
Proceedings of the 2015 Winter Simulation Conference

L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds.

SIMULATION WITH STOCHASTIC PETRI-NETS

Vitali Volovoi

Independent Consultant

505 Birchington Close

Alpharetta, GA 30022, USA

ABSTRACT

This tutorial reviews the role of Stochastic Petri Nets (SPNs) in stochastic simulation. The evolution of

SPNs as a component-level state-space modeling framework is discussed. SPNs are compared to both

process-based approaches to discrete event simulation (DES) and to agent-based modeling (ABM). The

causes for the apparent lack of commercial success of general-purpose simulation with SPNs are analyzed

along with the possibility that this situation will change in the near future. In particular, the potential is

explored for SPNs to serve as a useful compromise between traditional DES and the more flexible (yet

lacking standard building blocks) ABM. To this end, SPNs can be considered as a middle-ground framework

with natural capabilities for modeling complex interactions among the entities comprising the system.

1 INTRODUCTION

The subject of this tutorial is stochastic computer simulation in the context of Operational Research and

Management Science (OR & MS). SPNs can be placed at the intersection of two important branches

of science and engineering: analysis of stochastic processes by means of generation of sample paths

(realizations) of the processes (Henderson and Nelson 2006) on the one hand, and a graphical mathematical

modeling language called Petri nets (Petri 1962) on the other. Petri nets are popular in computer science

as they provide a well-structured and visual means for analyzing complex interactions among components,

such as synchronization and concurrent operations. SPNs have been around for over thirty years (Marsan

1990), but to date their implementations have been mostly limited to academic tools, or to the tools used

internally by large engineering companies (such as Siemens or Total), since practicing engineers tend to

find them too abstract and difficult to understand. SPNs and the related Timed Petri Nets (not to be confused

with Time Petri Nets!) come in many flavors, which further complicates the ability to assess the utility of

SPNs in practical simulation applications (Bowden 2000).

This tutorial aims to put the advantages and drawbacks of SPNs in the context of general simulation

frameworks. First, a brief review of various approaches to stochastic simulation is provided, along with

the assessment of SPNs from this high-level perspective. This is followed by a more detailed look at the

evolution of the variations of SPNs and the driving forces behind their evolution. Several examples of SPN

models are provided to illustrate the relevant differences and similarities between then and other modeling

frameworks.

1.1 Simulation Frameworks

Historically, an important watershed in classifying simulation types in OR & MS was the choice of

the underlying solution method with stochastic simulation based on sample paths (state trajectories) being

contrasted with solutions of continuous differential equations. Discrete Event Simulation (DES) and System

Dynamics (SD) fall under the former and the latter categories, respectively (Henderson and Nelson 2006).

As will be discussed below, this dichotomy is closely mirrored within the historical development of SPNs.

Another perspective consists of specifying a “world view” for the modeling approach. The following three

88978-1-4673-9743-8/15/$31.00 ©2015 IEEE

Volovoi

views are generally considered (Law and Kelton 2000): process interaction, activity scanning, and event

scheduling. The latter two views are effectively related to the actual algorithms implemented in modern

simulation software (the “back end”). In contrast, the process-interaction view can be considered as a front

end of simulation that needs to be converted to a back-end view. Event graphs (Schruben 1983) use the

event-scheduling view directly for model building, which significantly simplifies the connection between

the front and back ends, but also requires a high degree of modeling abstraction. The process-driven and

event-driven views are combined in Kesaraju and Ciarallo (2012) by augmenting event graphs with the

concepts of entities in an attempt to reduce the level of modeling abstraction. The activity-scanning world

view corresponds to the listening mode in computer languages, and is relevant in the presence of exogenous

events, the timing of which cannot be predicted in advance. However, in the context of stochastic simulation,

candidate future events are usually endogenously generated, and as a result, the event-scheduling view

generally provides signifiant computational advantages compared to the activity-scanning view.

The process-interaction view underpins the vast majority of modern DES software. Reflecting the

manufacturing applications’ heritage, the underlying idea is to model flows of entities through a network of

servers that transform those entities (transactions) by changing their attributes. This view “implies system

events by describing what happens to an entity as it encounters the system” (Nelson 2002). A certain

degree of hierarchical (top-down) perspective is inherent in this view: there are transient low-level entities

(jobs or transactions) and higher system-level persistent entities (such as resources) (Roeder 2004).

In contrast, in SPNs the system is comprised of individual components (entities) that can change their

states, thus triggering or preventing the state changes of other entities. In other words, SPNs are based

on local (peer-to-peer or bottom-up) interactions among entities, and the concepts of resources and queues

are derived, rather than being fundamental properties, as they represent specific examples of coordination

(interaction) among individual entities. Adopting the language of agent-based simulation, models utilize

the point of view of “agent activities” rather than business processes (Bonabeau 2002), and as such can

be considered a particular restricted type of agent-based models. Here an activity is interpreted as a time

delay between state transitions for a given entity (agent). Indeed, referring to the table of distinct attributes

of ABM and DES (Table 1 in Siebers et al. (2010)), the first six out of seven attributes of SPNs would

fall under the ABM column, and the last one, related to the source of data, is arguably application-specific

rather than an intrinsic attribute of the modeling framework.

Another related viewpoint considers traditional DES as primarily designed to deal with so-called

“transformational” systems, where the entities are transformed (processed). These systems are contrasted

with “reactive” systems, where the entities are event driven and continuously reacting to external and

internal stimuli (Harel 1987); here the non-hierarchical, peer-to-peer nature of SPNs is more appropriate.

Correspondingly, there are several fields where SPNs have enjoyed relative success: flexible manufacturing

systems (Marsan et al. 1995); system reliability (Signoret et al. 2013); and business processes and workflow

management (Aalst 1998) (the timed Petri nets employed in this area are distinct from SPNs, but the resulting

models can be easily cast in terms of SPNs that are discussed in this tutorial).

There is a lack of consistency in assigning Petri nets to a world view (Roeder 2004). In accordance

with Miller et al. (2004), Markov chains represent a state-based view, while Petri nets fit either the process-

interaction or activity-scanning world view. However, as described below, it is logical to view Petri nets

as a local, component-based equivalent of Markov chains, both providing state-based world views. This is

consistent with the view of building blocks of DES as a set of state variables that characterize the modeled

system and events (points in time when at least one of those state variables changes), with the assumption

that no changes to the system occur between those events (Ross 2002). An analogy can be drawn between

the global-local juxtaposition in stochastic state-space modeling (Markov chains vs SPNs, as discussed

below) and in simulation (traditional process-focused DES vs. ABM). As commercial tools evolve to satisfy

the needs of today’s customers , the boundaries between the frameworks are blurred, and traditional DES

frameworks allow the modeling of some agent-based behavior (Brailsford 2014) (an example discussed

89

Volovoi

therein is revisited below). In particular, state-space representation is utilized for persistent entities (such

as resources), albeit without standard graphical means to depict the dynamic interactions of such entities.

1.2 Markov chains

State-space diagrams provide a convenient graphical way of depicting the behavior of nondeterministic

systems. Markov chains are the simplest and most popular kind of state-space diagrams, with applications

ranging from their original use by Andrey Markov (for modeling the relative frequencies of vowels and

consonants in Alexander Pushkin’s novel Eugene Onegin) to evaluating web page ranks (in the PageRank

algorithm invented by Google’s founders) (Hayes 2013). Despite their deserved popularity, Markov chains

are prone to “state-space explosion”—they scale poorly as the number of system entities increases.

Let us consider a simple example illustrating the issue (Volovoi 2013) of a household consisting of two

family members (later referred to as customers), m1 and m2, and a car, c1. Each customer can be in one

of three states: not needing a car (N), driving a car (D), or waiting for a car (W); we assume that being a

passenger in the car qualifies as state N. The inputs to this model could include the usage pattern of each

customer, e.g., the frequency and duration of trips, as well as the car properties, e.g., the frequency of

breakage and the duration of the repairs. The outputs would be the “performance” measures or metrics of

this “system,” such as the frequency and duration of unsatisfied demand. These measures can help to make

educated decisions about changes to the system, e.g., whether it makes sense to get a second car. First, let

us consider a situation where the car can be in one of two states: idle (I) or “in use” (U). This “system”

consists of three entities (two customers and a car), so there are 3×3×2 = 18 possible permutations of the

components’ states that can define the state of the entire system. Not all of those permutations constitute

feasible system states, so a Markov model would have only five rather than 18 states. Fig. 1, A) shows the

corresponding Markov chain diagram. Here the state of each entity is represented by the corresponding

capital letter (so, for example, the DNU state of the system implies that first customer is driving, the second

is not needing the car, and the car is used). Introducing the possibility that the car can be broken (be in

state B) extends the size of the diagram to nine states (as shown in Fig. 1, B). For a family of four with

two cars, the number of possible states is 111, and for a family of five with three cars, that number is 589.

If we consider a fleet of 10 cars with 20 customers, the number of states is 451,417,560,951—or over

451 billion (Volovoi 2013).

NDU WDU

DNU DWU

NNI

NDU WDU

DNU DWU

NNI

NNB

NWB

WNB

WWB

B)A)

Figure 1: A) Markov chain diagram for two customers and a car, B) including the broken car possibility.

This rapidly growing state-space size can be avoided using symmetry considerations if the customers

or the cars are not distinguished among themselves. Indeed, for two customers and one car, the number

of states reduces to three and six for Fig. 1, A) and B), respectively, as states such as DNU and NDU can

be merged together. However, very often one does want to track individual performance (e.g., Dad might

need the car more often for longer trips, and Car A is old and breaks more often). On the other hand, the

state space will be even larger if we want to distinguish which car is driven by a given customer: if there

are q cars driven at any given time, there are potentially q! possible combinations, although only some of

those combinations might be feasible (for example, one can have a list of preferred cars for each member

of the family and track how their preferences are satisfied).

90

Volovoi

2 Petri nets

The above example represents a general problem with customers generating service demand and cars

representing entities (servers) that service (satisfy) the demand. The meaning of both customers and servers

is domain-dependent. A partial listing of those pairs includes:

• Packets of information (customers) and computer servers or routers (servers) in computer applications

• Tasks (customers) and resources (servers) in business processes

• Callers (customers) and tellers (servers) at the call centers

• Passengers or freight (customers) and transportation and storage resources (servers) in logistics

Matching demand and supply is at the core of modeling needs with SPNs (Marsan 1990).

Noting that alphabetical notations based on the components’ states were used for identifying a system

state, it is natural to employ some sort of equivalent of an alphabet in a graphical description of the system.

Petri nets effectively implement this idea by modeling the states of individual components rather than

the explicit states of the entire system. In Petri nets, Markov chain-state diagrams are complemented by

two new types of objects: first, small filled circles (called tokens) denoting individual components are

introduced, each placed inside of one of the larger hollow circles that denote the potential states of those

components (the latter entities are named “places” as opposed to “states” in Markov diagrams). Second,

in order to model interactions among components, the tokens are routed among places via intermediate

stops or junctures, called transitions, which are denoted with solid rectangles. Any two places cannot be

connected by an arc directly; instead they must be connected through a transition. The number of input

and output arcs does not need to coincide, enabling the merging and splitting of tokens and their routes.

The timing of state changes can be modeled by specifying time delays for transition “firing,” an atomic

(i.e., indivisible) action that removes tokens from all input places for the transition and deposits tokens

into its output places. Such Petri nets are timed Petri nets, or, more specifically, Stochastic Petri Nets

(SPNs) (Balbo 2007, Haas 2002), when delays can be nondeterministic and follow a specified distribution.

In simulation, no limitations on the associated types of distributions are needed, but historically SPNs

referred to models with exponentially distributed delays only, so that they could be converted to Markov

chains and solved using appropriate techniques for the underlying differential equations.

Fig. 2 depicts an SPN for two customers and one car. Using standard notations for SPNs, thin rectangles

denote immediate transitions that incur no delays. We note that the SPN in Fig. 2, A) consists of three

groups corresponding to each component of the system, and if there are tokens in the places “car needed”

and “car available,” those two tokens are merged into a single token deposited into the place “car used.”

This simple model reflects the fundamental feature of SPNs in modeling the coordinated behavior of system

components: tokens that represent the car and the driver are merged into a single “car-driver” token while

driving takes place, and split into separate tokens again when the driving is complete. The model has eight

states (places), but clearly the complexity of the model is determined not only by the number of places but

also by the number of transitions (eight), connecting arcs (20), and tokens (3). In fact, this model does not

take into account the possibility that the car can break while driving (so all trips are completed); to include

this possibility, two extra transitions are added, as shown in Fig. 2, B). Now we have ten transitions and

26 arcs (the corresponding Markov model has 23 arcs).

Such SPN models scale better than Markov chains (which explains the fact that they were originally

used as pre-processors for creating Markov chain models (Trivedi 2002) to be solved using differential

equations). Indeed, there would be three places required for each customer and two places for each car,

so the number of places in the model with 20 customers and 10 cars would be only 80, which is certainly

an improvement over 451 billion states. However, the web of connecting arcs would be so convoluted

that the resulting model is still too complex to be of practical use for visually conveying system behavior.

(Referring back to Fig. 2 B), one can envision 20 segments of the net similar to the two depicted at the top

91

Volovoi

 First customer Second customer

Car Available

Car Needed

Car Used

Car Broken

Car Available

Car Needed

Car Used

Car Broken

Customers

Car Available

Car Needed

Car

Used

Car Broken

21

3

A) B) C)

 Second customer First customer

Figure 2: A) SPN diagram for two customers and one car (no breaks), B) SPN diagram with breaks, C)

Colored SPN diagram equivalent to B) with integer labels (colors) directly shown inside tokens.

of the net, and 10 segments similar to the one to the bottom, with each of the 10 segments at the bottom

being connected to each of the 20 segments at the top.)

2.1 Using high-level extensions of Petri nets

Noting that the subnets for each customer are similar, it is tempting to use only one subnet and represent

each customer by a different token within the same net. Two changes are needed to make this possible:

1. Parallel processing of tokens by transitions: Defining the SPN behavior for multiple tokens in the

same place. Some SPNs use “single-server” enabling (when tokens are enabled and fired one a

time), but here the multiple enabling (or “infinite-server” (Balbo 2007)) is preferable, so that each

token’s eligibility for moving to a new place is assessed in parallel (e.g., two customers might

simultaneously want to drive a car). While it is possible to incorporate both single and multiple

servers within the same framework, single servers can be easily represented using multiple servers.

2. Colors: As demonstrated by Markov chains, the state-space explosion is primarily caused by the

need to account for differences in component behavior. If a token representing a component is

traveling within a distinct subnet (e.g., Fig. 2), we can incorporate the differences by appropriately

adjusting the properties of individual transitions for each subnet. Introducing colors to Petri

nets (Jensen 1993) allows the transition properties to be color-dependent, and so components can

maintain their differences while the corresponding tokens travel through the same subnet. When

tokens are distinguishable, another interpretation of transition firing becomes important: rather than

considering the removal of the tokens from the input places and depositing tokens to output places

separately, we can consider a single action of moving tokens from the input to the output places

(effectively, the entities become more persistent).

The resulting net is shown in Fig. 2, C). It looks more compact and scalable; however, implementing such

a model requires a fairly complex definition of what “color” means. The original concept of a token’s

color (Jensen 1993) allowed for complex attributes to be assigned to tokens, and enabled the transformation

of those attributes by means of complex “inscriptions” (often elaborate formulae specified for transitions).

All this resulted in powerful modeling at the (substantial) expense of reduced model readability and visual

92

Volovoi

transparency. This can be contrasted with the simplest and most intuitively appealing implementation of

a “color” as an integer assigned to a token that can be visualized by the corresponding color (as shown

in Fig. 2, C), tokens’ integers can be depicted explicitly as well, which is convenient for black-and-white

implementations). The merging and splitting of tokens at transitions causes some bookkeeping difficulties

in terms of tracking individual tokens’ identities (colors). For example, when the car is used, there is a

token that represents the first customer using the car, and the following transition should “know” the past

of that merged token in order to restore the original token representing the customer and to route it to

the top place. For multiple cars and family drivers, the permutations will multiply—requiring a matrix

of attributes, which would explicitly stipulate complex rules governing the merging of colors and then

splitting them back.

2.2 Interaction modeling in SPN

Such difficulties in tracking individual tokens through transitions can be avoided by separating transition

functions. Specifically, most of the time a transition has a single input and a single output. In those cases,

the need for a separate node that constitutes junctures for routing tokens among places is eliminated, and

places can be directly connected by arcs. When merging or splitting of tokens is required, special joint

transitions with clear token transformation rules can be used. In addition, inhibitors and their opposites,

enablers, provide an important mechanism for modeling interactions among different entities in the system.

Inhibitors provide a “zero-test” capability, and are known to increase the modeling power of Petri nets

equivalent to that of a Touring machine (Balbo 2007, Haas 2002). Enablers are defined in the opposite

way, and are effectively test arcs (Christensen and Hansen 1993). Test arcs are used in system biology

modeling (Matsuno et al. 2003), where they are denoted with directed dashed arcs; the used notation used

here is chosen to emphasize the fact that enablers are the opposite of inhibitors. Historically, inhibitors

were viewed with a certain degree of skepticism by the Petri net community, as they make traditional

analysis of structural properties (such as reachability analysis) more complex. However, the latest view

of this drawback of inhibitors is not as straightforward, since the new algorithms can successfully handle

inhibitors (Ciardo 2004). In addition, there is a sufficient number of applications (e.g., modeling failure

and maintenance processes of complex systems) where the state space of the problem is relatively well

understood, and the main utility of the modeling consists of quantitative performance evaluation of the

system. It can be shown that any system that can be modeled using Petri nets with multiple inputs and

outputs to a transition can also be modeled using a combination of enablers and inhibitors with direct

transitions between places (in other words, the modeling power is not reduced).

The use of joints for splitting and merging tokens is restricted only to the situations where it is

advantageous and with clearly defined control of token identities. This enables direct connectivity of

places, and when combined with hierarchical representation, the result is a compact yet powerful modeling

framework. The result is referred to as Abridged Petri Nets (APNs) (Volovoi 2013), and resembles a hybrid

between traditional Markov chain-state charts and Petri nets: transitions connect places directly (similar to

Markov chains), but tokens are present to represent individual components of the system (similar to Petri

nets). The tokens have discrete labels (colors) as well as continuous labels (age) (Volovoi 2004).

Transitions as the hubs or junctures of tokens’ movements (depicted as rectangles) provide an ingenious

mechanism for modeling components’ interactions in classical SPNs. The original idea of Petri nets was

conceived in the context of chemical reactions (Petri and Reisig 2008), where the merging (joining) and

splitting (forking) of entities is quite common, which might explain the fundamental role of transitions that

provide a direct means of modeling these processes. Merging and splitting is also important in the context

of informational flows. In other applications such events occur as well, but equally if not more important

are the changes that occur to entities individually. In fact, there are clear competitive advantages to the

modular structuring of complex systems (Simon 2002), which might explain its prominence in both natural

and engineering systems leading to so-called near-decomposibility (Courtois 1977). With this consideration

in mind, entities that comprise complex systems can be considered as operating mainly independently of

93

Volovoi

each other, with interactions occurring relatively rarely. However, when these interactions do occur, they

are critical to the system’s behavior.

The APN modeling framework reflects this near-decomposability, and considers independent (parallel)

behavior as the default, while explicitly focusing attention on the interactions. The joining and forking

of entities represents important mechanisms for modeling a system’s interactions, but, as described in the

examples below, quite often the actual mechanisms are related to enabling or inhibiting state transitions,

while joining and forking provide a means of modeling such mechanisms. The difference is subtle and

often not noticeable when tokens are indistinguishable (as in classical SPNs), but the consequences become

significant when the entities represented by tokens have distinct identities (labels, such as colors (Jensen

1993)).

When a doctor is available to see a patient, the two entities are not actually joined into a single

patient-doctor entity, which is then split back into two separate entities when the visit is over. This is simply

a convenient SPN representation, but it leads to complications when we want to distinguish individual

patients and doctors. The label of the token representing patient-doctor would need to contain information

permitting the proper way of splitting the token into two, restoring the identity and attributes of each

member of the pair and routing them into appropriate places. This can lead to labeling and routing rules

that are quite complex, often hindering visual understanding of the process. APN is specifically designed

to avoid these complications, and the APN properties are discussed next.

2.3 Properties of APNs

1. An APN is defined as a network of places (denoted as hollow large circles) that are connected by

directed arcs (transitions). Changes in the system’s state are modeled by transition firing: i.e., the

moving go a token from the transition’s input place to its output place. The combined position

of APN tokens at any given moment represents the net marking, and fully specifies the modeled

system.

2. Each transition has no more than a single input and single output place (a transition can also have

no input place, providing a source of new tokens every time it fires, or it can have no output place,

providing a sink for tokens; upon the firing of such a transition, a token is removed from the net).

3. A token has a discrete label (color) that can change when the token is fired in accordance with the

policy specified by the firing transition. Tokens also have continuous labels (ages) that can change

both when tokens move, and while a token stays in the same place with the progression of time

(the latter property is specified by the aging transition for the place, which is not necessarily the

same as the firing transition (Volovoi 2004)).

4. A transition is enabled or disabled based on the combined marking of the input places of the

associated triggers (inhibitors and enablers). Inhibitors are depicted as arcs originating at a place

and terminating at a transition with a hollow circle. An inhibitor of multiplicity k disables a transition

at which it terminates if the number of tokens in its input place is at least k. An enabler (depicted

as an arc originating at a place and terminating at a transition with a filled circle) is opposite to

an inhibitor: a transition is disabled unless an enabler of multiplicity k has at least k tokens in its

input place.

5. Transitions have color- and age-dependent policies that specify the delay between the moment

when the token is enabled and when it is fired (for example, one can specify separate distributions

for distinct colors, while age can accumulate as the cumulative distribution function of the aging

transition). If a token-transition pair is enabled, a firing delay is specified based on the combination

of token and transition properties. If the token stays enabled throughout the delay, the token is

fired after this delay expires. If there are multiple enabled tokens in the same place, they all can

participate in the firing “race” in parallel. Similarly, the same token can be involved in a race with

several transitions. If a token-transition pair is disabled, the firing is preempted (however, the aging

label of the token can change as a result of being enabled for a finite amount of time).

94

Volovoi

6. The delays can be deterministic (including zero delay) or follow any specified random distributions.

The firing after a specified delay is “atomic”: it is a single action of moving a token from an

input place to an output place (tokens don’t dwell between places as they do in some versions of

SPNs (Bowden 2000)).

7. Joints (token junctures depicted as triangles) can connect three places, and are a specific subset

of immediate transitions in regular SPNs. While joints do not increase modeling power, there are

situations where the use of the merging and splitting of tokens allows for more compact models. In

contrast to SPNs, these entities are relatively rare, and analogous to the batching and duplicating

building blocks in process-interaction frameworks for discrete-event simulations (Law and Kelton

2000). A split joint has a single input place. A token from this place is duplicated, and two identical

copies (i.e., having the same color, age, and token ID) are immediately deposited into the joint’s

two output places. The merge joint provides the opposite functionality by merging two tokens from

its two input places and depositing a single token into the output place. A dominant input can be

specified (and denoted with a thicker arc line), which stipulates which of the two tokens provides

all the attributes to the merged token. One of the three merging policies can be selected (the choice

is indicated by a capital letter inside the joint) stipulating which tokens can be merged: A = any

two tokens; C = only two tokens of the same color; I = only tokens with the same ID.

8. The performance of the system is based on the statistical properties of the net marking. “Sensors”

or “listeners” assigned to a place provide a means for evaluating relevant statistics about the number

of tokens at that place (e.g., the chances of crossing a threshold for a specified period of time, the

number of times a threshold is crossed, the mean and the variance of the number of tokens, or the

correlation with similar quantities in another place). The presence of sensor is denoted with a solid

rectangle next to a place, and multiple sensors can be assigned to the same place.

9. Fusing places, commonly used in hierarchical Petri nets (see, for example, (Jensen 1993)) is

employed to connect different parts of the model. Fused places appear as distinct graphical entities

during model construction, but represent the same entity in simulation.

In the next section, APNs are used as a representative SPN framework for stochastic simulation. An APN

tool used to generate model snapshots and performance evaluation is available from the author upon request.

3 EXAMPLES

3.1 A Family Car

Let us return to the car example. The corresponding APN diagram is depicted in Fig. 3, A). Each family

member is denoted by a token, and can be in three possible states (denoted with places): the car is not

needed (“Not needed”), waiting for the car (“Waiting”), and driving the car (“Driving”). In this model

there is no token representing a car; instead, an inhibitor of multiplicity one is used to prevent more than

one token appearing in the “Driving” place. This inhibitor stipulates that only one car can be driven at a

time. There are three transitions in the model, numbered as shown in Fig. 3, A).

Next, we introduce the possibility of the car breaking from time to time. If a trip is interrupted by the

car’s breaking, the family member has to wait until the car is fixed, and then attempt the interrupted trip

again (from the beginning).

To model this situation, we introduce a car token. Instead of creating two separate places for both

possible states of the car (broken or not), we employ token colors (i.e., integer labels) to create a more

compact model, as depicted in Fig. 3, B). Here we take advantage of the fact that a family member (customer)

might not be able to drive a car (the car is unavailable) for two distinct reasons—either when another

family member is already driving the car, or when the car is broken. We combine both possibilities into a

single place, “Unavailable,” and introduce an immediate transition, 4, that “pushes” the token representing

a family member to the “Waiting” place when the car breaks (due to the enabler of multiplicity 2). To

95

Volovoi

ensure that the tokens representing cars and people don’t get mixed up, we differentiate them by color:

when the car token gets to the “Unavailable” place, it has color 1, as opposed to the people tokens that

have color 0; and outgoing transitions from that place are color-dependent (transitions 2 and 3 are only

sensitive to color 0 [people], while transition 6 is sensitive only to color 1 [car]).

1

2

3

1

2
3

5

6

4

Not needed Waiting

Unavailable

A) B) C)

Not needed Waiting

Car Available

Unavailable

2

2

Not needed: 11 Waiting: 1

Car Available: 8

1
111

1
2 1 1

Unavailable: 10

2

2

11 10

1

2
3

5

6

4

Figure 3: A) Two customers and one car, B) with car breaking; C) 20 customers and 10 cars.

The model is set up for easy scalability: we simply need to add more tokens and adjust the trigger

multiplicity to change the number of cars and customers. E.g., for a fleet of k = 10 cars with n = 20

customers, the model is shown in Fig. 3, C) (note that the enabler multiplicity is k+ 1 = 11, and the

inhibitor multiplicity is k = 10). At the time of the snapshot, we have two cars broken, eight cars driven,

11 customers not needing a car, and one customer waiting for a car. In this model, if a car breaks but there

is another car available, the customer simply switches to another available car.

3.2 Canceling the Order

A common scenario where the job is cancelled if the total activity time exceeds a certain threshold is

considered, following Jansen-Vullers et al. (2006). This publication contains a variety of workflow patterns

and their feasible translation to Arena. The publication is nine years old as of this writing, so more compact

constructs might have been introduced to Arena; however, given the fact that Arena is one of the leading

DES tools, it is useful to compare those patterns to the equivalent implementation in SPNs . The details of

the Arena model depicted in Fig. 4, A) can be obtained from Jansen-Vullers et al. (2006). For comparison,

an APN model is shown in Fig. 4, B). One can observe that the APN model more directly describes the

process without the need to create an artificial duplicate, as the “race” conditions are naturally implemented

in SPNs. There is actually a slight difference between the two models, as the Process 1 block in Arena

is represented by two different places (Queue and Service), and so in the APN model the cancellation is

specific to the waiting part of the process. It can be argued that this is a more common scenario, which

would require an additional check for the original of the entity to be removed in Arena (one can create an

APN model that would represent the canceling when the service is in progress as well).

3.3 Doctor’s Office

Next, a visit to clinic is modeled. First we follow (Robinson 2013) and consider the problem of determining

whether the number of rooms is sufficient to accommodate the number of patients. Similar to (Robinson

2013), we start with the conservative assumption that all patients arrive at 9:00 AM, and evaluate the chances

that all patients will be served by noon. The model is shown in Fig. 5, left; here the first two transitions

are immediate, where the arrival of the patients is controlled by transition 1, and transition 2 corresponds

to the transition from waiting into the room. Finally, transition 3 has a delay associated with the length of

stay in a room for an individual patient. A simulation for four hours (240 minutes) is considered, with a

mean value of 15 minutes and 40 rooms. The total number of patients is 200. One million simulations

are used to compare exponential distribution with the lognormal distribution having the same first two

96

Volovoi

Create 1

0

Create Queue Service Dispose 1

Cancel

Dispose 2

A)

B)

Separate 1

0

0
Original

0
0

0

Duplicate

Found

Not Found

Removed Entity

Original

Process 1

Search 1Delay 1

Remove 1

Dispose 1

Dispose 2

Figure 4: Arena (top) and APN (bottom) model of canceling order.

moments (mean and variance). The comparison of the obtained PDFs is shown in figure Fig. 5, B). The

Customers: 200

Arrived

Occupying Room

Done

Immed

40

1

2

3

A) B)

0

0.01

0.02

0.03

0.04

0.05

0.06

0 50 100 150 200

P
D

F

Time

Lognormal

Exponential

Figure 5: A) APN diagram of a simple office visit model and B) PDF of all patients served.

“fat tail” effect is observed. In fact, if we use exponential distribution, the chances of completing the task

are 98.6%; in contrast if a lognormal distribution (with matching first two moments) is used, the chances

are only 77.1%. Next, let us consider a more detailed model of a doctor’s office that includes constraints

on both both doctors’ and nurses’ resources in addition to constraints on the number of rooms.

The following process is modeled: the arriving patients are waiting for an available nurse and a room

to get into. After they are attended by a nurse, they remain in the room and wait for a doctor; after the

doctor’s visit, they are attended by a nurse again, who follows up on the doctor’s instructions before the

patient is released. As a result, a nurse is needed for both pre-doctor and post-doctor tasks, and the same

pool of nurses is used for both tasks (it is assumed that the nurses are interchangeable in the sense that for

a given patient it is not necessary to see the same nurse at both the beginning and the end of the visit).

97

Volovoi

The corresponding APN model is shown in Fig. 6. Patients represented as tokens are initially located in

the “Patients” place. In this example there are N1 = 100 patients and N2 = 20 rooms (the “Empty Rooms”

place has 20 tokens). There are eight nurses (N3 = 8) and four doctors (N3 = 4). The constraint on nurse

resources is enforced by an inhibitor of multiplicity 8 originating at the “Nurse” place. Similarly, the

inhibitor of multiplicity 4 restricts the incoming flow in the “Doctor” place.

The patients arrive at random intervals in accordance with a known pattern based on historic demand

and appointment scheduling, and proceed to the reception room. This is modeled by moving tokens into

the “Waiting” place. If there is a nurse and a private room available, the nurse attends to the patient and

the room becomes occupied. This is modeled by moving the patients token first to the “Admitted” place

(when inhibitors allow this move), and then using the split joint to duplicate the token and deposit one

into the “Nurse” place, while the copy is deposited into the occupied room. After the nurse completes the

check-in procedure, the patient remains in the room waiting for the doctor (the corresponding token moves

to the “Waiting Inside” place). When a doctor is available, the patients token is moved to the “Doctor”

place. When the doctor is done with the patient, the patient’s token changes its color from 0 to 1 and is

moved back to the “Waiting Inside” place. When a nurse is available the patient’s token is moved back to

the “Nurse” place; when the Nurse completes the check-out procedure, the patients token is moved to the

“Out” place. The “Out” place is an input to the merging joint that combines the token representing the

patient with its duplicate located in the occupied place, and deposits the result into the “Done” place.

While not important in this model, the merging joint has an I-policy, which ensures that the occupied

room and the patient tokens match (as they were originally generated by the same split action). This property

to match the token by ID is important in other applications. For example, in the case of modeling a business

workflow for processing a loan application, it can be useful to split a token representing an application when

parts of the application are processed in parallel and then merge it based on the original token ID. Here, it

is important to ensure that the two merging parts belong to the same application. An alternative means for

tracking the occupied rooms can use a combination of triggers that ensures coordination of the movement

of two separate sets of tokens (the movement of a single token in one group results in the movement of a

single token in another). This alternative model is not shown here for brevity. Fig. 6 provides a snapshot

of the model when 18 rooms are occupied: six patients are attended by a nurse, four by a doctor, and

the seven patients are waiting inside. The tokens representing patients that have been already served by a

doctor have color 1, which is shown in yellow in Fig. 6.

The parameters of the model can be divided into two categories: timing of individual events (such as

patient arrival or time spent with a doctor) and the number of involved entities, such as demand (patients)

on the one hand, and resources (rooms, nurses, and doctors) on the other. As shown below, the number

of entities can be represented either as the number of the corresponding tokens, or as trigger multiplicity,

depending on what is preferable. Next, both set of parameters are discussed:

Transition Parameters Transition T1 from the “Arrival” place to the “Waiting” place determines the

patient arrival pattern. The time each patient spends with a nurse during check-in is specified by the delay

assigned to the transition T2 from the “Nurse” place to the “Waiting Inside” place. Similarly, the time

during check-out is described by the transition T3 from the “Nurse” place to the “Out” place, and the time

with a doctor is specified by the transition T4 from the “Doctor” place to the “Waiting Inside” place.

Entities This example demonstrates two distinct means for describing the effect of multiple entities.

Tokens are used to represent both patients and rooms. Rooms, nurses, and doctors all can be considered as

resources, so similar constructions to the “Occupied Rooms” place could be used for nurses and doctors.

However, in this example the use of triggers (inhibitors) is used instead to describe appropriate constraints.

In general use of the triggers is more compact but less flexible, as it it is suitable only for describing a single

resource. Changing the number of resources entails adjusting either the number of tokens or the multiplicity

of the corresponding triggers without the need for altering the structure of the model. In addition, one can

use a similar construction to that in the car example (see Fig. 3) to change the number of resources with

time. Specifically, one can add another place from which tokens (of a different color) are deposited to and

98

Volovoi

removed from at a specified schedule (or randomly) to model the corresponding reduction in the number

of the respective resources.

Arrival: 73

Nurse: 6

Done: 2

Waiting: 7

Occupied Rooms: 18

Waiting Inside: 7 Doctor: 4

Out: 1

Admitted

T1
T2

e

T41, e

T3
4

8

18

8

I

Figure 6: APN model of medical office with constrained resources: a snapshot of simulation in progress.

The relevant performance measures of the system can be evaluated, such as expected (mean) waiting

time for the patients, the probability of all patients being served, the number of served patients, etc. For

example, let us consider the situation when patients’ arrivals are uniformly distributed in the interval from

0 - 3 hours, both check-in and check-out by the nurses take a fixed 10 minutes, and the duration of a

doctor’s interaction with a patient varies in accordance with an exponential distribution with a mean of 10

minutes. The results of one million Monte Carlo simulations are considered for two scenarios: for Scenario

A there are four doctors, eight nurses, and 20 rooms; and for scenario B an additional nurse is added, but

the number of rooms is reduced to 18. On average, a patient requires exactly twice as much time with a

nurse as with the doctor, so increasing the nurse-to-doctor ratio above two is not obviously beneficial, as

the number of doctors remains a bottleneck of the process. Utilization as a function of time is shown in

Fig. 7. One can observe that, while the average number of working nurses does not exceed eight even for

scenario B, the utilization of all resources is slightly higher, which translates into a shorter wait for the

patients. The total average waiting time is reduced from 43 minutes to 39 minutes. The chances of serving

all patients within five hours is about 44.3% for case A and increases to 57.5% for case B.

-2

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250 300

M
ea

n
 Q

u
a
n

ti
ty

Time (Minutes)

Occupied Rooms A Occupied Rooms B

Nurse A Nurse B

Doctor A Doctor B

Figure 7: Utilization of resources as a function of time.

99

Volovoi

3.4 Race Track

When discussing emergent behavior in the context of agent-based systems, the congestion pattern (a queue)

that propagates in the opposite direction of the movement of individual cars is often mentioned (Bonabeau

2002, Brailsford 2014). In Brailsford (2014), the modeling of a car race around a circular track where no

overtaking is allowed is discussed as an example that is difficult to model in traditional DES, but is easy to

model in ABM. If all cars are driving at the same speed the initial spacing between the cars is preserved, but

introducing speed variability will break the original pattern. The initial problem has a continuous spatial

representation, which can be preserved in the ABM, but would require discretization in APN. Fig. 8 depicts

an APN model with 12 cars and 23 places representing the track. Each place has an inhibitor for incoming

transitions that prevents overtaking. The multiplicity of these inhibitors is one, but other multiplicities can

be used to model multi-lane tracks with the multiplicity reflecting the number of lanes at a given location.

Depending on the perspective, the need to discretize the spatial coordinates of cars can be considered

as either an extra hindrance or a gentle nudge toward a higher level of abstraction with the benefit of

clarifying the essential parameters of the model. In particular, the following question can be raised about

the specification of speed variability: is it persisting over time? In the simplest scenario the answer is

yes—so some cars are always faster than the others, and patterns of train-like car platoons will form, with

the lead cars being the slowest and aggregating all the cars behind it that are faster. In APN, the easiest way

to model this situation would be to assign different colors to different cars and set up a distinct traveling

time for each color (as the green cars in Fig. 8). The corresponding continuous-time ABM model would

be quite simple. However, one can also consider a perhaps more interesting situation, where the cars vary

their speed with time in a random fashion. Interesting patterns can emerge even if all cars are similar, and

the modeling of this situation in ABM requires answering the following question: how should the time

variability be modeled? Even if the modeler is comfortable with auto-correlation and similar time-series

concepts, it is reasonable to assume that some type of discretization would be an easier solution. This

discretization has been implemented in APN already, so varying the speeds in a random fashion as cars

move from a segment to segment does not require any additional modeling efforts.

P2 P3 P4 P5 P6 P7 P8 P9 P10

P11

P12

P13P14P15P16P17P20P21P22

P24

P1

P23
P18P19

Figure 8: Race track model in APN.

4 CONCLUSIONS

This tutorial is focused on Stochastic Petri Nets (SPNs) in the context of stochastic simulation. SPN

modeling represents a component-based state-space world view that is distinct from both process-interaction

and event-scheduling views. While still using the latter for the back-end engine of the simulation, this

state-space view allows direct races among several processes impacting the same entity simultaneously,

and provides a graphical means for modeling direct interactions between distinct entities that comprise

the system. Traditional process-interaction implementations, such as Arena, also rely on state-space

representation of some system entities (such as resources); however, the underlying dynamics lack a

standard graphical representation of those state changes, and especially of interactions with other entities.

State-space representation can also provide advantages over process-interaction representation in compact

model initialization. A component-based view of SPNs is contrasted to global (system-level) state-space

100

Volovoi

representation used for describing Markov chains, with the former providing clear advantages in reducing

model size and complexity. Multiple versions of SPNs are discussed in the tutorial, including distinguishing

individual tokens and assigning attributes to tokens (colors), introducing triggers (enablers and inhibitors),

and streamlined SPNs that assign transition properties to connecting arcs directly (Abridged Petri Nets).

SPNs can serve as a useful compromise between traditional DES and more flexible (yet lacking standard

building blocks) agent-based simulation. The graphical nature of the models and the small number of

standard building blocks facilitates easy and fast model creation. The models are self-documented and

therefore uniquely suited for tool-independent auditing and conveying the insights from simulation to the

decision makers. These features of SPNs can be useful for lowering the effective level-of-effort barrier

for simulations, independently verifying traditional DES models, and building business cases. On the

other hand, the visual nature of the model logic implementation in SPNs can be less compact than its

programmatic equivalent, so the advantage over traditional DES frameworks can be lost in certain cases. In

particular, SPNs might be inappropriate when the processes are “transformational” rather than “reactive”

and when a process-interaction world view provides efficient modeling representation. SPNs can also

provide a middle-layer, “under-the-hood” level of abstraction, with a higher level of abstraction provided

by domain-specific formalism, such as reliability block diagrams in system reliability, as implemented in

GRIF (Signoret et al. 2013). Similar hybrid simulations might be useful for process-based DES.

REFERENCES

Aalst, W. M. P. V. D. 1998. “The Application of Petri Nets to Workflow Management”. Journal of Circuits,

Systems and Computers 8 (1): 21–66.

Balbo, G. 2007. “Introduction to Generalized Stochastic Petri Nets”. In Formal Methods for Performance

Evaluation, edited by M. Bernardo and J. Hillston, Volume 4486 of Lecture Notes in Computer Science,

83–131. Springer-Verlag.

Bonabeau, E. 2002, May. “Agent-Based Modeling: Methods and Techniques for Simulating Human

Systems”. Proceedings of the National Academy of Sciences 99 (3): 7280–7287.

Bowden, F. 2000. “A Brief Survey and Synthesis of the Roles of Time in Petri Nets”. Mathematical and

Computer Modelling 21:55–68.

Brailsford, S. C. 2014. “Modeling Human Behavior—an (Id)Entity Crisis?” In Proceedings of the 2014

Winter Simulation Conference, edited by A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley,

and J. A. Miller, 1539–1548.

Christensen, S., and N. D. Hansen. 1993. “Coloured Petri nets extended with place capacities, test arcs and

inhibitor arcs”. In Application and Theory of Petri Nets, edited by M. Ajmone Marsan, Lecture Notes

in Computer Science, 186–205. Springer Berlin Heidelberg.

Ciardo, G. 2004. “Reachability Set Generation for Petri Nets: Can Brute Force Be Smart?” In Application

and Theory of Petri Nets, Volume 3099 of Lecture Notes in Computer Science, 17–34. Springer Berlin

Heidelberg.

Courtois, P. J. 1977. Decomposability: queueing and computer system applications. New York, NY:

Academic Press.

Haas, P. J. 2002. Stochastic Petri Nets. Modelling, Stability, Simulation. New York: Springer.

Harel, D. 1987. “Statecharts: a Visual Formalism for Complex Systems”. Science of Computer Program-

ming 8:231–274.

Hayes, B. 2013. “First Links in the Markov Chain”. American Scientist 101:92–97.

Henderson, S., and B. Nelson. (Eds.) 2006. Handbook in OR & MS: Simulation, Volume 13. Elsevier B.V.

Jansen-Vullers, M. H., R. IJpelaar, and M. Loosschilder. 2006. “Workflow patterns modelled in Arena”.

Technical report, Technische Universiteit Eindhoven.

Jensen, K. 1993. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use, Volume 1.

Berlin: Springer.

101

Volovoi

Kesaraju, V., and F. Ciarallo. 2012. “Integrated simulation combining process-driven and event-driven

models”. Journal of Simulation 6:9—20.

Law, A., and W. Kelton. 2000. Simulation Modeling and Analysis. 3rd ed. New York, NY: McGraw-Hill.

Marsan, M. A. 1990. Stochastic Petri nets: An elementary introduction, Volume 424 of Lecture Notes in

Computer Science, 1–29. Springer.

Marsan, M. A., G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. 1995. Modelling with Generalized

Stochastic Petri Nets. Wiley Series in Parallel Computing. John Wiley and Sons.

Matsuno, H., Y. Tanaka, H. Aoshima, A. Doi, M. Matsui, and S. Miyano. 2003. “Biopathways Representation

and Simulation on Hybrid Functional Petri Net”. Silico Biology 3 (3): 389–404.

Miller, J., G. Baramidze, A. Sheth, and P. Fishwick. 2004. “Investigating ontologies for simulation modeling”.

In 37th Annual Simulation Symposium, 55—63. IEEE.

Nelson, B. 2002. Stochastic Modeling: Analysis & Simulation. Mineola, NY: Dover Publications.

Petri, A. 1962. Kommunikation mit Automaten. Ph. D. thesis, Institut für Instrumentelle Mathematik,

Schriften des IIM.

Petri, C., and W. Reisig. 2008. “Petri Net”. Scholarpedia 3:6477.

Robinson, S. 2013. “Conceptual Modeling for Simulation”. In Winter Simulation Conference, edited by

R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, 377–388.

Roeder, T. M. K. 2004. An Information Taxonomy for Discrete Event Simulations. Ph. D. thesis, University

of California, Berkeley.

Ross, S. M. 2002. Simulation. 3rd ed. Academic Press.

Schruben, L. 1983. “Simulation Modeling with Event Graphs”. Communications of the ACM 26:957–963.

Siebers, P. O., C. Macal, J. Garnett, D. Buxton, and M. Pidd. 2010. “Discrete-event simulation is dead,

long live agent-based simulation!” Journal of Simulation (4): 204–2010.

Signoret, J.-P., Y. Dutuit, P.-J. Cacheux, C. Folleau, S. Collas, and P. Thomas. 2013. “Make your Petri

nets understandable: Reliability block diagrams driven Petri nets”. Reliability Engineering and System

Safety 113:61–75.

Simon, H. A. 2002. “Near decomposability and the speed of evolution”. Industrial and Corporate Change 11

(3): 587—599.

Trivedi, S. K. 2002. Probability and Statistics with Reliability, Queuing and Computer Science Applications.

Second ed. John Wiley and Sons.

Volovoi, V. 2013. “Abridged Petri Nets”. ArXiv:arXiv:1312.2865.

Volovoi, V. V. 2004. “Modeling of System Reliability Using Petri Nets with Aging Tokens”. Reliability

Engineering and System Safety 84 (2): 149–161.

AUTHOR BIOGRAPHIES

VITALI VOLOVOI is an independent consultant in the area of industrial internet, risk, reliability, and the

dynamic interactions of complex systems. He collaborates with Mitek Analytics, consults for Logistics

Management Institute, and serves as a member of the NASA Statistical Engineering team. He has led

many projects, including turbine analysis for the Air Force, quantitative risk assessment of the Space

Shuttle wiring for NASA, air transportation safety analysis for NASA, condition-based maintenance of gas

turbines for Siemens, and reliability of the Hubble Space Telescope gyros for NASA. He has received two

NASA Engineering and Safety Group Achievement Awards, a NASA Engineering and Safety Technical

Excellence Award in 2014, and the best tutorial award at the Reliability and Maintenance Symposium

(RAMS) in 2011. He has a Ph.D. in Aerospace Engineering from Georgia Tech, and a University Diploma

in Mechanics and Mathematics from Moscow State University. His e-mail address is vitali@volovoi.com.

102

mailto://vitali@volovoi.com

