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ABSTRACT

Agentbasedsimulation (ABS) continues tgrow in popularityandin its fastexpanding applicatn in
various fields. Despite theincreased intereshiowever, a common protocol or standard curriculum for
development and analysis of ABS models hardly exisssoriginally discreteevent simulation (DES)
modelers, selfaught and still new to the world of ABS modeling, ngve occasionally observed a gap
between traditional simulationeébry and current practi@of ABS in the literatureThis points togreat
unevenness among existilyBS applications in terms of conceptnd demgn, quantitatve and
computational techniques used in analysis of modslsvell as domaispecific issuet differentfields.

In this paper, we review a number of important topics and issué® idesign and analysis of ABS
models that deservattention.Our discussion is supported by some illustrative examples from ABS
models of disease epidemics, big spplicable to a fairly general classA@S models.

1 INTRODUCTION

Many different modelscarry themoniker agentbased simulation(ABS) in different disciplines like
artificial intelligence, complexity science, game theory, Etowever, there is no universally accepted
definition for propertie®f an object to “deserve” the name of an “agdBrshchev and Filippov 2004)
and to distinguish the differences among so cafi®itro-,” “individual-based’ or “agentbased”
simulation models.n general, the distinguishing characteristicABS is based on decentralization of a
systeminto its constituentcomponentsand representing it through a collection of agents and their
environment.The behaviors are programmatithe individual level, andystem properties emerge from
constituentagent interactions with each other and the environment, rafsoredto as abottomup
modeling approach (Bonabeau 2002).

A recent sampling of agebaised modelinABM) found applications published in many disciplines
ranging from archaeology, biology and ecologupply chains, consumer market analysis, military
planning, and economid$ieath, Hill, and Ciarallo 20095everalindicators of the growing interest in
ABM include the number of conferences/workshops on the,ttigcgrowing number of peeeviewed
publications in disciplinespecific academic journals across a wide range of application anelds
modeling and simulation journalgs well asthe growing number oBimulationsoftware products
accommodating ABS modeling (Macal and North 2010).

Despte the substantial and growing interest in tigjse of modelingand the growing demand for
systematic instruction on how to develop and apply ABBhniquesa standard curriculum for teaching
ABS has not been establish&dhile there are many simulati courses antraining programs focused on
more traditional (historical) simulation paradigms sasBES orsystemdynamics (SD), only a fevull -
length courses exist on ABGiven the overlap between ABS atitbsesimulation techniqueshére is
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considerale interest inincorporatingABS into existing simulation course3he full extentof these
relationshipshoweverjs not well defined or fully understood, and many aspects of ABS differ from DES
and SD(Macal and North 2010 hese include wide array of applicatiodomainsthe disciplines and
diverse backgrounds of students working with ABS modaels, well asthe additional and inherent
complexity of ABS models that mestmore attention iraddressing issug®r design and analysisf
models.

ABS applications range acrogsry diverseields, and modelersften come to ABS by way of self
study or attendance at tutori@sshort coursg andwith a wide range of quantitative, programjrand
modeling skills(Macal and North 2010; Macal and North 2Q18) many applications, the process of
modeling and design is an &dcactivity, driven bythe modeler’s creativity and natural attittedeward
modeling. Moreover, there is a large discrepancy tire range of quantitative and computational
techniques used in analysis of ABS mod@s/en the short history oABS applicationsn many fields
thereis also a lack ofeporing standards in the literatyrespeially for description of methods particular
to these model¢Grimm et al. 2006) For example, a systematic review of individbaked HIV
transmission models suggesat substantial discrepancy among studies ingesfrproviding justification
for application of ABS to address quesBarf interest provided in 56% of papers), justification of
modeling assumptianfor choice ofthe simulation ime step (19% of papers) or methods of data
conversion (9.4% of papers), carryingt stochastic sensitivity analysis (46% of papers), discussion of
applied methods for model validation and implementation (3.1% of paperfAlmielezam, Rough, and
Seage 2013)Such discrepancfurther highlights the need for discussion of standardized protocols for
development and applicatigxBS models in various fields.

As originally DESmodelers, selfaughtand still new to the world of ABS modeling, weave
occasionally observed a gap between traditional simulation theorylynuzsteloped for DES) and
current practice of ABS models in the literaturbese include the lack of justification fanoosingABS
models over simpler modeling paradignasgeneral tendency for development of “realiStibeavily
detailed ABS models despithe tradeoff betweencomplexity of analysis and transparency of findjngs
modelers’personal internal assumpt®m@and mechanisms for agenbehavior and interactions without
explicit validation and consideration of alternativiestances oéxcessivelyparameterich ABS models
requiring specialized calibration techniques (not generally discussed ®mnidBels)unclear definition
of errors in ABS applications as relevant to different sources of modeistgkasvs. natural stochastic
uncertainties; ecific challenges faced in validation of ABS models due tw thelti-level structureas
well as further special issues in experimentation and sensitivitysisaf these model

In this paper, we review a number of important topics and issues igndasd analysis of ABS
models that deserve attentidWhile this is notintended to be survey ofall the available literature on
ABS modeling or existingnethods, our goal is to offer sorgeneral guidelineto modelers new tthe
ABS field (similar to ws8), and provide remindeis some important notiathat meritmore attentionln
the following sections, we revieand discusseveraltopics and issuefor design,parameterizatign
verification, validation and experimentation concernilfdyBS models.Our discussion is supported hy
few illustrative examples from ABS models of disease epidemics as relevant swea of expertise
While this is a small window intthe wide literatureof ABS applications, our discussion of modeling
strategies and analysis techniques is applicabldaiolya general class of ABS modeknd we encourage
readers to consider this discussion in their specfietds of interest.

2 DESIGN AND DEVELOPMENT OF THE MODEL

2.1  Choosingthe Right Modeling Paradigm and Abstraction L evel

The firsttaskin any modeling study is determining the modeling paradigstsuited for addressing the
research questioMhe discussion on the applicability of ABS. other modeling techniquetherefore
shouldfocus on the nature of the underlying research questions and eatevga as “a hammer looking
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for a nail” DES and SCare two widely-used modeling tools that aatiernatives to AB$Borshchev and
Filippov 2004).

SD nodels a system as a series of stocks and flows in which thelssaitges are continuous and the
model is essentially deterministibES, on the other hand, models systesnshas networks of queues
and activities, where state changes in the system occur at discreteipdinte and may affect the
system stateDespitemajor differences in terms of structure and design, both SD and DES follow a top
down modeling approach inepresentinga system through a global influence diagram or system
flowchart, and offer very low flexibility for incorporating inddual levels of behaviorand micre
dynamics.

In the context of infectioudisease epidemic modelingr example such micredynamics can relate
to human behavior as relevant ttarsmission of the disease (e.g., role of sexual contact networks in
transmission of HIV(Latora et al. 2006) population mobility patterneelevantto spatial distritition of
thedisease (e.g., role dieair-transportation networkidiffusion of pandemic flu (Epstein et al. 2007)
population heterogeneity relevant to progression and contrtiieadisease(e.g., role of the patient’s
adherence to medical treatment outcorfigisnatteo et al. 2002) etc.In such contexts, BS offers the
most natural way for describing the underlying social/epidemiologictrayand provides #exible and
powerful platform for modeling various healthcare interventions amdbressing a wide array of
policymaking questions. The decentralized bottgrapproach enables the modétedesribe a system
from the perspective of its constituent units (agents such as (a) people, (b) pathogens like bacteria,
or (c) carriers like dengue mosquitoes), and simulate the behavior of the system through their
interactions with each other (e.g., contacts and transmission) as well as their environment (e.g.,
seasonal migration patterns), capturing emergent disease-diffusion patterns through time and
space as the simulation runs. Moreover, the multi-level nature of such models enables explicit
definition of various interventions at the individual level (e.g., TB (tuberculosis) contact-tracing
programs) and at the population level (e.g., mass vaccination programs), and provides a powerful
experimental platform to study the system’s behavior and predict future trends. On the other hand,
while ABS models provide more realisticrepresentatiorof the systems angopulationunder studythe
realism is notan inherent virtue in and of itselindit comes at the price of additional complexity in
developmentand analysis ofsuch models. Thiscomplexity is beneficialonly if it leads to an
improvement in the accuracyawalidity of the models predictions as relevant to the goaf the study.
Therefore, it's important alwayso begin with simpler modeling alternativeand move to more
complicated method®nly as warranted bythe problem.For examplethe analyst might stamith a
simple spreadsheeinodel and extend to include additional features of the systemtil the model
appears to be inadequate, déimein change to another appro#éSkebers et al. 2010)

Once the simulation paradigmdhosenthenextstep asin any modeling practices designing the
underlying structure of the model, usually referred ta asnceptual modelThis provides the blygrint
of themodel’s main components and boundari@sspite the simple definitiothe decision on scope and
boundary of a model, and specifically whetel of detailto include or leave behind, can prove difficult
in reality. Especiallyin the case of ABS, the bottomp modeling approach provides high flexibility for
modeling various aspects of the system and its components at severmltteygbvide “realistic”
representations agality. In choosing the right level of abstraction, the modeler should note thaathe m
purpose of modeling is nt provide the most elaborater most detailedor even elegant) representation
of a system, butatherto serve as a tool for addressing specific questions of int€hesefore we should
start with the simplest form anthcludethose and only those details that are essential to answering the
question of interesbor in other words rhake things as simple as possible but no sirhbdtributed to
Albert Einstein)

An example of such issuestine context of epidemic control can foeind by comparingmodels to
study TB contact tracingranging from simplified global mathematical modéts detailed simulation
models of transmission (Begun et al. 2018h example is an ag®ructurel, socieademographic,
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individual-based modetapturing patterns of TB transmission in households, schools and wekplac
(Guzzetta et al. 2011puch model®ffer a realistic view of TB transmission in real social settjragml
also offer the advantagesrfexplicit modeling of contact tracing at an individual lews opposed to a
single global parameter change in aggregate mathematical mddethe absence of specific data on
household or workplace transmission rates, however, this extra detatitancertainty to the results
and in turn require further assumptions for calibratiothefmodel. Complexnodels that are excessively
detailed can make unreasonable demands on specifyingeatked#fistic input parameterprobability
distributions, and stochastic input processes (e.g., NSPRsgokkr, theycan also be a barrier to
translating findings into practice, since they are hard to explain aredceanputational demands thainc
limit analysis Thereforeat present it is not clear that ldevel, excessively detailetepresentationare
alwaysbeneficial to the assessment of contact tra@nd superior teimplermodels (Begun et al. 2013).

2.2 Choosing the Right Mechanismsfor Agent Interactions

A common problem in modeling complex systems involving human behavior is identifyidghan
conceptualizing, the underlying meckams forthe humanagens’ behavios and interactionswhile one
aims to develop a repmstative model of realitybelievaility is not the main concerhis allows
modelers to reduce system complexity by making simplifying assumptidinsiatividual (and system
level torepresent the local dynamics aabid unnecessary complicatiot@Given the (often) incomplete
knowledge of systems, evaluating the impact of such simplifying assumptfomabresultss important.

For example Rahmandad and Sterman (2088)dy the role of network structure and population
heterogeneity on predictiorfsom an individuatbased model of disease transmissibhey design a
controlled set of experiments using models with various configusatibthe network (e.g., ranam,
smallworld, scalefree) and population heterogeneity (e.g., degree of attendarm) results suggest
that while all models are calibrated tbhe same aggregate measures terms ofthe epidemic basic
reproduction numbeR,), the underlying straare for social norms can have a significant impacthen
model’'s predictionsNow if the goal ofthe study is to map the shetgrm pattera of transmission, such
impact maybe of essential influenceélowever, inthe context of healthcare policymaking, as considered
by theseauthors, subtle changes may not have a significant effetieofinal decisionsand simple
models withcoarsergrainedrepresentations mawg factlead toequivalentlyproper results.

In dealing with uncertain mechanismtherefore, the modeler shoulduse cautionin making
simplifying assumptions regarding the mechanicsthe system and consider various alternative
approaches for modeling local dynami@ood practice is to check the sensiyi of the final resuls to
alternative approaches.

3 PARAMETERIZATION AND CALIBRATION

Parameterizatiors an important issue ithe development of any simulation model, aggpeciallyABS
models due to the multi-level structureand often parameteich nature The appropriatenumbersof
parameters and variables depend on the gahkaihodel, and théegree of realism and accuracy needed
This include both the ategoriesof socalledfixed (given or exogenous) parameters that caedtimated
from available data ogleaned fromthe literature (as deterministic values, stochastic distributipns
dynamic functions as well agree (experimental or variable) parameters that are unknown due to lack of
relevant datdor fitting or theér modelspecific definitions (hat don't directly correspond to dataln
general, including meaningful parameters that can be directly iatedband understood is favored over
“fitted” parametergHelbing and Balietti 2013 This improves the readability of the code and aidhe
calibration procedure.

The smulation literaturehas long discusseigchniques forcalibrationof fixed parameters in DES
models(Law and Kelton 2000; Henderson and Nelson 20863 covers various topics choosinghe
appropriate formestimating,and assessing the goodness of fit, whichadirapplicableas well to ABS
models.Other sources discuss various methods for calibration of free parametensilation models via
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aggregate model outcomes (exampledude several heuristic algorithmgFabretti 2012; Read et al.
2013) andBayesian techniqgug&ennedy and O’Hagan 200Q1)n general, modelwith better predictive
power (evaluate using separate data nosed inthe calibration) are favored over those with better
descriptive powerFinally, givencomparable predictive power, the model of simpler form with more
analytical tractability is favorefthe principle of Occam’sazor).

In the case of ABS models, calibration may prove more challen@mm, Kim, and Rilett2005).
ABS models usually involve multicale parameters defined at a local level but entailing emergent global
impact on system behavior (e.g., as seen in ragknt simulation models of society wheme agent's
individual behaviordhavefurther impact orthe group’s interactions and population outcan(Eehler,
Kligl, and Puppe 200h)Such models would therefore require a migiiel approachio calibration of
their parameters Existing approaches are dividedtantwo categoriesFirst are secalled blackbox
approaches, obtaining and using an approximate relationship between inputt@utdvariables of the
simulation for determiimg the“optimal” input settingExamples includgradientbased search methods,
stochastieapproximation methods, samgdath optimization, responseirface optimization and
heuristicsearch methodsA main dawback fom this approach for ABS modeis that no knowledge
about the internal structure and the parameter dependencies of the simulatioisasddiThe second
category includeso-calledwhiteboxcalibration methosl thatexplicitly use model knowtige to enhare
the calibration procesi this approachthe structural properties of the simulation model and knowledge
about dependencies between the parameters that are to be calibrated isdexploiteluce the
configuration search spacte compleity of parameter dependencieand consequentlydecrease the
computational cost of parameter configurasi@nd evaluatioiiFehler, Kligl, and Puppe 2005Jhe®
methods entaiseveral rounsl of model decomposition into hierarchicalstructure,thus reducing the
parameter spader each submodel and shorter simulation runs due to reduced internal simulation times

An example othe hierarchical calibration method can be foundhework of Guzzetta et al2011)
in developing an agstructured, socidemographic, individual-ls&d model (IBM) with a realistic, tirme
evolving structure of preferential contacts in a populatifter estimating the fixed model parameters
from the literature, théBM model is still left withseveral variables where no informatisnavailable
from the literatureto determine their valueand the parameters are left free to vary over a range during
the calibration procedureThe cetailed IBM modelis computationally intensive and intrinsically
stochasticMultiple independentealizationg(i.e., repications)of the model with the same parameter set
are required to obtain stabbnd preciseresultsin the presence of thismandom variability, andan
exhaustivesearch of the parameter space with regard to values of all unkpammeters seven
paranetes) is infeasibleInstead, the authors use a hierarchical calibration procet@nother sub
model as a special casetbk full IBM model with a simpler form (no social structure) to reduce the
parameter spacStarting with a globdhtin hypercube samplind.KiS) of all parameters in the simplified
submodel, they narrow the search ttee vicinity of the besfitted parameter set, and center the local
search forthe remaining IBM parameters around this poifihe ranges of free parameters in thealo
search are reduced, based on indications fromfittasg simulations in the global sear¢Buzzetta et al.
2011)

4 MANAGING THE ERRORS: VERIFICATION AND VALIDATION

No measurement of a physical quantity can be entirely acciwaggperimental measurements, the term
“error” usuallyconnoteghe differences of the measured value from the true valoe “uncertainty” can
be defined as an estimate of the effdoleman and Steele 198®) the context of simulation modeling
and ABS, the term “error” has wide implication for addressing the diffesemetween simulation
outcomesand the real phenomena of intereSuch differaces, however, entail a wide array of
“uncertainties” and “modeling mistakes” that should be assessed separately.

Uncertainty involved in mathematical/computational models and expedmemasurements can
occur in different context&ennedy and O’Hgan. 2001) This includesparameter uncertaintyhat is

187



Kasaie and Kelton

implied by inclusion of free parameters withalues that areinknownto the modelerparametric
variability that is caused by fixed parameteraastochastic natur@lgorithm uncertaintyassociatd with
numerical errors and numerical approximationsthe implementation of the computerode (e.g.,
numerical integration andnfinite-sum truncation that are necessary approximations in numerical
implementatios), as well asstructural uncertainty(or model inadequacy) associated with lack of
knowledge of the true underlying physics of a system (e.g., igaéefinitions and behavioral rules
governing their interactions)n contrast, the term “error” is interchangeably used to refer to a separate
class ofactualmodeling mistakes associated with simulation applicati8osh mistakes are defined as
recognizable deficiencies in any phase of modeling and simulation that angertotldck of knowledge

and can be recognized upon examination of thdedn general these entaicompilationerrors that
prevent theprogram from running, e.g., misspelling commandssyntactical errorge.g., ‘if” without

“end if"), run-time errorsthat occumwhile the model is running due tee occurrence of some impossible
operations €.g., an unseen division by, @&s well adogical errors that prevent the program from doing
whatwasintend by the modeler.

Existing methods for dealing witinodeling mistakes and uncertainties are knowwegification and
validation (V&V) methods. Mdel verification aims to ensure that@mputer model/codis carryingout
operations in the way thalhe conceptuaimodel intendsThere are several techniques for debugging,
testing and verifying computer prograniscluding, but not limited to, using interactive debuggers to
trace compilation errors, watkrough andlogic-flow diagrams, face validity to control and reduce
compilation error, extreme conditions for fime errorsandaligning with known scenarios for logical
errors(Balci 1995).Simulation validation, on the other hand, aims to ensure thabtieeptuamodel is
consistent witlthereal phenomena of intere3the term validation is used in association vehpirical
validation or statistical validatioooncerning the consistency of simulation output with-vezdd data
conceptuaimodel validation or operational validatiotoncerning the consistency of concepts and
simulated logic with system theories, structural validation or procesdatiah concerning the
consistency of mael assumptions with how the system operates and is physically arratgedach
including several methods for addressing various sources of unceitaioltyed in simulation modelas
mentioned abovéBalci 1994; Tesfatsion 2015; Kleijnen 1995)

Despite the availability of several methods, validation (ensuring thabtieeptual model accurately
represents the reality being modeled)n proveto be a difficult task for ABS modelgKlugl 2008;
Bharathy and Silverman 2010; Yilmaz 2008jnpirical or statistial validation is possiblenly if output
measure can be found that are able to describe the system appropradipnly if such measures are
available not only from the simulation but also from the-vealld systemSuch descriptors can be often
easily foundat aggregate levels (e.ghe number of people developing TB infection over time), but
they're not trivial at the agentlevel, as individual behavior characteristics are hard to capture in a
reasonable way (e.g., describing individual contact patteith other community members throughout a
day). Moreover, ABSmodelsare especially apt for studying transient dynamics and answeragjions
concerning the dynamics and interactions that may or may not lead to anriemaitb steady statge.g.,
models of an Ebola outbreak Furthermore, whilemost validation techniqgues make an implicit
assumptiorthat the steady state of theystemis what's of interestand focus on mean behaviors, the
model dynamics resulting in those behaviors must be validated adnalicha case,using procedures
for time-series validation may be useftlbbwever, accessing usefaalworld time-series data can prove
to be difficult for most applications of ABS models addition, further complications can arise due to
nondinear effects of parameter changes in ABS et®ths in many other modeling paradigms), resulting
in chaotic effects on simulation outputSuch chaotic behavior is hard to validate sims@imal
imprecisionin the initial conditions majeadto completely different outputs.

In addition the multilevel property ofABS modes requires a multlevel V&V approach, in which
not only inputoutput relations have to be compared for the overall systenv,&\tprocedures have to
be performedas wellfor additional sukensembles of agents or paktmodels, down to single agents
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Potential drawbacks from this approach include the large time/effariremgent for performing the task,
and most importantly, unavailability of necessary data for empiridiglati@mn of model behavior on all
levels

In the context of disease simulation, an example can be fouhe development and calibration of
the EpiSims model, a stochastic ABS model ochirborneinfections (such as pandemic influenza or
smallpox) in a massive synthetic populatiorite# U.S.(Del Valle et al. 206). In the absence of explicit
contactnetwork data for sucta population, themodelersuse a complex transportation network to
characterize agentamovemend and determine their locatisnat each pointin time (using US.
Departmenof Transportation information), and genersyathetic contact netwoskrom the interactions
of the agents and their locatioihe resulting dynamic bipartite graph is consequently used to simulate
thedisease spreadhe fidelity of sucha model theredre relies in part on the credibility tfe underlying
artificial society and synthetic social netwarkaie totheinherent complexity, all model components are
separately developed amitially validated with regard ttheirlogic (e.g.,calibratingthe rules governing
anindividual's activity sheduleagainst available househdl@dnspirationsurvey$, and parameterization
(e.g, calibrating dailywork-schedule parameteusingavailable census data on average worker density in
the workplace) Thevalidated units are consequentlyified, and the model isalibratedagainst global
measurs of theepidemicsuch as temporaisease incidence patteri&roud et al. 2007).

Finally, a potential domain of error iassessinghe validity of ABS mode$ is due to “over
parameterizatia’ of these models causing an “impossitaésificationi’ effect (Klugl 2008) If the model
contains too many degrees of freedom, an automatic optimizing calibration peeéltlatways be able
to fit the model to the data— thus empirical validéon is not sufficient.So calibration shares some
common aspects with V&V in terms of operational procedures in accdnmglisoth Howeverwhereas
calibration pertains primarily to the modaputs V&V is rather concerned with the modalitputs in
particular how closely these outputs align with corresponding metrics kamt&ealworld systems.

5 EXPERIMENTATION

Once the model is verified and validatédcan be usedas a tool for addrestg a wide variety of
guestions relevant to project gealn the context of epidemic ABS models, this can include quastion
regarding future predictions of epidemic growth under various scensttiolying the impact of specific
healthcare interventions on future trené$¢ The moded can becoupled with optimunseeking
strategies to address more advanced questions such as epidemic resource allgcatiest(allocation

of alimited budget among alternative healthcare interventions to control ittengp(Kasaie and Kelton
2013b; Kasaie and Kelton 2013&)oreover as with any modeling practice, a typical goal is to study the
sensitivity of results with regard tthanges innput parameters and assumptions implemented in the
model.

In practice, most simulation analysts often uséhia-or-miss” method for experimentinwith
simulation models in which they simply try a number of system configustunsystematically and
observe the resulting behaviohs sucha case, a thorough deduction is possiié througha complete
exhaustiorof all possibilities, which can be tirmnsumingor actually impossible in any practical sense
in many settingsAn alternativeis applicationof statistical experimenttalesigns. &tistical design of
(simulation) experiments (DOE) is a systematic approach for designingsdicaliyi valid experimental
strategyto obtain the required information (fansweing the question of interest) withe least amount
of simulating(minimal effort) DOE has a weltleveloped acceptance and track record of sadoeES
models(Kleijnen 2008; Sanchez and Wan 20@9)d someapplicationsof ABS modelsin the military
(Lucas et al. 2003put could be used to great advantage in other application areas ofnaB®Bly
epidemiology (Wu et al. 2013; Blower and Dowlatabadi 1994).

DOE is ahighly useful technique in the context of ABS models that can be used to uncovisr deta
about model behavior, assess the relative importance of inputs, provide a commadorbdiscussing
simulation results, and identify problems in the program Idiieijnen et al. 2003)Due to some
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fundamental differences between assumptions made conventionally in D@B&ndodels, however, a
straightforward application of DOE to ABS models may not always be ajgfBanchez and Lucas
2002). For exampletraditional DOE assumptions involve only one response variable, whereas agent
based modsltypicallyinclude many performance measures of inteidsvertheless, gication of DOE
can still provide useful information about model behavior that wouldadnown without DOE (e.g.,
with respect to the identificatiorf tactor interaction effects).

Sanchez and Luca2q02 discussvarious approaches for more effidepplication of DOE to ABS
models includinguse of more effective measar®r data collection using various statistical designs to
sample the parameter space efficienflytypical issue in analysis dhe effect ofinput parameters in
ABS models iscaused by the large number of free pararseger that the search spaces that have to be
searched by the calibration algorithms is often so big that they cannot be seadchestively inany
reasonablemount of timgFehler, Kligl, and Puppe 200%)HS is a statistical method for generating a
sample of plausible collections of parameter value from a -gintinsional distributiorand provides an
efficient approach for sampling large parameter spagesther important issue in application of DOE to
ABS is regarding thehoice of factottevels: for example, if a narrow range of change is imposed on an
important factor, but a wide range on an unimportant factor, then the lattier ajopearbe more
important than the formgHappe 2005)Moreover thee is anemphasion application ovisual guides
for gaining insight into the oreay relationships as well as internal interactiohvarious factors, such
as regressiotrees 3-dimensionasurface plots, neural networlec.

Therearefurther important considerations for treating stochastic simulation Ismou#uding, but not
limited to, choice ofthe simulation timescale forterminating vs. steadstate goalsfollowed by
specification oftransient/warmup/run-lengtperiod (inthe case ofa steadystategoal), choice ofthe
number ofsimulationreplications driven by precision requiremefds outputs use of multiple ranking
andselection statistical toof®r selection of best options from a finite set of alternatives, applicafio
variancereduction techniques for improving precisi@ptimumseeking via metaheuristic approaches
etc Such DESmature ideasaddress fundamental aspects edfperimentation withany stochastic
simulation model and therefore are necessaoyt notnecessarily sufficientto applications of ABS
models.

Finally, one should note the application of various heuristic techniques (e.g., genetithiaig
evolutionary algorithmssimulatedannealing) as efficient alternatives to claskimethods for calibration
or optimization of simulation models. In such applicatioihgre is aradeoff between the optimality,
completeness, and accuracy of resukisexecution time which can still favor application of these
heuristicmethods.

6 CONCLUSIONS

ABS is a relativelynovel simulation technique thegt growingin popularity and number of applications
across diverséelds. Following a bottorrup modeling approach, ABS provides a flexible and powerful
tool for modeling complex systenec®@mposedf many interacting componentsuch as those involving
human behaviorDue toits comparativelyshorthistory and lack ofa standardized educationadradigm
there is a wide discrepanay design andespecially experimentation and analysis ABS models.
Focusing on applications to infectiodssease epidemic modelingeliterature contains several instances
of ABS exercisedacking thebasic practices familian a DES-mature audience.

In this paper, we provided a shaliscussionof some important notions concernidgsign and
analysisin ABS studiesthat may serve as a guideline for simulation modelers new to YABSliscussed
issues inthe design and developmewtf ABS models for appropriate choice of modeling paradigm,
abstradbn levek, and internal mechanisms used to describe agents’ behavior and interadteons
highlighted the important issue parameterization for detailed ABS modeafien requiring specialized
calibration method$or reducing the dimension or size oktparameter spac&Vith regard to various
sources of error, we discussed methodgeoffication for addressing modeling mistakes, and provided a
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short discussion of hierarchicahlidationtechniques applicable to ABS moddksnally, we surveyed a
few important notions for experimentation with ABS modadthg DOE and LHS for efficient analysis of
parameterich models, as well as further important considerationshi®choice ofthe simulation time
scale,number ofreplications, variance reduction, ee providecexamples oABS models ofnfectious
disease epidemics, as relevanbtmarea of expertisdyut the discussion iglevantto thegeneral class of
ABS models and applications in other fields.

We don'’t pretend to have provided here anything like a comprehensive |gesatuey or a complete
prescription for best practices in ABS projects. But our hope is that ABSlenedboth new and
seasoned alike, might take away from this paper somedevatons and suggestions that could improve
their modeling design arghrameterizationvV&V, as well as design and analysis of the experiments to be
carried out using their models as testbeds, to the end of making bettenmdecisio
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