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ABSTRACT

Dengue is a febrile disease whose main vector transmitter is the Aedes Aegypti mosquito. This disease
has an annual register of 50 million infections worldwide. Simulations are an important tool in helping to
combat and prevent the epidemic and, consequently, save lives and resources. Therefore, in this paper, we
propose an Agent-Based Model for assessment of the pupal productivity of the Aedes Aegypti mosquito. In
this model, the reproduction of the mosquito takes into account the productivity of each type of container.
The preliminary results show the effects of considering the pupal productivity for the control and prevention
of dengue. As a result, we observed that the prevention methods must consider pupal productivity and that
the distance between containers might leverage productivity and increase transmission risk. We verify the
completeness and functionality of the model through experimentation using Netlogo.

1 INTRODUCTION

Dengue is a febrile disease whose main vector transmitter is the Aedes Aegypti mosquito. The clinical
manifestation can vary from a benign viral syndrome to a fatal hemorrhagic shock. The world incidence
increased 30-fold in the last 50 years, expanding geographically to over 100 countries, with approximately
3 billion people living in countries where there is an epidemic. This results in an annual register of 50
million infections worldwide (World Health Organization 2015). The dengue control programs focus their
actions on the elimination of breeding sites and the reduction of the vector population. However, one of
the main problems is identifying the population density of the mosquitoes required to start or to maintain
the transmission of dengue (Focks 2003). In most of the dengue control programs, as example in Brasil
(2013), traditional entomological indices are used, such as: House Index (HI), Container Index (CI) and
Breteau Index (BI). These indices evaluate just the positivity, in other words, the presence or absence of the
vector in containers. However, some studies point out that it is necessary to evaluate the pupal productivity
of containers with the aim of identifying those that contribute most to the adult mosquito population (Focks
2003). Throughout this paper, the term: productivity will refer to the ability of a container to produce
pupae of Aedes Aegypti mosquitoes. Low productivity means few pupae. High productivity means many
pupae.

The pupal productivity has been applied in entomologic assessments with promising results. This method
identifies the most epidemiologically relevant containers, in other words, the containers that contribute most
to the production of mosquitoes. Previous studies indicate that assessment of pupal productivity would be
the most adequate method to assess the risk and operationalize control activities (World Health Organization
2015, Brito-Arduino 2014, Focks, Brenner, Hayes, and Daniels 2000, Focks and Chadee 1997). There are
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several reasons for adopting pupal productivity to assess the mosquito population. First, the larval stage is
temporally far from the adult stage, and there are many biological implications in this stage interval that are
not considered (World Health Organization 2015, Tun-Lin, Kay, and Barnes 1995, Focks and Alexander
2006). The other reason is that, with the assessment of pupal productivity, it is possible to define the pupae
per person (PPP) index. This index is the relation between the number of pupae and the number of people
in a specific area. The PPP index is a good alternative to estimating the female mosquito population,
because it is highly correlated with the density of adult mosquitoes. In addition, it enables us to assess the
percentage contribution of each type of container (Focks, Brenner, Hayes, and Daniels 2000, Brito-Arduino
2014, Focks and Chadee 1997, Focks 2003).

The major drawback of the assessment productivity method is the identification of breeding sites in
the area in order to identify the containers. This activity generally signifies a great effort on the part of the
health agents. Therefore, through simulation, we could use the results and calculations of the productivity
of an area and then apply them to other similar areas, thus rationalizing resources (Focks and Chadee
1997, Focks 2003). The most productive container can vary from place to place, but it can be estimated
by cross-sectional study. Generally, the types of containers of a specific geographical area do not change,
although the pupal productivity can be very dynamic (Tun-Lin et al. 2009).

The aim of this paper is to propose an Agent-Based Model (ABM) for assessing the Aedes aegypti
Pupal Productivity in containers. This model takes into account the capacity of pupae production for each
container where the mosquitoes lay eggs. The idea is to offer health agents a model that allows for the
simulation of different spatially distributed container profiles and consequently help in the fight against and
the surveillance of dengue. As a result, health agents could simulate the reduction of the vector population
density by eliminating or modifying containers that work as mosquito breeding sites following the World
Health Organization (2009) orientations. In addition, the proposed model could be used by experts in order
to support the decisions made and make health action recommendations. As application examples, we
can cite that the health agents can guide the control activities where containers with higher productivity
were found. Currently, the dengue programs of surveillance and prevention give the same importance to
all type of breeders (Brasil 2013). Moreover, the health agents could develop orientation of educational
messages to people in order to eliminate specific types of containers, consequently, reducing the total costs
and improving the surveillance and the control of dengue.

In this section, we present some basics and important definitions, the problem, our motivation and
our aim. The remainder of the paper is organized as follows: the related works are discussed in Section
2. After that, we describe our Agent-Based Model in Section 3. Then, we check the completeness and
functionality of our model through the experimentations presented in Section 4; and, lastly, our conclusions
and final considerations are shown in Section 5.

2 RELATED WORK

The Agent-Based Model has consistently been used by the academic community in order to study
epidemiological questions such as mosquito populations, the risk of transmission, and the outbreak of
dengue. One reason is that it is a complex problem that has dynamic iterations and stochastic events.
In the literature, we can find several studies that use ABM in order to combat, prevent, and observe
the vector mosquitoes transmitters. Here are some ABM solutions for several epidemiological problems:
Muller, Grébaut, and Gouteux (2004) simulate the spread of sleeping sickness caused by the tsetse fly;
Segovia-Juarez, Ganguli, and Kirschner (2004) try to identify control mechanisms against tuberculosis;
Roche, Guégan, and Bousquet (2008) propose a multi-agent model for vector-borne diseases; Isidoro et al.
(2009) focus on the simulation of the population dynamics and the population control strategies of the
Aedes aegypti mosquito; Roche, Drake, and Rohani (2011) study the epidemiological and evolutionary
dynamics of avian influenza viruses; Lima et al. (2014) developed a framework for the planning of control
strategies for dengue fever. According to Lima et al. (2014), this framework uses models that have already
been calibrated and validated in real case studies.
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We cannot find in the literature, until the current date, any ABM model that takes into account the pupal
productivity of the container. However, we find an ABM for the spread of dengue in Jacintho et al. 2010.
The authors model the possibility of the human agent becoming infected by hemorrhagic dengue fever and
dying. The major drawback of this approach is that they consider that all pupae have an 83% chance of
becoming adult mosquitoes. In other words, the same number of adult mosquitoes emerge from different
containers. However the chance of a mosquito becoming an adult depends on the containers where the
eggs were laid. Therefore, this is not a realistic situation, as pointed out by Brito-Arduino (2014). As an
example, in her study, Brito-Arduino (2014) finds that sanitation fixtures and metallic item containers had
a pupal productivity of 1.8% and 32.9%, respectively. These percentages correspond at absolute values of
0.9 and 7.4 pupa per container, respectively. Thus, the estimation of adult mosquitoes can be completely
different if we compare the model of Jacintho et al. 2010 and the model proposed in this paper. Therefore,
the main contribution of our ABM proposed model is modelling the pupal productivity of the container,
taking into account how pupal productivity can influence dengue transmission. This is different from other
findings in the literature, where they use other methods to estimate the mosquito population. Another
difference between Jacintho et al. 2010 and our ABM model is that we do not consider the climatological
aspects. We consider that the mosquito population is very well-adapted in the area, and that large variations
in temperature do not occur.

An interesting systematic review about modeling tools for dengue risk mapping can be found in Louis
et al. (2014). This systematic review presents several strategies and approaches in order to study the risk
of dengue. The authors consider that the prediction of spatial and spatio-temporal dengue risk is complex
to model and depends on multiple and diverse factors. In addition, predictive models still lack reliability
in anticipating outbreaks. In summary, many models and solutions have been proposed by the academic
community. However, many questions remain open and require research. We try to understand the pupal
productivity in dengue outbreaks through a model presented as follows.

3 AGENT-BASED MODEL PROPOSED

Several control actions of dengue have been proposed by World Health Organization (2009). One of them
is to identify the mosquito population through sampling methods. Three traditional indices are used (World
Health Organization 2009): the House index (HI), i.e. percentage of houses infested with larvae or pupae;
the Container index (CI), i.e. percentage of water-holding containers infested with larvae or pupae; and
the Breteau index (BI), i.e. the number of positive containers per 100 houses inspected. The traditional
method divides the area, considering similar socio-environmental characteristics, in order to have data
homogeneity. These homogeneous areas are called Strata. Each Stratum is composed of houses, and each
house might have a breeding site of Aedes Aegypti. The public health agent only notes if larvae/pupae of
mosquitoes is present or absent in a container when they visit a house. This is the main problem of these
sampling methods, because the container can produce different quantities of mosquitoes. In addition, this
information does not take into account when those indices are calculated, which is one reason why these
indices have a low correlation with the actual numbers of infected people.

Figure 1 shows the iterations among the environment, mosquitoes and the people that produce the
transmission of dengue. The houses can have different quantities of containers, and each container can have
a different productivity level (see Figure 1, Steps 1 and 2). Thus, the estimation of the mosquito population
can be completely wrong if the containers are considered equals. In this ecosystem, the mosquito is the
intermediate host, and the human is the definitive host. The mosquito is infected only when it bites a
person that is infected (Step 3). Therefore, the mosquito has to be infected to transmit the illness to the
person (Step 4). Otherwise, the mosquito continues without transmitting dengue (Step 5). The relationship
between the mosquito and the person is modelled and detailed in the flowchart presented in Figure 2. In
nature, it is not common for the male to bite people. Therefore, only the female mosquitoes bite, in order
to lay eggs, and the female always lays eggs in different containers (Step 6). This behavior increases the
chances of survival for the eggs and has a strong influence on the dissemination of dengue. The preventive
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actions of the public health agent can be more efficient in reducing the mosquito population if they know
which containers of a specific area are more epidemiologically relevant (Step 7). Additional details about
the agents and the environment are explained in the next subsections.
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Figure 1: Ecosystem among the environment, mosquitoes and the people. Its iterations produce the

transmission of dengue.

3.1 The Agents

The proposed model has three agents: Mosquito, Person, and Public Health Agent. Each agent has attributes
and behaviors defined in the subsections as follows. For the sake of simplicity, we will not explain all of
the behaviors in detail, but will instead focus on the most important ones.

3.1.1 Mosquito

Attributes:

• Lifespan: indicates the age of the mosquito (6-8 weeks).
• Infected: indicates if the mosquito is infected with the dengue virus.
• Extrinsic incubation: the period (8-12 days) the dengue virus takes to complete its development in

the Aedes aegypti. During this period, the mosquito is not able to infect the people. Even if the
mosquito has the virus, it cannot transmit it to people during this period.

• Transmit: indicates if the mosquito can transmit the dengue virus to a person. If the mosquito has
the virus and the extrinsic incubation period has finished, then the mosquito is able to transmit the
virus a person.

Behaviors:

• The mosquito looks for people in order to obtain blood for egg production. The transmission of
dengue occurs because the mosquitoes require blood to grow their eggs. Therefore, the transmission
of the virus might occur when a mosquito bites a person.

• The mosquito bites a person.
• The mosquito lays eggs in the containers. Each female lays 87 per batch, on average. The females

can produce up to five batches of eggs in a lifetime. In addition, the female tries to lay eggs in at
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least three different containers. The initial number of eggs laid per batch is equal for all containers.
However, container productivity will vary, depending on where the eggs were laid. This behavior
is detailed in the Figure 3.

• Mosquitoes fly within 100 meters of where they emerge (World Health Organization 2009). This
radius of flight of the mosquito is important, because it defines its area of actuation. This means
that the mosquito bites people and reproduces within this area.

3.1.2 Person

Attributes:

• Infected: indicates if the agent is infected with the dengue virus.
• Intrinsic incubation: the period (3-15 days) the dengue virus takes to complete its development in

the person. In this period, the person is not able to infect a mosquito. Even if the person has the
virus, it cannot transmit it to a mosquito during this period.

• Transmit: indicates if the agent can transmit the dengue virus to mosquito. If the person has the
virus and the intrinsic incubation period has finished, then the person is able to transmit the virus
to a mosquito.

• Knowing: indicates how much a person knows about dengue prevention. This attribute can be used
in order to simulate the effects of education on people.

Behaviors:

• People walk randomly and live in the Stratum.
• People learn about dengue.

3.1.3 Public Health Agent

The public health agent carries out preventive actions against dengue. Their actions may be oriented
according to container profiles. The agent can give an orientation of educational messages to people.

Behaviors:

• The public health agent walks in the Stratum.
• The public health agent makes interventions in containers.
• The public health agent eliminates containers.
• The public health agent gives an orientation of prevention for people.

3.2 Environment

In ABM, the environment is the place where the interactions between the agent-agent and agent-environment
occur. Basically, there are two objects which have to be modelled: the Stratum and the container.

3.2.1 Stratum

Attributes:

• Has a collection of agents: mosquito, person and public health agent.
• Has a collection of containers.
• House (premise) index (HI). This index defines the percentage of houses with Aedes aegypti breeding

sites.
• Breteau index (BI). This index defines the number of buildings for each 100 buildings researched

where positive breeding sites were found. Positive breeding sites have containers with larvae of
Aedes aegypti.
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• Index by type of container (ITC). This index defines the relationship between the number of types
of positive containers and the total number of positive containers researched.

• Has a collection of buildings.

3.2.2 Container

Attributes:

• Percentage of productivity indicates how many adult mosquitoes this site can produce.
• Positive indicates if the containers have larvae of Aedes aegypti.
• Epidemiological relevance indicates how epidemiologically relevant the container is.

3.3 Flowchart of the main behaviours

The main behaviours of this model are presented in the following flowcharts. Figure 2 shows the interaction
between mosquitoes and people.
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Figure 2: This flowchart represents the interaction between mosquitoes and people.

Figure 3 shows the laying eggs behaviour. The mosquito has to lay its eggs when it bites a person.
Generally, each female has five batches in a lifetime. The female has to find a container, then lay a specific
portion of the eggs of that batch. The model maintains life only of a determined number of eggs, according
to the productivity of the container where the mosquito laid the eggs.
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Figure 3: This flowchart represents the mosquito agent behavior: laying eggs.

The model has all main values parameterized. Dengue is a complex problem whose values can
change depending on many other variables and circumstances. In the next section, we present a partial
implementation of this model. In this paper, we are interested in checking the ability of the proposed model
to represent the pupal productivity of containers. Thus, the prevention action taken by the public health
agent, taking pupal productivity into account, will be explored at another time, because we need more data
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produced by the model in order to guide and better define the actions of the health agent. Therefore, health
agent actions and interventions will be more analysed in another stage of this research.

4 EXPERIMENTATION

In this section, we will analyze the completeness and functionality of our proposed model. This model was
implemented using Netlogo (Wilensky 1999). We chose Netlogo because it is a well-know Agent-Based
programming language that enables us to analyse and study our proposed model in order to develop a
first proof of concept. Moreover, Netlogo enables its users, in our case, epidemiologists, to execute its
simulations easily by just adjusting its parameters. The source code of the proposed model can be requested
from the authors and used by Creative Commons copyright licenses. In all tests, we use the same initial
parameters: number of mosquitoes, percentage of infected mosquitoes, number of people, percentage of
infected people, thirteen containers with pupal productivity percentages, average and standard deviation
of eggs per batch and the minimum number of containers needed for the mosquitoes to lay eggs. This
implementation, see Figure 4, offers the user important information such as: a) number of mosquitoes in
each life stage; b) numbers of infected and uninfected mosquitoes; c) numbers of infected and uninfected
people; d) number of pupae per person; and e) number of pupae per container. The mosquitoes are
represented by yellow points (uninfected) and green points (infected). The people are represented by a
blue face (uninfected) and a red face (infected). The containers are represented by colorful squares.

Figure 4: Netlogo implementation of the proposed model. This figure shows the output interface of the

simulation and some important reports.

In order to verify the proposed model, we executed the simulation 1500 times, where each replication
simulated 100 days and calculated the average pupae produced by each container, Figure 5. Then, we
compared the average of the percentage of pupae per container that we obtained from the simulation with
the percentage of the container productivity defined in Brito-Arduino (2014). We will use this real container
productivity as a reference. In accordance with Brito-Arduino (2014), the containers were inspected monthly
for the occurrence of mosquito immature stages during two consecutive vector-breeding seasons in 2002-
2004. The biggest difference that we found was 5.41% in the Container 8, and, in the other containers, the
difference was lower than 1.32%. Therefore, we consider the results obtained to be satisfactory. We follow
the output analysis defined by Chung (2003) in order to guarantee that the output results are statistically
trustworthy.

In the next experimentation, we will show the number of pupae per container, see Figure 6. The data are
plotted using the ln function in order to make the comparison and visualization easier. The red time curve
presents the simulation without taking into account the productivity of the container, and the straight red
line represents the average of pupae per container. Here, the mosquitoes lay the eggs, and the environment
considers that the probability of an egg becoming a mosquito is the same for all containers. This means
that 100% of eggs become adult mosquitoes. Some consequences of not taking the level of productivity
and epidemiological relevance of the container into account can be seen in the graph presented in Figure
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Figure 5: Comparative between the container pupal productivity with reference to the average of the

percentage of pupae per container obtained from the proposed model.

6. First of all, the standard deviation of the pupae per container (PPC) in this scenario is too high, as it is
almost 94% of the value of the PPC average. In addition, if we compare the three curves (with and without
productivity), we can see that the difference among the PPC indices is also high.
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Figure 6: Pupal productivity in the containers.

In the other two curves, the productivity of the container is considered. The only differences are the
values of probability for each container. In the dark blue curve, we use the probability of container defined
by Brito-Arduino (2014), and, in the light blue curve, we decrease all of the percentages of all of the
containers to the value 7.69. The behavior of these curves demonstrates that the model is sensitive to the
productivity’s parameterization. This also demonstrates that the type of container has a strong impact on
the dengue epidemic and that it collaborates with other findings that suggest that the prevention and control
of the dengue epidemic should use other indices such as pupae productivity.

The model enables us to simulate different scenarios in order to support the decision made. Figure
7 demonstrates a hypothetical situation where a health agent wants to analyze the effects of removing all
removable containers before making a decision. The red curve represents the number of infected people,
considering all of the containers (in this case, thirteen) that are in the same area and the productivity of each
one. The blue curve represents the simulation data, considering that the environment only has the fixed
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containers. As we can see, the elimination of removable containers represents a considerable decrease in
the number of infected people.
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Figure 7: Hypothetical situation where a health agent changes the model parameters in order to simulate

actions for decisions made.

The simulation also shows that emergent behavior of the mosquitoes can be observed when they fly
near the containers where they were born. They create a very well-defined area of actuation. An important
implication of this behavior is that the spatial distribution of the containers can influence the transmission
risk of dengue. Basically, this occurs for two reasons: 1) mosquitoes have a radius of flight. All of the
life cycle of a mosquito occurs inside of its flight area: laying eggs, finding blood, reproduction. Thus, its
micro-level behaviour is restricted to this situation area. Therefore, the more mosquitoes, containers and
people there are inside of this area, the higher the chances will be of a mosquito getting and/or transmitting
dengue. And, 2) another micro-level behaviour that we believe has a strong impact on dengue is the ability
of mosquitos to lay eggs in different containers. This is a natural behavior that increases the odds of
perpetuating the species. Suppose we have scenario A, where a mosquito finds only a container with 5%
of productivity inside of its actuation area. This means that only 5% of total eggs laid (87 eggs per batch
in this simulation) will become adult mosquitoes. In scenario B, however, if another container with 20%
productivity is inside the actuation area of the mosquito, then the quantity of pupal per container inside
this actuation area will be greater than in scenario A, because the mosquito will lay one part of its 87 eggs
per batch in one container and the other part in the other container. The chances of more adult mosquitoes
inside this actuation area will be higher, as well as the chance of an incidence of dengue. Therefore, a
container might have its productivity potentialized, which means provide a greater absolute number of
mosquitoes for the Stratum, if it is near other containers, affecting in this way the dengue outbreak. Figure
8 has two areas of actuation that are indicated by two circles with green and pink contours: as we can
see, the mosquitoes that were born in these containers, marked by two red arrows, might lay eggs in any
container within the circled area.

The lack of productivity container control has a huge standard deviation. It supports some studies that
cannot find a strong correlation between the BI and the transmission risk of dengue. These experimental
results enable us to conclude that the proposed model can simulate adult mosquito productivity, taking the
productivity of containers into account. Nevertheless, it is important to note that the productivity of the
container depends on many factors and that the definition of this information is fundamental to supporting
an accurate prediction. On the other hand, we believe that our model could be used in order to define
several scenarios of productivity of some containers in order to give epidemiologist researchers enough
information to be able to make decisions and carry out interventions.
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Figure 8: Area of the mosquito actuation.

One important observation is that, a realistic Stratum can measure many squares hectares. As an example,
the study conducted by Brito-Arduino (2014) covers a total area of 400.4 km2. In our experiments, we
simulate a Stratum with approximately 30600 m2, which is too small, if we consider real dimensions. Even
so, the experimentations took three hours to finish 1500 independent simulations. This type of problem is a
computationally demanding one that might require a parallel and distributed solution, as already presented
in other works (Rao and Chernyakhovsky 2008), (Rao 2014). Therefore, as our objective is a more realistic
simulation with statistically reliable data, a high performance computing (HPC) simulation to simulate a
dengue outbreak will be used.

5 CONCLUSION

In this paper, we proposed an Agent-Based Model for the assessment of the pupal productivity of the
Aedes Aegypti mosquito, the main vector transmitter of dengue fever. In this model, the reproduction of
the mosquito takes into account the productivity of each type of container. The results show the effects of
considering pupal productivity on the control and prevention of dengue. The scope of this paper was to
propose and verify the model. Therefore, the next stage of our research will be to validate the model with
real information in order to provide a more accurate model for combatting and controlling dengue fever,
defining in greater detail health agent actions and interventions.

As part of our main findings, we can cite the importance of the traditional sampling method in considering
pupal productivity, and we also observed that the distance between containers might leverage productivity
and increase transmission risk. The proposed model can be used as a tool for health agents after a well-done
characterization of the type of containers in the space is analyzed. In addition, the model could be used
in order to define several scenarios of container productivity in order to give epidemiologist researchers
enough information to be able to make decisions and carry out interventions. We believe that, with the
generation of several scenarios using this model through an HPC solution, it will be possible to assess the
density of the vector in a specific real area. As a result, the model would produce information that could
be used together with currently used entomological indicators. It will also likely increase the surveillance
and monitoring of the Aedes aegypti.
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Doenças Transmissı́veis.

Brito-Arduino, M. 2014. “Assessment of Aedes aegypti Pupal Productivity during the Dengue Vector
Control Program in a Costal Urban Centre of São Paulo State, Brazil”. Journal of Insects 2014:9.

Chung, C. A. 2003. Simulation modeling handbook: a practical approach. CRC press.
Focks, D. A. 2003. A review of entomological sampling methods and indicators for dengue vectors.

Document TDR/IDE/Den/03, World Health Organization, Geneva, Switzerland.
Focks, D. A., and N. Alexander. 2006. Multi-country study of Aedes aegypti pupal productivity

survey methodology: findings and recommendations. Document TDR/IRM/DEN/06, World Health
Organization, Geneva, Switzerland.

Focks, D. A., R. J. Brenner, J. Hayes, and E. Daniels. 2000. “Transmission thresholds for dengue in terms
of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts”. The
American Journal of Tropical Medicine and Hygiene 62 (1): 11–18.

Focks, D. A., and D. D. Chadee. 1997. “Pupal Survey: An Epidemiologically Significant Surveillance
Method for Aedes aegypti: An Example Using Data from Trinidad”. The American Journal of Tropical
Medicine and Hygiene 56 (2): 159–167.

Isidoro, C., N. Fachada, F. Barata, and A. Rosa. 2009. “Agent-Based Model of Aedes aegypti Population
Dynamics”. In Progress in Artificial Intelligence, edited by L. Lopes, N. Lau, P. Mariano, and L. Rocha,
Volume 5816 of Lecture Notes in Computer Science, 53–64: Springer Berlin Heidelberg.

Jacintho, L. F. O., A. F. M. Batista, T. L. Ruas, M. G. B. Marietto, and F. A. Silva. 2010. “An Agent-based
Model for the Spread of the Dengue Fever: A Swarm Platform Simulation Approach”. In Proceedings
of the 2010 Spring Simulation Multiconference, SpringSim ’10, 2:1–2:8. San Diego, CA, USA: Society
for Computer Simulation International.

Lima, T., T. Carneiro, L. Silva, R. Lana, C. Codeco, I. Reis, R. Maretto, L. Santos, A. Monteiro,
L. Medeiros, and F. Coelho. 2014. “A framework for modeling and simulating Aedes aegypti and
dengue fever dynamics”. In Proceedings of the 2014 Winter Simulation Conference, edited by A. Tolk,
S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, 1481–1492. Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers, Inc.

Louis, V., R. Phalkey, O. Horstick, P. Ratanawong, A. Wilder-Smith, Y. Tozan, and P. Dambach. 2014.
“Modeling tools for dengue risk mapping - a systematic review”. International Journal of Health
Geographics 13 (1): 50.
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