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ABSTRACT

Agent-based models (ABMs) are ubiquitous in research and industry. Currently, simulating ABMs involves

at least some imperative (step-by-step) computer instructions. An alternative approach is declarative

programming, in which a set of requirements is described at a high level of abstraction. Here I present the a

fully declarative methodology for the automated construction of simulations for ABMs. In this framework,

called “Nanoverse,” logic for ABM simulations is encapsulated into predefined components. The user

specifies a set of requirements describing the desired functionality. Additionally, each component has a

set of consistency requirements. The framework iteratively seeks a simulation design that satisfies both

user and system requirements. This approach allows the user to omit most details from the simulation

specification, simplifying simulation design.

1 INTRODUCTION

1.1 The need for descriptive modeling

Agent-based models (ABMs) constitute one of the most widely used categories of simulation technology.

ABMs represent a system as an ensemble of autonomous actors (or “agents”). These agents interact with one

another according to predefined behaviors. The set of defined behaviors may be unique to each individual

agent, or common to a class of agents. ABMs are widely used for academic research in the fields of ecology,

epidemiology and social science (Eubank et al. 2004, Grimm et al. 2005, Gilbert 2008). Commercial and

governmental uses include business analytics, supply chain management, and civil and military planning

(Fox, Barbuceanu, and Teigen 2000, Cioppa et al. 2004, Delre et al. 2007, Zheng, Zhong, and Liu 2009).

ABMs provide a link between local and global dynamics. The modeler defines local interactions. As

these interactions play out, global patterns often become evident. ABMs can be used to predict large-

scale patterns based on smaller-scale processes. Conversely, by selecting rules that recapitulate observed

large-scale processes, modelers can make predictions about the underlying local interactions. In either

case, effective use of ABMs requires deep insight into the process at hand—a body of knowledge wholly

disjoint from the computer expertise required to actually build models. This challenge is exacerbated by

the introduction of spatial structure, where topological details can have major implications for emergent

behavior (Durrett and Levin 1994, Borenstein et al. 2013).

The predominant representation of ABMs outside of software is a standardized rubric of model features,

called the ‘Overview, Design concepts, and Details” (ODD) approach (Grimm et al. 2006). In an ODD

specification, agent-based models are described in terms of their structure and temporal dynamics. Notably,

computer logic is minimized in the ODD specification: the rubric focuses on what the model does, rather

than how a programmer chose to accomplish it. Simultaneously, there have been efforts to develop a
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logic-based framework for the general description of simulations (Guizzardi and Wagner 2010). Most

recently, software design patterns–standardized architectural units with commonly recognized names–have

been generalized to the domain of agent-based models for the purpose of standardizing ABM vocabulary

(Beck and Cunningham 1987, North and Macal 2011).

Here, I present the methodology behind a declarative ABM framework, Nanoverse, that is based on the

principle of description. Nanoverse is an open-source domain-specific language developed by this author,

with accessory components contributed by multiple individuals (see Acknowledgments). A companion

paper (under review) will present a case study for Nanoverse concerned with the microbial Type VI Secretion

system, a cell-to-cell weapon found in gram-negative bacteria. Additional details are also available at the

framework’s website (http://nanover.se/). This article is based on Chapter 4 of the author’s PhD thesis, and

draws heavily on that text (Borenstein 2015).

In existing approaches, model design is closely linked to simulation design. The model deals with

the properties of the agents and the world they occupy. When do they act? What information can they

incorporate into their choices? The simulation, on the other hand, is a computer program capable of

actualizing the model and integrating it over time (Miller and Page 2007). For the most part, existing tools

are simulation frameworks: it is up to the user to first envision a model and then articulate a process for

simulating it.

The key innovation behind Nanoverse is that it structures ABM implementation as a configuration

problem. Rather than specify step-by-step rules, the user imposes constraints (requirements) on the model.

The platform then uses this specification to find a configuration of predefined components that satisfies these

constraints. By replacing step-by-step (imperative) computer instructions with a (declarative) description

of a model’s properties, simulation design can be brought closer in line with the ways in which ABMs are

discussed.

1.2 Imperative approaches to ABM design

Simplifying ABM development has been the focus of much research and development. Much of this research

has focused on general-purpose software tools for spatially structured ABMs. Most ABM software tools

have introduced expressive computer languages (or language extensions) created for the specific purpose

of ABM simulation (Railsback, Lytinen, and Jackson 2006). By far the most successful project has been

NetLogo, which extends the educational programming language LOGO (Feurzeig, Papert, and Lawler 1969)

to a large library of agent-specific structures and actions. NetLogo (Wilensky 2004) has been widely adopted

in academic research, and remains popular after nearly two decades of continuous use. An extreme form

of this approach is purely visual programming, as in StarLogo TNG (Klopfer and Begel 2007) and Scratch

(Maloney et al. 2010). These K-12 educational tools make modeling easier by representing imperative

statements as visual blocks.

Paradoxically, the simplicity of these LOGO-derived tools means that complex models can be challenging

to express. Another tool, GAMA (Grignard et al. 2013) seeks to address some of these limitations by

providing straightforward facilities for GIS and multi-level models. GAMA utilizes a fluent, object-oriented

language called GAML. GAML automates many aspects of model design, but still requires the user to specify

and manipulate data structures. Frabjous, another ABM-specific language, overlays temporal tracking onto

the functional programming language Haskell to create a flow-based programming paradigm analogous to

that of commercial package Anylogic, discussed below (Schneider et al. 2012, Vendrov et al. 2014).

Other imperative tools for complex simulations include Java libraries such as MASON (Luke 2005)

and Repast (North et al. 2013). These tools each provide a powerful, object-oriented framework within

which to build and simulate ABMs atop a discrete-event scheduler. However, these tools require proficiency

with general-purpose programming languages such as Java (Gosling et al. 2013). Previously mentioned

AnyLogic uses a variety of UML-like charts to represent the states and actions of agents, which it then

translates to Java code (Borshchev, Karpov, and Kharitonov 2002). While highly accessible, this approach
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is essentially analogous to imperative programming since it requires the user to define a sequence of logical

actions and reactions.

1.3 A component-based architecture for ABMs

Many agent-based models can be simulated using a common set of strategies. NetLogo, GAMA, Repast

and StarLogo all provide an extensive library of common logical pieces; often the only programming task

is to unite these pieces in a manner appropriate to the model. Nanoverse extends this concept further,

by hierarchically building up components from a pool of subcomponents. By repeatedly applying this

idea, it is possible to define agent-based models from a relatively small body of simple units. Since all

imperative logic would be encapsulated in these units, the user’s task becomes one of describing conceptual

relationships, rather than computational tasks. This is the principle behind component-based (or “modular”)

software engineering (Bachmann et al. 2000, Reinhold 2014).

There is precedent for a component-based approach to simulation: SimKit provides a structure for

building and distributing reusable imperative blocks, which can then be composed programatically or

visually (Buss 2002, Buss and Sanchez 2002, Buss and Blais 2007).To the author’s knowledge, there has

been no effort to leverage the declarative nature of component-based software in order to present simulation

design as a configuration task. This approach opens up a wealth of existing strategies for simulation

implementation, as configuration problems are a cornerstone of knowledge engineering (Wielinga and

Schreiber 1997).

Configuration problems can be solved using constraint satisfaction approaches. In a constraint satisfaction

problem, a “solution” is any value which satisfies every specified constraint. The goal of a constraint-based

configuration scheme is to satisfy both the requirements imposed by the user and the requirements imposed

by the selected sub-components, given a set of available options.

A straightforward approach to constraint satisfaction is backtracking. In a backtracking algorithm,

solutions are tested sequentially against the first constraint, being globally eliminated if they violate it.

Once a solution is found, the algorithm recurs on the next constraint. If no solution satisfies a constraint,

it “backtracks” to the previous constraint, which resumes its search (Wielinga and Schreiber 1997). By

specifying a sequence of default subcomponents, the backtracking strategy is sufficient to configure a single

component of a simulation, such as a spatial structure. An entire simulation can be specified by nesting

constraint satisfaction problems together, in a strategy known as composite constraint satisfaction (CCS)

(Sabin and Freuder 1996). This approach has previously been used to automate other software configuration

tasks, such as the deployment of complex software systems (White et al. 2007). Constraint programming

is closely related to logic programming, for which backtracking is extensively employed. As such, logic

programming languages such as Prolog include features related to these approaches (Russell and Norvig

2009). Nanoverse draws on these techniques to create a declarative simulation environment layered atop

the Java virtual machine (Lindholm et al. 2013).

This paper describes part of an ongoing effort to create a constraint-driven, spatially explicit agent-

based modeling framework. This framework, called Nanoverse, is being prototyped in stages. The first

stage, a working mock-up of which is available online (http://nanover.se), is a component-based simulation

environment that is functionally similar to GAMA or MASON. This paper concerns the second stage of

the prototype, currently under development, consisting of a multi-stage compiler. The paper begins with

a brief synopsis of the runtime environment into which the compiler instantiates simulations. The second

part describes the architecture of the Nanoverse compilation pipeline.

2 RUNTIME SCHEME

The Nanoverse runtime consists of a network of loosely coupled components. The primary subsystems of

the runtime are a collection of topologies called “layers” and a discrete event scheduler (Fishman 2001).
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The layer encapsulates all topological information, and the schedule encapsulates all scheduling infor-

mation. Mutation of the simulation state is accomplished through scheduling events with a relative waiting

time, which is subsequently resolved by the schedule. Likewise, specific changes to the environment are

specified relative to a particular agent. As such, agents remain completely agnostic to the global state of

the simulation.

In order to accomplish this, events have callbacks that request specific changes to their locale. Agents

have a rule table mapping specific conditions to the triggering of certain events. When a simulation event

runs, it notifies the layer, which notifies all affected agents to consult their rule table. The simulation ends

when the event queue is depleted or another terminal condition is met. The loose coupling of simulation

components allows for the use of a constraints-based compiler system, which in turn allows us to move

away from imperative programming.

3 COMPILE SCHEME

3.1 Overview

The Nanoverse compiler prototype consists of a four-stage compilation pipeline, ultimately leading to a

discrete-event runtime for spatially explicit agent-based models (Fig. 1). The first stage of the pipeline is a

parser that interprets a hierarchical source code into an abstract syntax tree (AST). This abstract syntax tree

has no semantic information about the structure of an agent-based model; it reflects only the grammar of

the user’s specifications. The second stage uses a hierarchy of symbol tables to convert the abstract symbol

tree into a semantically rich hierarchy of “build nodes.” These build nodes roughly correspond to the Java

objects that will represent the simulation in memory. The third stage of the pipeline is the backtracking

constraint solver, which is used to interpolate unspecified properties of the simulation. This is done by

treating the user’s specifications as additional constraints on an ordered sequence of defaults, with over-

or underdefined specifications leading to an error. Finally, the completed build tree is visited breadth-first

in order to instantiate all nodes into Java objects. The top-level object then triggers the execution of the

simulation.

Nano-

syntax

Interpret

to AST

Translate

to build

hierarchy

Interpolate

unspecified

properties

Build and

link objects
Runtime

Figure 1: Nanoverse compilation pipeline

3.2 The Nanosyntax environment

The user writes Nanoverse model descriptions using a hierarchical grammar called “Nanosyntax.” Nanosyn-

tax was influenced by the JSON object specification, which is used to serialize data for transmission between

internet servers and clients (Crockford 2006).

Nanosyntax consists of three types of nodes: “primitives,” “references” and “assignments.” Primitives

are basic data types, such as numbers and strings. References specify an identifier or a block of identifiers.

Assigmments map an identifier to a reference. Additional structures are allowed for mathematical operations,

but these are converted internally to the other node types. These three elements are sufficient to specify an

arbitrary hierarchy of members in a concise and readily intelligible way.

Nanoverse project specifications consist of a nested ensemble of constraints, or explicit requirements

concerning the properties of the simulation. Any requirements left unspecified are subsequently interpolated

from a set of defaults to match the constraints that were specified.

Nanosyntax is fully declarative: the only purpose of the source code is to describe what should be done,

rather than how it should be implemented. The properties to be specified correspond directly to encapsulated

operational units, or components, of the simulation’s business logic. As a result of interpolation, Nanosyntax
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is also minimal: the source code contains only the requirements of interest to the user. The user can therefore

begin running simulations with very little code. By iteratively overriding defaults, the user can then build

up the behavior of the simulation until it reflects all desired functionality.

As an example, consider the “StupidModel” reference model developed by (Railsback, Lytinen, and

Jackson 2006). The first of 16 instances of the model consists of a population of 100 agents that diffuse

around a 100x100 rectangular lattice. The anticipated Nanosyntax for an even simpler model, which consists

of a single agent diffusing around a 32x32 rectangular lattice, is as follows:

initially:

scatter:

description:

Agent:

do: Behavior {

action: wander;

every: 1.0;

until: time >= 100.0;

};

The Nanosyntax representation of the model describes the entire system in a single statement block. Time

is specified in arbitrary units. Absent a specific geometry requirement, the system defaults to a 32x32

rectangular lattice with absorbing boundary conditions. Since the only action – diffusion, or wandering—is

encoded in the definition of the agent itself, there is no need to define a main loop. The wander operation

itself does have subcomponents dealing with destination selection and collision resolution, but these are

also handled with interpolated defaults. Specifying an alternative boundary condition, lattice geometry or

arena shape would take one additional line apiece.

Existing frameworks require far more code to accomplish the same goal. MASON and Repast both

require the user to define diffusion from first principles, instantiate a 2D arena, and place the agents using

a random number generator; moreover, all of this must be done in Java. NetLogo eliminates the need

for low-level programming, but still requires explicit instructions for each operation involved (Railsback,

Lytinen, and Jackson 2006). GAMA requires that the user first define a geometry and a neighborhood

structure, then the conditions for an ongoing behavior (or “reflex”) representing movement. The user then

defines a visual representation of the agent, and a display mode for the visual representation (Amouroux

2014). The GAMA approach is similar to that of Nanoverse, except that Nanoverse is designed to resolve

many of the specified details that are required in GAMA.

The Nanoverse compiler parses Nanosyntax using the parser generator ANTLR4 (Parr 2014). ANTLR4

generates a parse tree. The Nanoverse compiler then translates the Nanosyntax parse tree into an abstract

syntax tree (AST), an example of which is shown in Fig. 2. Nanoverse employs a heterogeneous AST:

different nodes are used for each of the three basic data types (Parr 2010). By distinguishing between data

types, the AST provides structural information that simplifies the next process in the pipeline: semantic

analysis.

3.3 Adding semantic information

After parsing user syntax, Nanoverse constructs a partial representation of model semantics (Fig. 3). This

partial semantic model, known as the “object node hierarchy” or “build hierarchy,” encodes all requirements

explicitly specified by the user. Nanoverse constructs this hierarchy through the use of a graph of symbol

tables.

At their most basic, symbol tables are mapping functions from a text symbol to some other value (Grune

et al. 2000). A compiler for an imperative language will typically create a single symbol table at each level
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ref: scatter

ref: initially

Figure 2: Top portion of an abstract syntax tree.

of contextual scope to associate identifiers with values (Cooper and Torczon 2011). Nanoverse symbols,

on the other hand, represent system components: i.e., loosely coupled subsystems that supply specific

functionality for the containing system, and which themselves depend on further subsystems (Bachmann

et al. 2000). As such, Nanoverse uses a symbol table for every component and component class.

To encode its rule base, the Nanoverse compiler constructs two classes of symbol tables: resolving

symbol tables (RSTs) and instantiable symbol tables (ISTs). RSTs narrow a particular identifier to a

specific subclass of an expected class. ISTs resolve the names of specific subsystems required to instantiate

an object of a specific class. Object translation proceeds by alternating between these two symbol table

classes.

After translation, the user’s requirements have been translated into a hierarchy of constraints. The

compiler must now determine whether and how a simulation can be instantiated from the user’s specifications.

The user’s constraints may be expressly incompatible, or they may imply further requirements that are

incompatible. In these cases, the model is overdetermined. On the other hand, the user may have omitted

required fields (i.e., fields with no default values). If this happens, the model is underdetermined. Assuming

neither an overdetermined nor underdetermined model, the compiler’s next task is to interpolate sufficient

constraints to fully determine the model’s configuration.

3.4 Interpolation and construction

Nanoverse organizes a simulation into a hierarchy of components. “Components” in Nanoverse are equivalent

to “primitives” in NetLogo or GAMA (Wilensky 2004, Grignard et al. 2013), except that most components

are not “primitive” in the sense of being discrete, atomic wholes. Rather, a Nanoverse component may

have an arbitrary number of subcomponents, which may likewise have subcomponents of their own.

Components are only loosely coupled to their subcomponents—often by a single method—facilitating

interchange. Interchangeable components are at the heart of the configuration-based approach.

The configuration of Nanoverse components is accomplished through the hierarchical solution of

local constraints. Each subcomponent has its own constraints. These constraints determine whether the

component is compatible with the existing partial configuration, and which subcomponents can be supplied

to it. Additionally, the subcomponents for a given component may depend on one another, and are thus

supplied as additional constraints on the subcomponent. Associated with each subcomponent is one or

more defaults, which are given in order of preference. Each default may imply its own set of constraints. If

the user has specified a particular value for a subcomponent, the specified subcomponent (and its implied

constraints) replaces the default list. Component configurations are then solved depth first until a total

solution has been found, or it is determined that no solution exists (Fig. 4).

In a constraint satisfaction problem, solutions are often obtained through a backtracking scheme. A

backtracking scheme consists of a recursive algorithm. Let v0, ...vi represent the values that must be

specified, and let Di represent the domain of solutions for vi. In addition, there exists a set C of constraints
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Figure 3: A flowchart representing the translation of an abstract syntax tree node to an object node.

on the solution set. The backtracker begins by seeking a value v0 = d0|d0 ∈ D0 that satisfies the relation

C∩ v0 = d0. If such a value is found, the algorithm recurs on v1,D1. For the nth recursion, the algorithm

seeks a value of vn = dn|dn ∈ Dn that satisfies C∩ (vk = dk∀k ≤ n). If this relation cannot be not satisfied,

the algorithm returns failure (Russell and Norvig 2009).

In Nanoverse, the constraints represent the specific requirements of particular subcomponents. The

constraint set C is therefore not globally constant. However, for any given component, the only constraint

is that all of its subcomponents are legal, given their dependencies. Thus, a subcomponent can verify

constraint satisfaction by verifying that all of its subcomponents can find legal instance values. For simple

subcomponents with only one possible default value, such a check is relatively straightfoward. More complex

subcomponents must perform their own interpolation step. This component-dependent interpolation step

is encapsulated in the “Valid?” decision node in Fig. 4.

Instantiation proceeds like interpolation. Each component has its own instantiation method, which

builds any helper objects as necessary. For the most part, these helper objects are themselves components,

albeit not user-specified ones. That is, they are only loosely coupled to the parent component, and they

are automatically configured based on the properties of the parent component. Helper components include

getters and setters from other runtime objects, which serve the same role as public method calls in traditional

APIs.
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Figure 4: Flowchart representing the constraint satisfaction process used to interpolate unspecified user

parameters.

4 CHALLENGES AND FUTURE DIRECTIONS

4.1 Engineering considerations

Component-based software design has been widely incorporated into many software platforms, most

recently in the form of Java’s “Project Jigsaw” (Bachmann et al. 2000, Reinhold 2014). Difficulty of

maintenance is a challenge that is common to all of these approaches (Weyuker 1998). Component-based

software essentially shifts some of the user’s responsibilities onto the developer. Rather than define logic,

the user builds pre-fabricated logical components into the desired configuration. The power and utility

of a component-based platform is therefore limited by the breadth and quality of these pre-fabricated

components. The developer must provide both the runtime logic and any steps required for the component

to compile.

In the case of Nanoverse, these steps include specifying acceptable sub-components and the order

of preference for those components. This implies a larger codebase than analogous, imperative systems.

Nanoverse is also fully declarative, unlike hybrid declarative-imperative languages like GAMA. As a fully

declarative language, the only possible business logic is that which is defined in an existing component.
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Many agent-based models share some similar ideas, especially in Nanoverse’s primary domain of spatially

explicit ABMs. Special cases abound, however, and new questions lead constantly to new model designs.

How can Nanoverse accommodate advanced use cases without complicating the simple ones? Perhaps the

most straightforward solution is to incorporate an imperative sub-language, which would be backed by

a simple interpreter. This would have the added benefit of allowing model changes on the fly, and even

self-modifying code, which can be used for evolutionary simulations.

Testing is another major challenge. It is often desirable to test a component both in isolation and in

its intended context. However, the number of possible contexts for any given component is limitless: as

user models (and the component library) grow, the same component can be nested deep in a hierarchy of

other parts. When the assumptions of components are in contradiction, unexpected behavior can result.

These risks can be managed through the judicious use of consistency checks, strong interface contracts,

and exhaustive unit testing (Crnkovic and Larsson 2002). More practically, cross-validation of benchmark

simulations against other simulation platforms can help to assure that Nanoverse’s behavior is consistent

with expectations.

4.2 Default generality

In the Nanoverse prototype, the only planned constraints have to do with logical compatibility. For example,

a spatially explicit model taking place in a hexagonal arena cannot employ a periodic boundary condition,

because two of the six sides would remain unmatched. Likewise, a rectangular lattice cannot employ a

hexagonal arena. This lowers the skill threshold required for use, but it does not handle another important

class of constraint: preventing the selection of many parameters that, while technically not in conflict, may

produce unexpected behavior.

There are many situations in which the user would expect different defaults based on his or her

selections, even if one default could technically satisfy all cases. This is particularly true for spatially

structured systems. Consider, for example, the resolution of collisions. What should happen if an agent

that is scheduled to move has no vacant space into which it can go? Different application areas will require

different answers. A good solution in a forest fire model (e.g., intensify the fire) is different from that of a

microbial model (push the existing occupant away). In a traffic simulation, meanwhile, opposite direction

movement could lead to many different interpretations and outcomes (Ljubović 2009).

The user must specify how to choose a destination, and, if collisions are possible, how to resolve them.

If the user specifies that destinations must include occupied locations, there must be a rule for resolving

a collision. That said, permitting occupied spaces is compatible with a resolution strategy of “throw an

error on collisions,” though this is unlikely to be desired. One approach to domain-specific defaults is the

ability to specify custom “default sets,” and to inherit these elements as domain-specific libraries.

5 CONCLUSION

The Nanoverse compiler has the potential to simplify the process of building agent-based models. This

greater ease can benefit both novice and experienced users: the user need not specify any parameters whose

defaults are satisfactory. With the introduction of component libraries and default sets, Nanoverse can also

function as a medium for the transmission of expert knowledge concerning model design: domain expertise

can be encoded into defaults and component behaviors, which can then be used by novice modelers. As

with many agent-based modeling platforms, the same approach can be used to simplify the design of

interactive systems, such as games.

The strict hierarchical structure of the Nanoverse language provides several benefits. The Nanoverse

compiler already exploits the most important of these: the availability of algorithms to interpolate missing

nodes. Hierarchies are also easy to visualize, e.g. using a zooming user interface (Bederson and Meyer

1998). The strict separation of concerns required for hierarchical design also simplifies compiler design,

which facilitates optimization of program flow. Finally, a component-based design results in a highly
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decoupled library of component symbol tables. These symbol tables can be used to generate documentation

for the Nanosyntax language automatically and as the language evolves.

The nanoverse compiler is under active development. The first goal is to port all runtime functionality

from the interpreted Nanoverse prototype, including modular topology and continuum-valued fields, to

the compiler-based edition. Following that, I plan to provide an automatic documentation system and

publish it to the Nanoverse website. Beyond that, I will focus on addressing the limitations of the language

by introducing user-defined variables, user-defined constraints and defaults, object orientation, and code

importation.
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