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ABSTRACT

This paper proposes a new evolutionary algorithm-based methodology for optimal crowd evacuation planning.

In the proposed methodology, a heuristic-based evacuation scheme is firstly introduced. The key idea is to

divide the region into a set of sub-regions and use a heuristic rule to dynamically recommend an exit to

agents in each sub-region. Then, an evolutionary framework based on the Cartesian Genetic Programming

algorithm and an agent-based crowd simulation model is developed to search for the optimal heuristic rule.

By considering dynamic environment features to construct the heuristic rule and using multiple scenarios

for training, the proposed methodology aims to find generic and efficient heuristic rules that perform well

on different scenarios. The proposed methodology is applied to guide people’s evacuation behaviors in

six different scenarios. The simulation results demonstrate that the heuristic rule offered by the proposed

method is effective to reduce the crowd evacuation time on different scenarios.

1 INTRODUCTION

In recent years, crowd evacuation planning has become an important research field that has drawn increasing

attention from both academic researchers and governments (Ferscha and Zia 2009, McGrattan et al. 2010,

Zhong et al. 2014). The objective of crowd evacuation planning is to develop strategies to direct people

during evacuation so as to reduce the evacuation time. With the world getting more and more crowded,

the number of accidents (e.g., a fire) happened in crowded scenarios such as theater, airport and shopping

mall is increasing. If people fail to evacuate these places in time when an accident happens, they may get

injured or even loss their lives. Therefore, designing an efficient crowd evacuation planning strategy is of

great importance to the public safety.

Over the past decade, a number of crowd evacuation modeling tools have been developed to study

the crowd evacuation behaviors (Zheng et al. 2009). The commonly used models include the Cellular

Automaton (CA) Model (Zhao et al. 2006, Liu et al. 2009, Ferscha and Zia 2010), the Social Force

Model (Helbing et al. 2000), and the Agent-Based Model (ABM) (Zarboutis and Marmaras 2004, Toyama

et al. 2006, Luo et al. 2008, McGrattan et al. 2010, Zhong et al. 2014). Among them, the ABM is

perhaps the most popular and effective one. This is owning to that the ABM is capable of flexibly modeling

realistic individuals, by considering various behavioral factors such as social factors and psychological
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factors (Zhou et al. 2010). Furthermore, the significant increase of computing power makes it possible to

efficiently simulate large scale crowd dynamics using ABM.

With the aids of the crowd evacuation modeling tools, efforts have also been made to optimize people’s

evacuation behaviours so as to reduce the evacuation time. For example, Liu et al. (2009) studied the

evacuation behaviours in a classroom with obstacles by using a CA model. Their simulation results show

that the density around exits is an important factor that has influences on people’s evacuation behaviors.

Chen et al. (2012) developed a load-balancing framework to guide people to evacuate a building. Their

method requires deploying a sensor network to identify hazardous regions dynamically. Kamkarian and

Hexmoor (2012) developed an evacuation tool for guiding people out of a public building based on the

combined Coulomb’s electrical law and graph theory. Ferscha and Zia (2009, 2010) developed a wearable

device named LifeBelt to help people evacuate from emergency situations. The LifeBelt device can

recommend exits to individuals based on the dynamically sensed environment situations. In the above

methods, evacuation rules are manually defined based on domain knowledge and may lead to local optimal.

To explore better strategies for crowd evacuation, evolutionary algorithms (EAs) have also been used recently.

Abdelghany et al. (2014) proposed a simulation-optimization modeling framework for the evacuation of

large-scale pedestrian facilities with multiple exit gates. They used a genetic algorithm (GA) to search

for the optimal evacuation plan, and a Cellular Automata (CA) for fitness evaluation. Similarly, Zhong et

al. (2014) have developed an EA-based methodology (denoted as “Static” method in this paper). The key

idea is to use a gene expression programming to find a discriminant function which is used to segment the

region into several sub-regions. People in the same sub-region will move towards the same exit. However,

the solutions provided by the above two methods are not generic and only suitable for the specific scenario.

When a new scenario is given or some changes take place in the existing scenario, they must be re-run

again to get a new solution. This can be time-comsuing and impractical for real applications.

This paper follows the research direction of the “Static” method and develops a new EA-based

methodology that can provide generic evacuation strategies. Specifically, there are three major drawbacks

of the “Static” method. First, the evacuation strategies provided by the “Static” method are not generic

enough. Second, the “Static” method assumes that people in the region are evenly distributed. This is

often not true in real situations. Thirdly, the “Static” method does not consider the dynamic environment

features in the evacuation planning process. This makes its solution less efficient. This paper proposes a

new EA-based methodology by addressing all the above three drawbacks.

In the proposed methodology, a heuristic-based evacuation scheme is introduced at first. The key

idea is to evenly divide the entire region into a set of sub-regions. For each sub-region, a heuristic rule

is utilized to determine the optimal exit for agents in the sub-region. The heuristic rule is capable of

flexibly guiding people’s evacuation behaviours based on the latest situations, as it considers the dynamic

environment features such as the number of people surrounding the exits to recommend exits. The heuristic

rule can work effectively without assuming that the people are evenly distributed in the region. Based

on the heuristic-based evacuation scheme, the crowd evacuation planning problem is then converted to

finding the optimal heuristic rule that minimizes the total evacuation time. To solve this problem, a new

evolutionary framework is developed. The proposed evolutionary framework adopts the Cartesian Genetic

Programming (CGP) (Miller 2011) as the base algorithm to search for the optimal solution. The CGP is

an evolution computation technique which has been proven to be effective for automating the design of

computer programs (e.g., mathematical formulas) that solve user defined task. The distinct feature of CGP

is that it represents a program by a directed graph, which enables it to reuse subgraphs that previously

exist. This feature is useful for improving the search efficiency. Due to its fast search efficiency and ease of

implementation, CGP has attracted increasing attentions over the years and has recently become a popular

choice for automatic programming. Hence, this paper adopts the CGP to search for promising heuristic

rules. To evaluate the fitness values of solutions given by the CGP, an agent-based crowd model is further

developed. In addition, multiple scenarios with different features are used for training so as to gain general

heuristic rule that can work effectively in different new scenarios. To test its effectiveness, the proposed
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methodology is applied to guide people’s evacuation behaviors in six different scenarios. The simulation

results show that the proposed method is effective to provide generic and promising heuristic rules that

work better than the “Static” method and the other common evacuation strategies.

The outline of the paper is as follows. Section 2 describes the problem definition. Section 3 presents

the proposed methodology, and the simulation studies are given in Section 4. Finally, Section 5 draws the

conclusion.

2 PROBLEM FORMULATION

In this section, a heuristic-based evacuation scheme is proposed. Then based on the heuristic-based

evacuation scheme, the crowd evacuation planning problem is formulated as an optimization problem.

In the heuristic-based evacuation scheme, the entire region is divided into a set of sub-regions. During

the evacuation process, a heuristic rule (denoted as H ) is used to periodically recommend exits to each

sub-region according to the real situations. Agents in a sub-region will move towards the corresponding exit

assigned to the sub-region. Note that the real situations are changing during the evacuation process. Hence,

the exit assigned to each sub-region may change dynamically. Figure 1 shows an example evacuation

planning result at a specific time step. In this example, the entire region is divided into 35 sub-regions.

The number of sub-regions assigned to the 1st, 2nd, 3rd, and 4th exits are 8, 8, 12, and 7 respectively.

Exit 1

Exit 2

Exit 3

Exit 4

The entire region is divided into 35 subͲregions

SubͲregions assigned with exit 1

SubͲregions assigned with exit 2

SubͲregions assigned with exit 3

SubͲregions assigned with exit 4

Figure 1: An example evacuation planning result at a specific time step.

Exit

w

d

n

The subͲregion
under consideration

SubͲregions that have 
shorter distance to the exit

Figure 2: Terminal variables considered to construct heuristic rule.

The heuristic rule H is a mathematical formula that consists of functions (e.g., +,−,∗,/) and terminal

variables (i.e., environment features such as the distance to the exit and the width of the exit). The heuristic

rule is used to calculate the score values of exits for each sub-region. The exit with the smallest score value

is selected as the recommended exit for the sub-region. The function set and terminal set are manually

defined in advance. Note that if problem-specific knowledge is available, we can define specific functions

and terminals to reduce the search space and improve the search efficiency. In this study, we empirically

choose four basic functions (i.e., +,−,∗,/) and three terminal variables as building blocks to construct H.

As shown in Figure 2, the three terminal variables are d,w, and n. The variable d is the distance to the

exit, w is the width of the exit, and n is the number of individuals in those sub-regions that have shorter
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distance to the exit than the sub-region under considered. For example, based on these function set and

terminal set, if we want to guide agents to select the nearest exit, we can define the heuristic rule as :

H(d,w,n) = d. Based on the above definitions, the problem of optimizing the crowd evacuation strategy

is converted to finding the optimal H that minimizes the evacuation time:

H∗ = arg min
H

ET (H) (1)

where ET (H) is the total evacuation time and H is the heuristic rule used to recommend exits to sub-regions.

3 THE PROPOSED METHOD

To solve the optimization problem defined in (1), this section proposes an evolutionary methodology with

the Cartesian Genetic Programming (CGP) and an Agent-Based crowd model. The proposed method is

developed based on our early work in (Zhong et al. 2014), where a genetic programming variant was

adopted to evolve exit selection rules for agent-based crowd modeling. The main differences between this

work and our early work are two-fold. First, the motivation and objective are different. Our early work

focuses on identifying a specific exit selection rule for each agent so that the simulation can match a desired

objective behavior, while this work focuses on finding a generic behavior rule for agents in each sub-region

to minimize the crowd evacuation time. Second, the crowd evacuation models developed are different.

In our early work, the exit selection rule is used directly by agents to determine their destinations, while

in this work, the rule is used to determine the destinations assigned to sub-regions. By assigning rule to

sub-regions, we can deploy marshals to sub-regions to control the crowd. This does not require each agent

equipped with a device to receive commands (or to calculate the rule) for evacuation. (Often, the number

of sub-regions are much smaller than the number of agents.) Thus, the method proposed in this paper

could be more convenient for practical applications. In the following parts, the general search mechanism

of the proposed method is presented first. Then an agent-based simulation model for fitness evaluation is

given, followed by the implementation of the CGP for evolving the optimal heuristic rule.

3.1 The General Search Mechanism

Cartesian Genetic 
Programming

AgentͲBased 
Modeling and 
Simulation

Multiple 
Training 
Cases

inputs

Multiple 
Testing 
Cases

Heuristic

rule

Fitness

inputs*

+ d

w n

The best 
heuristic rule

AgentͲBased 
Modeling and 
Simulation

Training Module

Testing Module

Heuristic 
rule

Figure 3: The general search mechanism.

The general search mechanism is illustrated in Figure 3. In the proposed framework, multiple training

cases that have different features (e.g., the number, positions and widths of gates) are used for training,

so as to obtain a general heuristic rule that performs well in different scenarios. Given a heuristic rule,

an agent-based crowd model is proposed to evaluate its fitness. The proposed agent-based crowd model

contains two layers. The top layer determines the destinations of agents based on the set of sub-regions
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and the heuristic rule, and the second layer determines the microscopic collision avoidance behavior and

drives the agents move towards their destinations. To evaluate the fitness of a given heuristic rule, the

agent-based crowd model configured with the given heuristic rule is performed to simulate the crowd

behaviors of all training cases. The results of all training cases (as will be described in (3)) are used

to evaluate the fitness of the heuristic rule. Based on this fitness evaluation method, the CGP is used to

search for an optimal heuristic rule. In the CGP, a population of random heuristic rules are generated as

the initial population. Then genetic operators such as mutation and selection are used to iteratively evolve

the heuristic rules. During the evolutionary process, the proposed agent-based crowd model is performed

dynamically to evaluate the fitness values of the heuristic rules given by the CGP. The CGP will output

the best-so-far heuristic rule when the training termination condition is met. Then the performance of the

best-so-far heuristic rule is further tested based on multiple testing cases.

3.2 The Agent-based Crowd Model for Fitness Evaluation

To evaluate the fitness of a heuristic rule, we need to develop a crowd simulation model which is used

to estimate the total evacuation time of the crowd. In this sub-section, we develop an agent-based crowd

simulation model based on the commonly used social-force model and the proposed heuristic-based crowd

evacuation scheme. In general, as shown in Figure 4, the proposed agent-based crowd model consists of

two layers. The top layer determines an exit for evacuation. In this layer, each sub-region is dynamically

assigned with an exit by using the heuristic rule. Then the evacuation exit for an agent can be set to be

the one assigned to the sub-region that contains the agent.

Top Layer
Using heuristic rule and the subͲregion set to 

determine the destination of the agent

Bottom Layer
Using SocialͲforce Model to drive the 

agent’s movement so as to avoid collision

Agent

Figure 4: The proposed ABM crowd simulation model.

Once the destination (i.e., the exit) is determined, the bottom layer adopts the social-force model to

drive the agent towards the destination so that agents will not collide with other agents and obstacles. The

social-force model is a famous crowd simulation model that was proposed by Helbing et al. (1995). In

the social-force model, the motions of agents are guided by virtual forces that can be expressed as:

fi = fi0 + ∑
j( j 6=i)

fi j +∑
w

fiw (2)

where fio is the attractive force from the goal, fi j is the repulsive force from other agents, and fiw is the

repulsive force from the static obstacles such as walls. The readers are referred to (Helbing et al. 2000)

for detailed implementation of the social-force model.

In the simulation, the bottom layer is performed every simulation tick to update the positions and

velocities of agents, while the top layer is performed every ω simulation ticks to periodically update the

destinations of agents. In general, ω needs to be larger than the time required to get real-time update about

the environment. However, its value cannot be too large; otherwise the changes of environment may not

be included in determining agent’s behavior and thus reducing the evacuation efficiency. In order to reduce

the computational time of fitness evaluation, we fix the maximum simulation ticks to be Tmax, and use the
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following equation to evaluate the fitness of a heuristic rule:

F(H) =
K

∑
i=1

[max{Ti(H),U ∗ I(Ni(H)< N∗i )}−Ni(H)] (3)

where K is the total number of training cases; Ti(H) is the total evacuation time of the ith training case

under the heuristic rule H; U = 108 is the big value to be used if some people were not evacuated in the

ith training case; N∗i is the total number of people to be evacuated in the ith training case; Ni(H) is the

total number of people actually evacuated in the ith training case under the heuristic rule H; I(Ni(H)< N∗i )
is the indicator function for the event Ni(H)< N∗i so that I(Ni(H)< N∗i ) = 1 if the event occurrent (i.e.,

some people were not evacuated in ith training case) and 0 otherwise. Note that the smaller the value, the

better the fitness. The fitness function is defined in this way since if all the people escaped before end of

simulation, smaller Ti means more efficient evacuation strategy. Otherwise, if not all the people managed

to escape before the end of simulation, a larger Ni indicates a better evacuation strategy.

3.3 The CGP for Evolving Heuristic Rules

Figure 5: Traditional chromosome representation in CGP.

The fitness function defined in (3) is integrated with the CGP to search for an optimal heuristic rule.

In the CGP, the chromosome is comprised of two parts: function nodes and output nodes. Each function

node represents a particular function and it is encoded by a number of genes. The first gene encodes the

function type (e.g., “+”), and the remaining genes encode the input sources of the function. The input

sources of a function node can be a previous node or a terminal variable (e.g., d, w, and n). The number

of input sources is determined by the function type of the node. For example, “+” has two input sources.

In the CGP, the terminal variables and the function nodes are labelled by integers. Specifically, 0 to C−1

represent the C terminal variables, while C to C+L−1 represent the L function nodes in the chromosome.

The output genes are integers that represent the sources of the corresponding outputs. In this paper, we

consider that each chromosome contains a single output. Hence, each chromosome can be represented as:

[ϕ1, t1,1, ..., t1,M, ...,ϕL, tL,1, ..., tL,M,o] (4)

where L is the number of function nodes in each chromosome, M is the maximum number of input sources

among all functions, ϕi represents the function type of the ith function node, t j,k represents the kth input

source of the jth function node, and o represents the source index of the output. Figure 5 shows an example

of the CGP chromosome which contains three program inputs, six function nodes, and one output node.

Denote the input variables and functions as : d→ 0,w→ 1,n→ 2,+→ 0,−→ 1,∗→ 2,/→ 3. The first

three nodes encode the three terminals d, w, and n, respectively. The values of these three nodes are fixed

and are omitted in the chromosome. The first node in the chromosome (i.e., node 3) contains three genes:

{0,0,1}. The first gene “0” encodes a function type of “+”. The second and third genes encode two inputs

of d and w. Hence node 3 encodes a sub-function of d+w. The output of node 3 can be an input of anther

node (e.g., node 7). In this way, the entire chromosome can be decoded as H = (w−n)+ w
n

.

Based on the above chromosome representation, the standard CGP adopts the 1+λ evolution strategy

(ES) (Beyer and Schwefel 2002) to evolve the chromosomes, as illustrated in Algorithm 1. First of all,
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λ random chromosomes are generated as the initial population. The value of the ith gene in each initial

chromosome is set by:

vi =











randi(0,C+L−1), if vi ∈ o

randi(0, I−1), if vi ∈ {ϕ1, ...,ϕL}

randi(0,C+ ⌊ i
(M+1)⌋−1),otherwise

(5)

where randi(a,b) returns a random integer within [a,b], M is the maximum number of input sources among

all functions, and I is the number of functions in the function set. Then in the second step, a mutation

operation is performed to mutate the best individual (denoted as pbest) in the population so as to generate

λ new individuals. When generating a new individual, the ith gene’s value is set by:

v′i =

{

vi, if randr(0,1)≥ pm

set by Eq. (5), otherwise
(6)

where vi is the corresponding value in the parent individual, randr(a,b) returns a random floating-point

number within (a,b), and pm is the mutation rate. In the third step, the λ new individuals together with

the pbest are ranked and the best one is selected as the new pbest for the next generation. The second step

and the third step are repeated until the maximum number of generations is reached.

Algorithm 1: The Evolution Procedure of CGP based on 1 + λ ES.

1 Begin:

2 for i = 1 to λ do

3 Randomly generate the ith individual by (5)

4 pbest ← the best individual in the population

5 generation = 1

6 while generation < the maximum number of generations do

7 for i = 1 to λ do

8 generate the ith offspring by mutating pbest

9 using agent-based simulation and multiple training cases to evaluate the fitness of the ith

offspring

10 pbest ← the best one of the λ offspring and pbest

11 generation = generation+1

12 End

Once the best heuristic rule is obtained by the CGP, it then can be used for evacuation planning as

described in Section 2. That is, for each sub-region, the best heuristic rule is used periodically to calculate

the score value of each exit, where the inputs of the heuristic rule (i.e., d, w, and n) are obtained from the

real situations. Then the exit with the smallest value is selected as the recommended exit for the sub-region.

Agents in the sub-region will move towards the recommended exit to evacuate the region.

4 SIMULATION STUDIES

This section designs simulations to test the effectiveness of the the proposed method. First, six scenarios

with different features are designed to generate training and testing cases. Each training case or testing case

is a crowd evacuation scenario with a specific crowd composition setting (i.e., the number of individuals).

Then the simulation settings and the evacuation strategies considered for comparison are described. Finally,

the comparison results are discussed.
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4.1 Simulation Settings

We design multiple training and testing cases based on six scenarios with different features, as shown in

Figure 6. The first three scenarios and the fifth scenarios are rectangular rooms with different numbers of

exits. The widths and positions of the exits in the four scenarios are also different. The fourth and the sixth

scenario are a bit more complicated than the other scenarios, because they contain two inner rooms, several

inner gates and four exits respectively. Specifically, the first four scenarios are used to generate training

cases. Each scenario is used to generate three training cases, where the numbers of individuals are set to

be 100, 200, and 400 respectively. Hence there are totally twelve training cases. Similarly, we generate

twenty-four testing cases based on all six scenarios. Each scenario is used to generate four testing cases,

where the numbers of individuals are set to be 180, 280, 550, and 1000 respectively. Unlike our previous

work, which assumes that the individuals are evenly deployed in the environment, the individuals in each

training or testing case are randomly deployed in this study. It should be noted that some testing cases

are generated based on the last two scenarios and we use the heuristic rule trained from the previous four

scenarios to test all testing cases. By doing so, we aim to test the generality of the heuristic rules offered by

the proposed method. In the simulation, as suggested in (Helbing et al. 2000), the parameters of the social-

force model are set to be: A = 1000,B = 0.08,k1 = 120000,k2 = 240000,v0 = 2m/s,vmax = 3m/s,τ = 0.5.

Other parameters of the simulation model are set to be: ω = 16,Tmax = 300×ω, each simulation tick = 1/16

second. The parameters of the CGP are set to be: λ = 10, pm = 0.02, L = 50, M = 2, and the maximum

number of generations is 200. Since the CGP is a stochastic optimization algorithm that can offer different

solutions in different runs, we perform the CGP for 10 independent runs with different random seeds, and

the average results are used for analysis.

To investigate the effectiveness of the heuristic rules found by our method, we compare them with three

other evacuation strategies. The first is the distance first strategy (denoted as DF), where individuals always

choose the nearest exit. The second is the “LifeBelt” method (Ferscha and Zia 2009). In the “LifeBelt”

method, individuals choose an exit based on three factors: the time to reach an exit gate (T EG), the number

of individuals expected in the destination exit gate (EP), and the number of individuals that can possibly

escape through that exit per unit time (EC). Based on these three factors, the evacuation time is estimated

as τ = T EG+ EP
EC

. As EC is in proportion to the width of the EG (w), we approximately estimate τ by

τ ≈
d
s
+ n

w
, where s is the speed of agents, which is set to be 2m/s in this paper. Individuals will always

choose the exit with the smallest τ . The third method is the static planning strategy proposed in (Zhong

et al. 2014) (denoted as “Static”). In this method, the entire region is divided into several sub-regions by

using a discriminant function. The segmentation result is obtained before the evacuation and is fixed during

the evacuation. In the simulation studies, the best discriminant function found by the “Static” method on

the third scenario is used for comparison. The discriminant function is expressed as
( n

w
)

(d∗d) ∗ (w−d).

4.2 Simulation Results

Figure 7 shows the evolution curve of the best fitness value found by the CGP. The fitness values are the

average results of 10 independent runs. As the fitness value is much smaller than 1×108, all individuals

successfully evacuated the region by using the heuristic rules. Furthermore, the best fitness value decreases

gradually as the number of generations increases. This indicates that the best heuristic rule found by the

CGP becomes more and more effective to reduce the total evacuation time. The evolution trend indicates

that the heuristic rule can become even better if the number of generations continues to increase.

Table 1 shows the 10 heuristic rules found by the CGP in 10 independent runs. It can be observed

that some rules are easy to interpret (e.g., the 5th rule), while some others (e.g., the 10th rule) are quite

complex and difficult to interpret. Take the 5th rule for example. The expression of this heuristic rule

contains all three factors (i.e., d,w, and n) and is quite similar to the LifeBelt strategy. By calculating the

first-order partial differential equation of the expression, we can find that using this rule the individuals are

more likely to select exits with smaller distance, larger width and fewer surrounding individuals. Note that
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

28 m

16 m

28 m

16 m

28 m

16 m

28 m

16 m

30 m

26m

50 m

27 m

Figure 6: Six scenarios for generating training and testing cases.

Figure 7: Evolution curve of the best fitness value.

the proposed method is a stochastic optimization algorithm that can provide different solutions in different

runs, in terms of fitness and complexity. In practical applications, the decision makers can perform the

proposed algorithm for multiple runs and choose the best final solution according to their preferences.

In the following parts, we choose the first heuristic rule in Table 1 as an example to investigate its

effectiveness. This heuristic rule is applied to simulate the evacuation behaviours in the 24 testing cases.

For each testing case, we run 10 different simulations, where the initial positions of agents in the same

testing case are set differently. The initial positions of individuals are randomly generated in all simulations.

The average evacuation time of the 10 simulations is then used as the evacuation time as the corresponding

135



Zhong, Cai, and Luo

Table 1: The 10 heuristic rules found by the CGP in 10 independent runs.

Run index The best heuristic rule found by the CGP

1 ((((d/w)∗ (n+w))/w)+(d− (n− ((n/d)+((n/d)∗ (n/d))))))

2 ((((n+w)/(n+w))− ((d +w)/d))− (((n+w)∗ (((d +w)/d)/(n+w)))/(n+w)))

3
((((n/w)+d)+(((n/w)+d)/((((n/w)−w)+((n/w)−w))∗d)))∗ (((n/w)+d)+(((n+d)/w)+
((n/w)+d))))

4 (((n/((d/w)+w))∗ ((((d/w)+w)∗ (d/w))/w))+(d +((d/w)+w)))

5 (d− (w− (n/w)))

6 (((n− (d ∗d))+((w+w)+(w− (w+w))))+(d/(w/((d ∗d)/(w+w)))))

7 ((n− (w−d))/(((w−d)+((d +n)∗w))/(n− (w−d))))

8 (((n/(w/d))/((d/n)+(d−w)))+(d/(w/d)))

9 ((((((d +n)/(d +n))/(d/n))∗w)+((d/(w/((d +n)/w)))− ((d +n)/(d +n))))∗ ((d +n)/(d +n)))

10
(((w+(((n/w)/((d ∗w)/(n/w)))/(d ∗w)))∗ (d/(((n/w)/((d ∗w)/(n/w)))/((n/w)/(d ∗w)))))+
((d +(n/w))+((n/w)/(d ∗w))))

Table 2: Average evacuation time of different evacuation strategies.
N = 180 N = 280 N = 550 N = 1000

DF LB ST HR DF LB ST HR DF LB ST HR DF LB ST HR

S1 47.13 40.97 48.88 40.67 68.09 55.58 66.75 54.86 127.05 98.66 119.80 96.99 234.10 169.16 210.79 177.10

S2 43.86 41.71 60.20 41.58 56.24 50.09 79.53 50.23 94.11 75.58 111.50 75.49 149.58 127.50 161.60 128.4

S3 38.97 33.62 31.03 32.94 50.80 44.25 40.08 42.5 78.43 64.80 66.21 64.56 127.02 97.43 114.79 97.72

S4 37.50 34.30 44.60 34.85 47.38 42.13 50.25 42.08 75.75 62.5 65.5 61.85 127.28 92.90 94.13 92.18

S5 33.89 30.25 31.68 27.36 49.67 39.46 41.74 38.38 85.96 59.52 71.89 57.94 156.83 96.01 123.08 95.59

S6 39.95 40.625 48.38 40.88 49.35 47.78 57.83 47.13 74.08 71.48 84.3 69.3 121.05 116.13 130.85 111.13

“Si” represents the ith scenario, “DF” represents the distance first strategy, “LB” represents the LifeBelt strategy, “ST” represents the “Static” method,

and “HR” represents the heuristic rule offered by the proposed method. The values are in seconds.

testing case. Table 2 shows the results of the four evacuation strategies. It can be observed that the “DF”

method performed the worst. The “Static” method performed the best on the first two testing cases of

scenario 3. This is because that the discriminant function is specifically obtained based on the similar

settings. However, as the number of individuals increases and the scenario changes, the “Static” method

degrades significantly. This indicates that the solution provided by the “Static” method is not general

enough. The “LifeBelt” method performed the best on six of the twenty-four testing cases, owning to the

fact that it takes into account the dynamic environment features to guide people’s evacuation behaviors.

Meanwhile, the proposed method performed the best on sixteen out of the twenty-four cases. In addition,

the performance of the proposed method on the remaining eight testing cases are also very competitive.

The above results demonstrate that the proposed method is very effective to reduce the evacuation time.

The heuristic rule offered by our method is general as it works well on different new scenarios.

5 CONCLUSIONS

This paper has proposed an EA-based methodology to generate optimal crowd evacuation planning strategy.

In the proposed methodology, the entire region for evacuation is divided into a set of sub-regions. A heuristic

rule is used to dynamically recommend an exit to agents in each sub-region. To search for an optimal

heuristic rule that minimizes the evacuation time, an evolutionary framework based on the CGP and an

agent-based crowd model is developed. The proposed method was tested on six scenarios with different

features. The simulation results have demonstrated that the proposed method is effective to generate generic

and effective heuristic rule to minimize the crowd evacuation time.

The proposed method has potential to be applied in real applications. The key issues are how to gain

the dynamic environment features (e.g., n) and how to make agents move towards their recommended exits.

A feasible approach is to utilize the LifeBelt device. The LifeBelt device can receive commands from a

global center and recommend the next moving step to individuals using a special component. Therefore,

136



Zhong, Cai, and Luo

the global center can use the heuristic rule to calculate the recommended exit for each sub-region and

then send this information to the corresponding LifeBelt devices to guide agents’ behaviors. The second

possible method is to deploy a marshal to each sub-region. The marshals have special devices to receive

commands from the global center, and guide agents’ behaviors according to the received commands.

The proposed framework is flexible, as some of its components can be modified to get more convincing

results. For example, we can use other crowd evacuation models and other EAs such as the SL-GEP (Zhong

et al. 2015) to get better heuristic rules more efficiently. However, the current work still has several issues

which limit its use in practical applications. The first issue is that it requires frequently assessing the

real situations (i.e., using the heuristic rule to evaluate exits) to recommend exit to each sub-region. How

frequently the situation is assessed may affect the evaluation results. Thus, studying the impact of situation

assessment frequency on evacuation efficiency and considering how the value could be set in practical

applications could be a direction for future work. The second issue is that how the environment is divided

may have an effect on the rules. In addition, if we deploy marshals to control the crowd, it is desirable to

divide the region into larger sub-regions so that fewer marshals are required to control the crowd. Therefore,

extending the proposed method by considering the strategy to divide the environment and the deployment

of marshals could be another direction for future work.
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