from the Transportation Systems Analysis 
Model (TSAM) (Baik and Trani 2005), a national demand forecasting model. This results in a calibrated 
WTP for each customer. Customers are also assigned other attributes based on demographics from 
TSAM, and other assumptions such as how far in advance the purchase is from the flight departure date. 
 An airline agent population is also instantiated, based on predetermined representative airline 
business models. Each airline agent loads an initial flight schedule, aircraft equipment-related data, and 
fleet allocation assignments. Calibration of AIRLINE-EVOS to TSAM also updates an airline’s base 
market price. 
 AIRLINE-EVOS at a high-level, performs two functions in which (1) airlines sell tickets to 
customers, and (2) airlines conduct strategic behaviors to improve profits. 
  Airline Ticket Buy/Sell Process:  Airlines generate feasible customer itineraries from their initial 

airline schedules, and price those itineraries according to their own airline-specific costs, and the 
base airfares for a given market. These priced itineraries are offered to individual customers. 
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Customer agents are ordered by their advance purchase time, with earlier purchase dates getting 
first choice of tickets. Customer agents make a utility maximizing choice—with some 
accommodation for irrationality—to determine which airline ticket to purchase, considering only 
those tickets under their own WTP. Tickets are sold one at a time, and as tickets are sold, airlines 
track their seat inventory and profits. Airfares are tactically adjusted with each ticket transaction, 
until all customers are served.  Airline Strategic Actions:  After all customer agents have made their selection, airline agents 
assess their current operational and financial state. Given strategic behavior rule-sets that consider 
individual markets, airlines initiate or respond to competitive actions or adopt a different 
economic operating point, represented by a base starting airfare in that market. Equipage 
decisions for new technology are also made at this point in the AIRLINE-EVOS process. These 
strategies are applied in a sequential order—based on SME input—and include (1) market base 
airfare adjustment, (2) network modification, (3) departure time modification, and 
(4) equipment/gauge swapping. For each type of airline strategy implemented, a feedback loop is 
executed in which the same customer agent population is reengaged to consider the resulting new 
set of itinerary and airfare options. This is representative of an airline trying to improve its 
performance by testing new schedule and airfare strategies at the next available incremental 
schedule change opportunity. It is a “learning” process, repeated until some convergence or 
modeling threshold is reached. These strategies are all part of a single iteration of AIRLINE-
EVOS. Using the ATS-EVOS framework, AIRLINE-EVOS can then take in as inputs ATS-wide 
impacts as a results of AIRLINE-EVOS outputs in the previous cycle. The end results is multiple 
iterations of AIRLINE-EVOS within each iteration of ATS-EVOS. These nested iterations of 
AIRLINE-EVOS helps facilitate a convergence of strategic decision outcomes and further 
mitigate any undesirable effects due to the specific ordering of strategies. 

 
 AIRLINE-EVOS results in four generalized outputs. The primary output is an adjusted flight 
schedule; all the model interactions between customers, airlines, and the system result in a modified flight 
schedule that may then be input into an ATS-wide simulation as part of the larger ATS-EVOS 
framework. The resulting flight schedule aggregates the adjusted flight schedules from all the modeled 
airline agents. The model also aggregates customer and airline data, tracking enplanements, revenues, 
costs, and profits. The resulting airline decisions for schedule and airfare pricing, along with the 
associated ATS-wide simulated impacts, are used as inputs into the next iteration of AIRLINE-EVOS, 
enabling an evolution of the system that accounts for learning from prior states. 

3.5 Customer Ticket Choice Utility Function 

AIRLINE-EVOS is a detailed model with a number of submodels that are used for the full range of agent 
behaviors from ticket choice to airline strategic decisions and assessment of financial performance. One 
submodel that is worth discussing here, is the ticket purchasing utility function used by the customer 
agents, primarily because it is a significant driver for the results of our validation and proof-of-concept 
experiment described later in this paper. 

The process revolves around customers choosing the ticket that will minimize their disutility (i.e. 
maximize their utility), although they only consider a subset of tickets they have identified with airfare 
amounts below their WTP. Customers seek to balance airfare amount while also choosing an itinerary that 
offers the least inconvenience in terms of its total travel time and desired departure time. Given calculated 
utilities for all valid ticket options, customers determine if they will rationally choose the ticket that 
would best satisfy their utility and preferences, or whether they will instead irrationally choose an 
alternative with less than optimal utility. Irrational alternative choice probabilities are proportional to the 
distance (i.e., difference in utility) between the most preferable ticket and the worst alternative. 
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 For customers making rational ticket choices, each itinerary i is evaluated by a customer agent g, 
making a determination of the utility value Ugi, as given in (1). This formulation was adapted from 
research by Mavris and Garcia (2007), with our addition of a scaling term to allow for weighted customer 
travel preferences and also for the normalization among ticket options in the equation terms. 

 

ܷ ൌ െ߮ ቈܥǡିௗ ൬ ிிಾಿ൰  ܵ ቆ ܶ ൬ ி௬ுி௬ுಾಿ൰ቇ.      (1) 

 
This utility function is a function of the ticket’s associated airfare, the duration of travel associated 

with itinerary i, and the difference in the itinerary departure time from the desired departure time. The 
terms inside the brackets of the utility function account for the airfare and the duration of travel. The first 
set of these terms in the brackets, normalizes the fare Farei being evaluated against the lowest fare 
available for travel between the desired O-D pair, FareMINi. The airfare sensitivity coefficient Cg,o-d is 
specific to the traveler type of customer g and to the O-D market for itinerary i, and is a measure of the 
importance customer g places on fare in determining the best overall ticket. 
 The second set of terms inside the brackets, concerns the total duration of travel for itinerary i. Total 
travel duration FlyHri is normalized against the shortest travel duration of all itineraries of the tickets 
being considered, FlyHrMINi. The value of time coefficient Tg is specific to customer g and is estimated 
from the household income attribute assigned to the customer at instantiation. It reflects the importance 
customer g places upon total travel time in determining the best overall ticket. The S term is a scaling 
factor that equalizes the difference between the different units for price and duration used within the 
utility brackets. The outside term ĳgi acts as a penalty modifier in the calculation of itinerary disutility that 
accounts for any difference in desired arrival time and actual arrival time, used in the same way as Mavris 
and Garcia (2007). In general, the more the arrival time of i deviates from the desired arrival time of 
customer g, the harsher the penalty. 

4 MODEL VALIDATION 

A primary component of our validation efforts was quantitative, and the most accessible and relevant data 
we have for comparison in this respect, relates to airfares. The airfare database we have chosen to use is 
the BTS Airline Origin and Destination Survey (DB1B) (Department of Transportation 2015), which is a 
10-percent quarterly sample of all tickets sold by U.S. commercial airlines. The distribution of DB1B 
trends also provide a validation pattern for the entire ticket purchasing process, including how airlines 
price tickets and how customers, in turn, decide which tickets to buy, if at all. The validation of this 
overall process effectively validates AIRLINE-EVOS in its entirety, with respect to sufficiently capturing 
the complexity of the internal system mechanics to ultimately result in overall system outcomes that are 
representative of the real world. Figure 3 shows simulated results from AIRLINE-EVOS and its 
comparison to relevant DB1B results. 

We do not expect the comparison of results in Figure 3 to exactly match, because we are simulating 
only a single representative day and are modeling simplified airline behaviors that may not perfectly 
capture factors inherent in the DB1B data, including demand seasonality, detailed accounting for fare 
classes and airline yield management practices, and day-of-week pricing strategies. We do seek to use this 
validation pattern to help determine if our abstraction of airfare pricing logic, which considers only when 
only considering advance purchase day, load factor at time of purchase, market-specific base airfare as a 
result of customer WTP, and options for nonstop or a single connection itinerary, sufficiently captures the 
complexity of real-world pricing. Given these considerations, comparison of mean airfares in Figure 3 
suggests that AIRLINE-EVOS airfare pricing logic is fairly representative of the real world. Customer 
decisions about tickets to purchase are dependent on their price, thus validation of consumer choice—as 
observed by the comparison of distribution shape between AIRLINE-EVOS and DB1B—simultaneously 
offers concurrent validation for the ticket purchasing utility decisions of our customer agents. 
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Figure 3: Simulated airline airfares in comparison to empirical airfare data. 

5 PROOF-OF-CONCEPT EXPERIMENT 

We present here a proof-of-concept experiment and our results. This effort was to provide us confidence 
that our research approach and modeling framework, when used in rigorous analytical studies, would 
yield decision-quality results. These results however are not designed for, nor intended to directly inform 
policy decisions. Future analyses would follow a similar experimentation process but would require more 
complex and detailed experiment parameters.  
 The experiment we describe here is for assessing system impacts due to airline response to a notional 
carbon tax. There is an increasing recognition and acceptance of the fact that the environmental cost of 
growth and progress should be minimized where possible. One of the ways in which Governments across 
the world sharply reduce carbon emissions (i.e. environmental cost) is by imposing carbon tax. A carbon 
tax is an “upstream” tax on the carbon content of fossil fuels (coal, oil, and natural gas) and biofuels. We 
use an potential implementation of a carbon tax as the experiment scenario in which airlines must adapt 
their responses to the increase in operating costs. 
 This particular experiment was chosen for its potential demonstration for representative modeling of 
airline behaviors, in particular, adaptive response to conditions of higher operating costs. It is our opinion 
that demonstrating representative mechanics for associated behavioral responses and showing that 
emergent outcomes are plausible and reasonable, provides strong evidence that this model may be used 
for research into many topics of interest for NASA and the larger aviation research community. 

On the basis of our previous research in Horio et al. (2014) and input from industry subject-matter 
experts (SMEs) on the research team, the most likely real-world implementation of a carbon tax would be 
as a fuel surcharge. The objective of the tax would be to create an incentive for airlines to decrease their 
contribution to environmental pollution, or otherwise encourage airlines to burn less fuel. Technically, 
this would mean a fee levied on the amount that airlines consume. An equivalent yet much simpler 
implementation is to levy the additional cost on the fuel that airlines purchase. For our purposes, this is 
equivalent to an increase in fuel price. Airlines will pay their own normal fuel price, plus the additional 
amount levied by the civil aviation authority as a carbon tax. The policy also seeks to help prevent airline 
overscheduling behaviors by encouraging upgauging—the reallocation of equipment to use larger aircraft 
in profitable markets and better absorb operating costs—assuming that a larger aircraft requires less fuel 
per passenger mile. 
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 The experiment represents a simulation of the 2012 airline market and schedule in which the U.S. 
airline industry was operating. We model fuel price increases in AIRLINE-EVOS through the use of a 
price multiplier. Our experiments assume a notional carbon tax multiplier of 2.0, which, in effect, will 
maintain differentiated airline fuel prices due to hedging—the strategy by which airlines buy future fuel at 
current prices in the hopes of achieving a price advantage—but globally doubles all fuel unit costs for 
airlines in the model. The high tax amount is partly to help exaggerate outcomes and identify the extent to 
which changes in AIRLINE-EVOS are observed. This experiment will illustrate how airline agents sense 
revenue implications and adapt their pricing and scheduling responses to maintain profitability. 

6 RESULTS 

The carbon tax policy is designed to limit the environmental cost of growth in air travel demand by 
encouraging airlines to make “greener” business decisions. The ATS-EVOS modeling framework is 
designed to provide quantitative aid to decision makers/policymakers in understanding the effect of such a 
policy on the operators (airlines) and the users (customers). Parameter values should exist such that a 
carbon tax policy will force airlines to change their operations by modifying schedule or equipment 
assignments. The higher the carbon tax rate, the more airlines will change their operations. 
 Using our calibrated airline parameters for airfare pricing and customer WTP values, we simulated 
three iterations of AIRLINE-EVOS as part of the ATS-EVOS computational framework that integrated 
additional NASA simulation models. We used a baseline schedule that represented the year 2012. The 
computational cost for a full iteration of ATS-EVOS was such that we could only afford three iterations 
for this proof-of-concept. We ran the three iterations for a baseline case and for the carbon tax scenario; 
additional iterations were desired however our selected ATS-wide simulation component in the ATS-
EVOS loop had an extremely high computational cost and required 12+ hours per run for just that part of 
the simulation. We then explored the results for impacts of the policy on airfares. Figure 4 shows the 
resulting mean airfares for the system, along with how airfares changed with the implementation of the 
five strategies available to the airlines for adapting to system and operational changes. Figure 5 shows 
corresponding system enplanements—how many customers bought tickets and boarded an aircraft—for 
the baseline and carbon tax scenario. 
 

 
Figure 4: System Mean Airfares for 2012 Baseline and Carbon Tax Scenario. 

344



Horio, Kumar, and DeCicco 
 

 

  

Figure 5: shows enplanements for the system for both the baseline and experiment case. Results indicate 
that the carbon tax policy reduced the variation in results between iterations, and increased enplanements 
for the experiment case. Figure 2 shows that the system-wide airfare in the carbon tax case trended lower 
than in the baseline case, resulting in an increase in enplanements. 

 Each of the plots includes one line for each of the different ATS-EVOS iterations to provide insight 
into the evolution of the model. The x-axis categories represent our five airline behaviors for tactical and 
strategic response. These strategies were executed in sequential order, from left to right, thus reading the 
plot in that direction indicates model progress within an ATS-EVOS iteration, and reading the plot with 
comparison between the different ATS-EVOS iteration plot lines indicates model evolution over the 
ATS-EVOS iterations. One way of interpreting these plots is to observe the last data point for each 
iteration, because it represents the result of all strategies and learning for that iteration. Observing the last 
data point for the latest ATS-EVOS iteration—highlighted by a red data point and value label—is one 
way of interpreting the most emergent state for the simulated results. 

In this experiment, we observed that a carbon tax makes flights more expensive, and airline agents 
respond strategically to mitigate those penalties, adjusting their operations with respect to their schedule 
and base airfares at individual markets. As these mitigating strategies accumulate, the resulting emergent 
state is a reduction in airfares, which leads to an increase in enplanements. The overall reduction in 
airfares also makes connecting flights more attractive—as they are typically cheaper—so consumer 
choice shifts away from nonstop flights. Consequential impacts include an upward trend in system delays, 
potentially as a result of schedule adjustments, although the overall magnitude of the delay is negligible. 

As expected, the operational costs for the airlines increased significantly throughout the system. 
Profits correspondingly decreased significantly. Contributing to the loss in profits was an unexpected 
decrease in system-wide average airfares under the carbon tax policy, while at the same time costs were 
increasing. Further evidence of this needs to be corroborated in future research. 

While some of the results we’ve described above are logically consistent, such as lower airfares 
corresponding with higher enplanements, the overall results are counterintuitive. A carbon tax would 
increase airline costs, and when operating costs increase, real-world airlines typically (1) raise airfares 
and pass on costs to customers, causing a decrease in enplanements, and (2) cancel non-profitable flights, 
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or (3) a combination of both. This outcome has highlighted the need for some enhancements to our 
current model, to allow airline agents to act in more realistic ways in response to operational cost 
increases. Airlines in our model have variable schedule costs, but with a fixed minimum value—as a 
result of not being able currently to cancel flights or remove aircraft from service—and as a result, can 
only respond by working to aggressively try and sell more seats. Given the static nature of their WTP 
values, airlines are forced to drop airfares to capture as much revenue as possible to offset the operational 
cost increases imposed by the carbon tax. Future research may address these issues by providing airline 
agents with the strategic option to remove aircraft from service. These results, though counterintuitive, are 
explainable, reasonable, and provide a clear direction for future enhancements to our model. They also 
highlight the challenge in developing a proof of concept model of the commercial aviation system, which 
is complex enough to limit the usefulness of a simplified model. 

7 CONCLUSIONS 

To substantiate our research we conducted a set of proof-of-concept experiments for demonstrating the 
capability of our model and our research approach for assessing policies that balance ATS stakeholder 
utilities to achieve greater efficiency, robustness, and safety in the ATS. 
 Overall, the results of our final experiments showed only relatively small changes with respect to the 
baseline. These experiments were successful in that we demonstrated the ATS-EVOS approach and our 
AIRLINE-EVOS model of airline behavior as viable tools that can produce meaningful metrics for 
analyzing airline decisions and the consequences of those decisions. Our observed results, while modest, 
exhibit directional trends that seem to be reasonable, explainable, and representative of the real-world 
system. We also validated the results with our team of industry experts. The results from our experiments 
are not designed or intended to directly inform policy decisions. Future analyses would use the 
experimentation process outlined in this report but would require more complex and detailed experiment 
parameters, and some modeling enhancements. 

8 FUTURE RESEARCH 

Work is underway to address some of the shortcomings discussed in our results. We are exploring (1) the 
inclusion of strategies for removing a flight from service, (2) augmenting market-based WTPs to more 
accurately represent a carbon tax scenario, and (3) exploring preferential weights for ticket choice utility. 
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