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ABSTRACT 

Agent-based simulation (ABS) continues to grow in popularity and in its fast-expanding application in 
various fields. Despite the increased interest, however, a common protocol or standard curriculum for 
development and analysis of ABS models hardly exists. As originally discrete-event simulation (DES) 
modelers, self-taught and still new to the world of ABS modeling, we have occasionally observed a gap 
between traditional simulation theory and current practices of ABS in the literature. This points to great 
unevenness among existing ABS applications in terms of concepts and design, quantitative and 
computational techniques used in analysis of models, as well as domain-specific issues in different fields. 
In this paper, we review a number of important topics and issues in the design and analysis of ABS 
models that deserve attention. Our discussion is supported by some illustrative examples from ABS 
models of disease epidemics, but it’ s applicable to a fairly general class of ABS models. 

1 INTRODUCTION 

Many different models carry the moniker agent-based simulation (ABS) in different disciplines like 
artificial intelligence, complexity science, game theory, etc. However, there is no universally accepted 
definition for properties of an object to “deserve” the name of an “agent” (Borshchev and Filippov 2004), 
and to distinguish the differences among so called “micro-,” “individual-based,” or “agent-based” 
simulation models. In general, the distinguishing characteristic of ABS is based on decentralization of a 
system into its constituent components, and representing it through a collection of agents and their 
environment. The behaviors are programmed at the individual level, and system properties emerge from 
constituent agent interactions with each other and the environment, also referred to as a bottom-up 
modeling approach (Bonabeau 2002).  

A recent sampling of agent-based modeling (ABM) found applications published in many disciplines 
ranging from archaeology, biology and ecology, supply chains, consumer market analysis, military 
planning, and economics (Heath, Hill, and Ciarallo 2009). Several indicators of the growing interest in 
ABM include the number of conferences/workshops on the topic, the growing number of peer-reviewed 
publications in discipline-specific academic journals across a wide range of application areas and in 
modeling and simulation journals, as well as the growing number of simulation-software products 
accommodating ABS modeling (Macal and North 2010). 

Despite the substantial and growing interest in this type of modeling and the growing demand for 
systematic instruction on how to develop and apply ABM techniques, a standard curriculum for teaching 
ABS has not been established. While there are many simulation courses and training programs focused on 
more traditional (historical) simulation paradigms such as DES or system dynamics (SD), only a few full -
length courses exist on ABS. Given the overlap between ABS and these simulation techniques, there is 
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considerable interest in incorporating ABS into existing simulation courses. The full extent of these 
relationships, however, is not well defined or fully understood, and many aspects of ABS differ from DES 
and SD (Macal and North 2010). These include a wide array of application domains, the disciplines and 
diverse backgrounds of students working with ABS models, as well as the additional and inherent 
complexity of ABS models that merits more attention in addressing issues for design and analysis of 
models. 

ABS applications range across very diverse fields, and modelers often come to ABS by way of self-
study or attendance at tutorials or short courses, and with a wide range of quantitative, programing, and 
modeling skills (Macal and North 2010; Macal and North 2013). In many applications, the process of 
modeling and design is an ad hoc activity, driven by the modeler’s creativity and natural attitudes toward 
modeling. Moreover, there is a large discrepancy in the range of quantitative and computational 
techniques used in analysis of ABS models. Given the short history of ABS applications in many fields, 
there is also a lack of reporting standards in the literature, especially for description of methods particular 
to these models (Grimm et al. 2006). For example, a systematic review of individual-based HIV 
transmission models suggests a substantial discrepancy among studies in terms of providing justification 
for application of ABS to address questions of interest (provided in 56% of papers), justification of 
modeling assumptions for choice of the simulation time step (19% of papers) or methods of data 
conversion (9.4% of papers), carrying out stochastic sensitivity analysis (46% of papers), discussion of 
applied methods for model validation and implementation (3.1% of papers), etc. (Abuelezam, Rough, and 
Seage 2013). Such discrepancy further highlights the need for discussion of standardized protocols for 
development and application ABS models in various fields. 

As originally DES-modelers, self-taught and still new to the world of ABS modeling, we have 
occasionally observed a gap between traditional simulation theory (mostly developed for DES) and 
current practice of ABS models in the literature. These include the lack of justification for choosing ABS 
models over simpler modeling paradigms; a general tendency for development of “realistic,” heavily 
detailed ABS models despite the tradeoff between complexity of analysis and transparency of findings; 
modelers’ personal internal assumptions and mechanisms for agents’ behavior and interactions without 
explicit validation and consideration of alternatives; instances of excessively parameter-rich ABS models 
requiring specialized calibration techniques (not generally discussed for DES models); unclear definition 
of errors in ABS applications as relevant to different sources of modeling mistakes vs. natural stochastic 
uncertainties; specific challenges faced in validation of ABS models due to their multi-level structure; as 
well as further special issues in experimentation and sensitivity analysis of these models. 

In this paper, we review a number of important topics and issues in design and analysis of ABS 
models that deserve attention. While this is not intended to be a survey of all the available literature on 
ABS modeling or existing methods, our goal is to offer some general guidelines to modelers new to the 
ABS field (similar to us), and provide reminders of some important notions that merit more attention. In 
the following sections, we review and discuss several topics and issues for design, parameterization, 
verification, validation, and experimentation concerning ABS models. Our discussion is supported by a 
few illustrative examples from ABS models of disease epidemics as relevant to our area of expertise. 
While this is a small window into the wide literature of ABS applications, our discussion of modeling 
strategies and analysis techniques is applicable to a fairly general class of ABS models, and we encourage 
readers to consider this discussion in their specialized fields of interest. 

2 DESIGN AND DEVELOPMENT OF THE MODEL 

2.1 Choosing the Right Modeling Paradigm and Abstraction Level 

The first task in any modeling study is determining the modeling paradigm best suited for addressing the 
research question. The discussion on the applicability of ABS vs. other modeling techniques, therefore, 
should focus on the nature of the underlying research questions and not vice versa as “a hammer looking 
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for a nail.” DES and SD are two widely-used modeling tools that are alternatives to ABS (Borshchev and 
Filippov 2004). 

SD models a system as a series of stocks and flows in which the state changes are continuous and the 
model is essentially deterministic. DES, on the other hand, models systems such as networks of queues 
and activities, where state changes in the system occur at discrete points in time and may affect the 
system state. Despite major differences in terms of structure and design, both SD and DES follow a top-
down modeling approach in representing a system through a global influence diagram or system 
flowchart, and offer very low flexibility for incorporating individual levels of behavior and micro-
dynamics. 

In the context of infectious-disease epidemic modeling, for example, such micro-dynamics can relate 
to human behavior as relevant to transmission of the disease (e.g., role of sexual contact networks in 
transmission of HIV (Latora et al. 2006)), population mobility patterns relevant to spatial distribution of 
the disease (e.g., role of the air-transportation network in diffusion of pandemic flu (Epstein et al. 2007)), 
population heterogeneity relevant to progression and control of the disease (e.g., role of the patient’s 
adherence to medical treatment outcomes (Dimatteo et al. 2002)), etc. In such contexts, ABS offers the 
most natural way for describing the underlying social/epidemiological system, and provides a flexible and 
powerful platform for modeling various healthcare interventions and addressing a wide array of 
policymaking questions. The decentralized bottom-up approach enables the modeler to describe a system 

from the perspective of its constituent units (agents such as (a) people, (b) pathogens like bacteria, 

or (c) carriers like dengue mosquitoes), and simulate the behavior of the system through their 

interactions with each other (e.g., contacts and transmission) as well as their environment (e.g., 

seasonal migration patterns), capturing emergent disease-diffusion patterns through time and 

space as the simulation runs. Moreover, the multi-level nature of such models enables explicit 

definition of various interventions at the individual level (e.g., TB (tuberculosis) contact-tracing 

programs) and at the population level (e.g., mass vaccination programs), and provides a powerful 

experimental platform to study the system’s behavior and predict future trends. On the other hand, 
while ABS models provide more realistic representation of the systems and population under study, the 
realism is not an inherent virtue in and of itself, and it comes at the price of additional complexity in 
development and analysis of such models. This complexity is beneficial only if it leads to an 
improvement in the accuracy and validity of the model’s predictions as relevant to the goals of the study. 
Therefore, it’s important always to begin with simpler modeling alternatives, and move to more 
complicated methods only as warranted by the problem. For example, the analyst might start with a 
simple spreadsheet model and extend it to include additional features of the system until the model 
appears to be inadequate, and then change to another approach (Siebers et al. 2010). 

Once the simulation paradigm is chosen, the next step, as in any modeling practice, is designing the 
underlying structure of the model, usually referred to as a conceptual model. This provides the blueprint 
of the model’s main components and boundaries. Despite the simple definition, the decision on scope and 
boundary of a model, and specifically what level of detail to include or leave behind, can prove difficult 
in reality. Especially in the case of ABS, the bottom-up modeling approach provides high flexibility for 
modeling various aspects of the system and its components at several levels to provide “realistic” 
representations of reality. In choosing the right level of abstraction, the modeler should note that the main 
purpose of modeling is not to provide the most elaborate or most detailed (or even elegant) representation 
of a system, but rather to serve as a tool for addressing specific questions of interest. Therefore, we should 
start with the simplest form and include those and only those details that are essential to answering the 
question of interest, or in other words “make things as simple as possible but no simpler” (attributed to 
Albert Einstein). 

An example of such issues in the context of epidemic control can be found by comparing models to 
study TB contact tracing, ranging from simplified global mathematical models, to detailed simulation 
models of transmission (Begun et al. 2013). An example is an age-structured, socio-demographic, 
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individual-based model capturing patterns of TB transmission in households, schools and workplaces 
(Guzzetta et al. 2011). Such models offer a realistic view of TB transmission in real social settings, and 
also offer the advantages for explicit modeling of contact tracing at an individual level, as opposed to a 
single global parameter change in aggregate mathematical models. In the absence of specific data on 
household or workplace transmission rates, however, this extra detail can add uncertainty to the results 
and in turn require further assumptions for calibration of the model. Complex models that are excessively 
detailed can make unreasonable demands on specifying all the realistic input parameters, probability 
distributions, and stochastic input processes (e.g., NSPPs). Moreover, they can also be a barrier to 
translating findings into practice, since they are hard to explain and have computational demands that can 
limit analysis. Therefore, at present it is not clear that low-level, excessively detailed representations are 
always beneficial to the assessment of contact tracing, and superior to simpler models (Begun et al. 2013). 

2.2 Choosing the Right Mechanisms for Agent Interactions 

A common problem in modeling complex systems involving human behavior is identifying, and then 
conceptualizing, the underlying mechanisms for the human agents’ behaviors and interactions. While one 
aims to develop a representative model of reality, believability  is not the main concern. This allows 
modelers to reduce system complexity by making simplifying assumptions at the individual (and system) 
level to represent the local dynamics and avoid unnecessary complications. Given the (often) incomplete 
knowledge of systems, evaluating the impact of such simplifying assumption on final results is important. 

For example, Rahmandad and Sterman (2008) study the role of network structure and population 
heterogeneity on predictions from an individual-based model of disease transmission. They design a 
controlled set of experiments using models with various configurations of the network (e.g., random, 
small-world, scale-free) and population heterogeneity (e.g., degree of attendance). Their results suggest 
that, while all models are calibrated to the same aggregate measures (in terms of the epidemic basic 
reproduction number R0), the underlying structure for social norms can have a significant impact on the 
model’s predictions. Now if the goal of the study is to map the short-term patterns of transmission, such 
impact may be of essential influence. However, in the context of healthcare policymaking, as considered 
by these authors, subtle changes may not have a significant effect on the final decisions, and simple 
models with coarser-grained representations may in fact lead to equivalently proper results. 

In dealing with uncertain mechanisms, therefore, the modeler should use caution in making 
simplifying assumptions regarding the mechanics of the system, and consider various alternative 
approaches for modeling local dynamics. Good practice is to check the sensitivity of the final results to 
alternative approaches. 

3 PARAMETERIZATION AND CALIBRATION 

Parameterization is an important issue in the development of any simulation model, and especially ABS 
models due to their multi-level structure and often parameter-rich nature. The appropriate numbers of 
parameters and variables depend on the goal of the model, and the degree of realism and accuracy needed. 
This includes both the categories of so-called fixed (given or exogenous) parameters that can be estimated 
from available data or gleaned from the literature (as deterministic values, stochastic distributions, or 
dynamic functions), as well as free (experimental or variable) parameters that are unknown due to lack of 
relevant data for fitting or their model-specific definitions (that don’t directly correspond to data). In 
general, including meaningful parameters that can be directly interpreted and understood is favored over 
“fitted” parameters (Helbing and Balietti 2013). This improves the readability of the code and aids in the 
calibration procedure. 

The simulation literature has long discussed techniques for calibration of fixed parameters in DES 
models (Law and Kelton 2000; Henderson and Nelson 2006), and covers various topics on choosing the 
appropriate form, estimating, and assessing the goodness of fit, which are all applicable as well to ABS 
models. Other sources discuss various methods for calibration of free parameters in simulation models via 
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aggregate model outcomes (examples include several heuristic algorithms (Fabretti 2012; Read et al. 
2013), and Bayesian techniques (Kennedy and O’Hagan 2001)). In general, models with better predictive 
power (evaluated using separate data not used in the calibration) are favored over those with better 
descriptive power. Finally, given comparable predictive power, the model of simpler form with more 
analytical tractability is favored (the principle of Occam’s razor). 

In the case of ABS models, calibration may prove more challenging (Kim, Kim, and Rilett 2005). 
ABS models usually involve multi-scale parameters defined at a local level but entailing emergent global 
impact on system behavior (e.g., as seen in multi-agent simulation models of society where an agent’s 
individual behaviors have further impact on the group’s interactions and population outcomes (Fehler, 
Klügl, and Puppe 2005)). Such models would therefore require a multi-level approach to calibration of 
their parameters. Existing approaches are divided into two categories. First are so-called blackbox 
approaches, obtaining and using an approximate relationship between input and output variables of the 
simulation for determining the “optimal” input setting. Examples include gradient-based search methods, 
stochastic-approximation methods, sample-path optimization, response-surface optimization, and 
heuristic-search methods. A main drawback from this approach for ABS models is that no knowledge 
about the internal structure and the parameter dependencies of the simulation model is used. The second 
category includes so-called whitebox calibration methods that explicitly use model knowledge to enhance 
the calibration process. In this approach, the structural properties of the simulation model and knowledge 
about dependencies between the parameters that are to be calibrated is exploited to reduce the 
configuration search space, the complexity of parameter dependencies, and consequently decrease the 
computational cost of parameter configurations and evaluation (Fehler, Klügl, and Puppe 2005). These 
methods entail several rounds of model decomposition into a hierarchical structure, thus reducing the 
parameter space for each sub-model and shorter simulation runs due to reduced internal simulation times. 

An example of the hierarchical calibration method can be found in the work of Guzzetta et al. (2011) 
in developing an age-structured, socio-demographic, individual-based model (IBM) with a realistic, time-
evolving structure of preferential contacts in a population. After estimating the fixed model parameters 
from the literature, the IBM model is still left with several variables where no information is available 
from the literature to determine their values, and the parameters are left free to vary over a range during 
the calibration procedure. The detailed IBM model is computationally intensive and intrinsically 
stochastic. Multiple independent realizations (i.e., replications) of the model with the same parameter set 
are required to obtain stable and precise results in the presence of this random variability, and an 
exhaustive search of the parameter space with regard to values of all unknown parameters (seven 
parameters) is infeasible. Instead, the authors use a hierarchical calibration procedure via another sub-
model as a special case of the full IBM model with a simpler form (no social structure) to reduce the 
parameter space. Starting with a global latin hypercube sampling (LHS) of all parameters in the simplified 
sub-model, they narrow the search to the vicinity of the best-fitted parameter set, and center the local 
search for the remaining IBM parameters around this point. The ranges of free parameters in the local 
search are reduced, based on indications from best-fitting simulations in the global search (Guzzetta et al. 
2011). 

4 MANAGING THE ERRORS: VERIFICATION AND VALIDATION 

No measurement of a physical quantity can be entirely accurate. In experimental measurements, the term 
“error” usually connotes the differences of the measured value from the true value, and “uncertainty” can 
be defined as an estimate of the error (Coleman and Steele 1989). In the context of simulation modeling 
and ABS, the term “error” has wide implication for addressing the differences between simulation 
outcomes and the real phenomena of interest. Such differences, however, entail a wide array of 
“uncertainties” and “modeling mistakes” that should be assessed separately. 

Uncertainty involved in mathematical/computational models and experimental measurements can 
occur in different contexts (Kennedy and O’Hagan. 2001). This includes parameter uncertainty that is 
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implied by inclusion of free parameters with values that are unknown to the modeler, parametric 
variability that is caused by fixed parameters of a stochastic nature, algorithm uncertainty associated with 
numerical errors and numerical approximations in the implementation of the computer code (e.g., 
numerical integration and infinite-sum truncation that are necessary approximations in numerical 
implementations), as well as structural uncertainty (or model inadequacy) associated with lack of 
knowledge of the true underlying physics of a system (e.g., agents’ definitions and behavioral rules 
governing their interactions). In contrast, the term “error” is interchangeably used to refer to a separate 
class of actual modeling mistakes associated with simulation applications. Such mistakes are defined as 
recognizable deficiencies in any phase of modeling and simulation that are not due to lack of knowledge, 
and can be recognized upon examination of the code. In general, these entail compilation errors that 
prevent the program from running, e.g., misspelling commands or syntactical errors (e.g., “if ” without 
“end if”), run-time errors that occur while the model is running due to the occurrence of some impossible 
operations (e.g., an unseen division by 0), as well as logical errors that prevent the program from doing 
what was intend by the modeler. 

Existing methods for dealing with modeling mistakes and uncertainties are known as verification and 
validation (V&V)  methods. Model verification aims to ensure that a computer model/code is carrying out 
operations in the way that the conceptual model intends. There are several techniques for debugging, 
testing, and verifying computer programs including, but not limited to, using interactive debuggers to 
trace compilation errors, walk-through and logic-flow diagrams, face validity to control and reduce 
compilation error, extreme conditions for run-time errors, and aligning with known scenarios for logical 
errors (Balci 1995). Simulation validation, on the other hand, aims to ensure that the conceptual model is 
consistent with the real phenomena of interest. The term validation is used in association with empirical 
validation or statistical validation concerning the consistency of simulation output with real-world data, 
conceptual-model validation or operational validation concerning the consistency of concepts and 
simulated logic with system theories, structural validation or process validation concerning the 
consistency of model assumptions with how the system operates and is physically arranged, etc., each 
including several methods for addressing various sources of uncertainty involved in simulation models as 
mentioned above (Balci 1994; Tesfatsion 2015; Kleijnen 1995). 

Despite the availability of several methods, validation (ensuring that the conceptual model accurately 
represents the reality being modeled) can prove to be a difficult task for ABS models (Klugl 2008; 
Bharathy and Silverman 2010; Yilmaz 2006). Empirical or statistical validation is possible only if output 
measures can be found that are able to describe the system appropriately, and only if such measures are 
available not only from the simulation but also from the real-world system. Such descriptors can be often 
easily found at aggregate levels (e.g., the number of people developing TB infection over time), but 
they’re not trivial at the agent level, as individual behavior characteristics are hard to capture in a 
reasonable way (e.g., describing individual contact patterns with other community members throughout a 
day). Moreover, ABS models are especially apt for studying transient dynamics and answering questions 
concerning the dynamics and interactions that may or may not lead to an equilibrium or steady state (e.g., 
models of an Ebola outbreak). Furthermore, while most validation techniques make an implicit 
assumption that the steady state of the system is what’s of interest, and focus on mean behaviors, the 
model dynamics resulting in those behaviors must be validated as well. In such a case, using procedures 
for time-series validation may be useful; however, accessing useful real-world time-series data can prove 
to be difficult for most applications of ABS models. In addition, further complications can arise due to 
non-linear effects of parameter changes in ABS models (as in many other modeling paradigms), resulting 
in chaotic effects on simulation outputs. Such chaotic behavior is hard to validate since minimal 
imprecision in the initial conditions may lead to completely different outputs. 

In addition, the multi-level property of ABS models requires a multi-level V&V approach, in which 
not only input-output relations have to be compared for the overall system, but V&V procedures have to 
be performed as well for additional sub-ensembles of agents or partial models, down to single agents. 
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Potential drawbacks from this approach include the large time/effort requirement for performing the task, 
and most importantly, unavailability of necessary data for empirical validation of model behavior on all 
levels. 

In the context of disease simulation, an example can be found in the development and calibration of 
the EpiSims model, a stochastic ABS model of airborne infections (such as pandemic influenza or 
smallpox) in a massive synthetic population of the U.S. (Del Valle et al. 2006). In the absence of explicit 
contact-network data for such a population, the modelers use a complex transportation network to 
characterize agents’ movements and determine their locations at each point in time (using U.S. 
Department of Transportation information), and generate synthetic contact networks from the interactions 
of the agents and their locations. The resulting dynamic bipartite graph is consequently used to simulate 
the disease spread. The fidelity of such a model therefore relies in part on the credibility of the underlying 
artificial society and synthetic social networks. Due to the inherent complexity, all model components are 
separately developed and initially validated with regard to their logic (e.g., calibrating the rules governing 
an individual’s activity schedule against available household transpiration surveys), and parameterization 
(e.g., calibrating daily work-schedule parameters using available census data on average worker density in 
the workplace). The validated units are consequently unified, and the model is calibrated against global 
measures of the epidemic such as temporal disease incidence patterns (Stroud et al. 2007). 

Finally, a potential domain of error in assessing the validity of ABS models is due to “over-
parameterization” of these models causing an “impossible falsification” effect (Klugl 2008). If the model 
contains too many degrees of freedom, an automatic optimizing calibration procedure will always be able 
to fit the model to the data — thus empirical validation is not sufficient. So calibration shares some 
common aspects with V&V in terms of operational procedures in accomplishing both. However, whereas 
calibration pertains primarily to the model inputs, V&V is rather concerned with the model outputs, in 
particular how closely these outputs align with corresponding metrics from extant real-world systems. 

5 EXPERIMENTATION 

Once the model is verified and validated, it can be used as a tool for addressing a wide variety of 
questions relevant to project goals. In the context of epidemic ABS models, this can include questions 
regarding future predictions of epidemic growth under various scenarios, studying the impact of specific 
healthcare interventions on future trends, etc. The models can be coupled with optimum-seeking 
strategies to address more advanced questions such as epidemic resource allocation (e.g., best allocation 
of a limited budget among alternative healthcare interventions to control the epidemic (Kasaie and Kelton 
2013b; Kasaie and Kelton 2013a). Moreover, as with any modeling practice, a typical goal is to study the 
sensitivity of results with regard to changes in input parameters and assumptions implemented in the 
model. 

In practice, most simulation analysts often use a “hit -or-miss” method for experimenting with 
simulation models in which they simply try a number of system configurations unsystematically and 
observe the resulting behaviors. In such a case, a thorough deduction is possible only through a complete 
exhaustion of all possibilities, which can be time-consuming or actually impossible in any practical sense 
in many settings. An alternative is application of statistical experimental designs. Statistical design of 
(simulation) experiments (DOE) is a systematic approach for designing a statistically valid experimental 
strategy to obtain the required information (for answering the question of interest) with the least amount 
of simulating (minimal effort). DOE has a well-developed acceptance and track record of success for DES 
models (Kleijnen 2008; Sanchez and Wan 2009) and some applications of ABS models in the military 
(Lucas et al. 2003) but could be used to great advantage in other application areas of ABS, notably 
epidemiology (Wu et al. 2013; Blower and Dowlatabadi 1994). 

DOE is a highly useful technique in the context of ABS models that can be used to uncover details 
about model behavior, assess the relative importance of inputs, provide a common basis for discussing 
simulation results, and identify problems in the program logic (Kleijnen et al. 2003). Due to some 
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fundamental differences between assumptions made conventionally in DOE and ABS models, however, a 
straightforward application of DOE to ABS models may not always be appropriate (Sanchez and Lucas 
2002). For example, traditional DOE assumptions involve only one response variable, whereas agent- 
based models typically include many performance measures of interest. Nevertheless, application of DOE 
can still provide useful information about model behavior that would not be known without a DOE (e.g., 
with respect to the identification of factor interaction effects). 

Sanchez and Lucas (2002) discuss various approaches for more efficient application of DOE to ABS 
models, including use of more effective measures for data collection using various statistical designs to 
sample the parameter space efficiently. A typical issue in analysis of the effect of input parameters in 
ABS models is caused by the large number of free parameters, so that the search spaces that have to be 
searched by the calibration algorithms is often so big that they cannot be searched exhaustively in any 
reasonable amount of time (Fehler, Klügl, and Puppe 2005). LHS is a statistical method for generating a 
sample of plausible collections of parameter value from a multi-dimensional distribution, and provides an 
efficient approach for sampling large parameter spaces. Another important issue in application of DOE to 
ABS is regarding the choice of factor levels: for example, if a narrow range of change is imposed on an 
important factor, but a wide range on an unimportant factor, then the latter could appear be more 
important than the former (Happe 2005). Moreover, there is an emphasis on application of visual guides 
for gaining insight into the one-way relationships as well as internal interactions of various factors, such 
as regression trees, 3-dimensional surface plots, neural networks, etc. 

There are further important considerations for treating stochastic simulation models including, but not 
limited to, choice of the simulation time scale for terminating vs. steady-state goals, followed by 
specification of transient/warmup/run-length period (in the case of a steady-state goal), choice of the 
number of simulation replications driven by precision requirements for outputs, use of multiple ranking-
and-selection statistical tools for selection of best options from a finite set of alternatives, application of 
variance-reduction techniques for improving precision, optimum-seeking via metaheuristic approaches, 
etc. Such DES-mature ideas address fundamental aspects of experimentation with any stochastic 
simulation model, and therefore are necessary, but not necessarily sufficient, to applications of ABS 
models. 

Finally, one should note the application of various heuristic techniques (e.g., genetic algorithms, 
evolutionary algorithms, simulated annealing) as efficient alternatives to classical methods for calibration 
or optimization of simulation models. In such applications, there is a tradeoff between the optimality, 
completeness, and accuracy of results vs. execution time, which can still favor application of these 
heuristic methods. 

6 CONCLUSIONS 

ABS is a relatively novel simulation technique that is growing in popularity and number of applications 
across diverse fields. Following a bottom-up modeling approach, ABS provides a flexible and powerful 
tool for modeling complex systems composed of many interacting components, such as those involving 
human behavior. Due to its comparatively short history and lack of a standardized educational paradigm, 
there is a wide discrepancy in design and especially experimentation and analysis of ABS models. 
Focusing on applications to infectious-disease epidemic modeling, the literature contains several instances 
of ABS exercises lacking the basic practices familiar to a DES-mature audience. 

In this paper, we provided a short discussion of some important notions concerning design and 
analysis in ABS studies that may serve as a guideline for simulation modelers new to ABS. We discussed 
issues in the design and development of ABS models for appropriate choice of modeling paradigm, 
abstraction levels, and internal mechanisms used to describe agents’ behavior and interactions. We 
highlighted the important issue of parameterization for detailed ABS models, often requiring specialized 
calibration methods for reducing the dimension or size of the parameter space. With regard to various 
sources of error, we discussed methods of verification for addressing modeling mistakes, and provided a 
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short discussion of hierarchical validation techniques applicable to ABS models. Finally, we surveyed a 
few important notions for experimentation with ABS models using DOE and LHS for efficient analysis of 
parameter-rich models, as well as further important considerations for the choice of the simulation time 
scale, number of replications, variance reduction, etc. We provided examples of ABS models of infectious 
disease epidemics, as relevant to our area of expertise, but the discussion is relevant to the general class of 
ABS models and applications in other fields. 

We don’t pretend to have provided here anything like a comprehensive literature survey or a complete 
prescription for best practices in ABS projects. But our hope is that ABS modelers, both new and 
seasoned alike, might take away from this paper some considerations and suggestions that could improve 
their modeling design and parameterization, V&V, as well as design and analysis of the experiments to be 
carried out using their models as testbeds, to the end of making better decisions. 
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