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ABSTRACT

Embeddedsystems development has interesting challenges due to the complexity of théhégsks
execute. Most of the methodsed for developing embedded applications are either hard to scale up for
large systems, or require dffigult testing effort with no guarantee for bfigge software products.
Instead, construction of system models and their analysis through simulatimesedoth end costs and

risks, while enhancing system capabilities and improving the quality ofndiepfoducts. M&S let users
experiment with “virtual” syfems, allowing them to explore changes, and test dynamic conditions in a
risk-free environment. We present a Modelven framework to develop cybphysical systembased

on the DEVS (Discrete Event systems Specification) formalism. This approach combines the advantages
of a simulation-based approach with the rigor of a formal methodology. We will discuss how to use this
framework to incrementally develop embedded applications, and to seamlessly integrate simulation
models with hardware components. Our approach does not impose any order in the deployment of the
actual hardware components, providing flexibility to the overall process.

1 INTRODUCTION

Cyberphysical and embedded systems development paseme interesting challenges due to the
complexity of the tasks they execute. Formal methods have showed promising ireghlts area
nevertheless, they are difficult to apply when the complexity of the system under development scales up. .
Most existing methodsfor developing these systems are either hard to scale up for large systems, or
require a difficult testing effort with no guarantee for bug-free prodirgtead,n recent yearssystems
engineers have relied on the use of modeling and simulation (M&S) techniques in order to build better
applicationsConstruction of system models and their analysis through simulation reduces both end costs
and risks, while enhancing system cafiti$ and improving the quality of the final products. M&S let
users experiment with “virtual” systems, allowing them to explore changes, and test dynamic conditions
in a riskfree environment. This is a useful approach, moreover considering that testieg actual
operating conditions may be impractical and in some cases impossible. ¢lpresent a Modelriven
framework to develombeddedsystemsbased on the DEVS (Discrete Event systems Specification)
formalism(Zeigler et al. 2000).

DEVS provides a formal foundation to M&S that proved to be successful in different complex
systems. This approach combines the advantages of a simitdased approach with the rigor of a
formal methodology. Another advantage of using DEVS is that different existing techniques (Bond
Graphs, Chular Automata, Partial Differential Equations, etc.) have been transformed into DEVS
models. We discuss how to use this framework to incrementally develop embedded applications, and to
seamlessly integrate simulation models with hardware components. Our approach does not impose any
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order in the deployment of the actual hardware components, providing flexibility to the overall process.

The use of DEVS improves reliability (in terms of logical correctness and timing), enables model reuse,
and permits reducing development and testing times for the overall process. Consequently, the
development cycle is shortened, its cost reduced, and quality and reliability of the final product is

improved.

2 BACKGROUND

Because of the growing complexity of embeddsdtems andheir need for high reliability, their
software development is still time consuming, error prone, and expensive. Many techniques have been
proposed and used in practice to check correctness of emisaftieare. Current embedded Engineering
methodologiesise modeling as a method to study and evaluate different system designs before building
the real application. In this way, real systems would have a very high predictability and reliability. In
order to apply this methodology, a designer must abstract the physical system at hand and build a model
for it, then combine this with a model of the proposed controller design. Then, different techniques can be
used to reason about these models and gain confidence in its correctness. Informal methods usually rely
on extensive testing of the systems based on system specification (Rehman et alT 2887 methods

have limitations because, in order to guarantee software reliability, we need to apply exhaustive testing to
the software component, using all possible input combinations, which is a costly process. Many
techniques have been proposed to enable a practical alternative to this exhaustive software testing
(Gerlich et al. 2007)However, we cannot guarantee a full coverage of all possible execution paths in a
software component, thus leaving us with limited confidence in our software correctness.

Formal software analysis use is growing as an alternative, as this technique allows full verification of
software components to be free of errors. In last decaukese techniques have matured to be used in
some industrial capacity for software and hardware correctness verifi(@ugyer et al. 2007)Formal
techniques can be used to prove the correctness of systems specifications. Nevertheless, they are usually
constrained in their application, as they do not scale up well. Likewise, the designers need a high level of
expertise in applying these techniques.

Formal verification technigues are of two main tymgjuctiveor algorithmic. Deductive techniques
rely onrepresenting the system and its specification with logic rules, and then try to deduct a proof of
system correctness. Algorithmic techniques rely on molding the system in a graphical form, and coding
specifications in logical queries. Then an algorithmréachability analysisearches the graph space for
nodes reachable from initial system configuration that satisfy specification queries. This method is also
calledmodel checkingNew theoretical advances in model checking allow guaranteeing certaintigope
about models of such systems using a formal approach. Model checking techniques can be automated to
improve the work of the software engineer. Timed automata (TA) theory (Alur and Dill,1i&94)
particular, has provided many practical results indhés. However, there is still a gap between a system
model that is checked as an abstract entity, and the actual system implementatitmbmden on a
target platform.

A different approach to deal with these issues considers using Modeling and BmM(N&&S) to
gain confidence in the model correctness. The use of M&S is not new, and systems engineers have often
relied on these methods in order to improve the study of experimental conditions during model definition.
The construction of system models and their analysis through simulaliszeseboth end costs and risks,
while enhancing system capabilities and improving the quality of the final products. M&S let users
expeiment with “virtual” sysems, allowing them to explore changes, and test dyneomditions in a
risk-free environment. This is a useful approach, moreover considering that testing under actual operating
conditions may be impractical and in some cases impossible. Nevertheless, no practical, automated
approach exists to perform the transition that exists between the modeling and the development phases,
and this often results in initial models being abandoned, resulting in increased initial costs that project
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managers usually try to avoid. Simultaneously, M&S frameworks are not as @bukeir formal
counterparts are.

The DEVS formalism provides a formal M&S framework that can be used to deal with these issues.
DEVS was originally defined in the '70s as a disceatent modelling specification mechaniggeigler
et al. 2000) 1t is a ystems theoretical approach that allows the definitions of hierarchical modular models
that can be easily reused. A real system modeled with DEVS is described as a composite of submodels,
each of them being behavioral (atomic) or structural (coupled), as seen in Figure 1. Each basic model
consists of a time base, inputs, states, outputs and functions to compute the next states and outputs. As the
formalism is closed under closure, coupled models can be integrated into a model hierarchy.
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Figure 1: Coupling of DEVS models (A1, A3, A4: atomic mod€i¥piner2009).

A DEVS atomic model is formally described by:

M=<XS,Y &nt, Sext, A, D >
X: input events set;
S state set;
Y: output eventset;
Sin: S — S, internal transition function;
dexi: Q X X = S, external transition function; where
Q={(s,e)/s &S, and e 40, D(s)]};
A: S—Y, output function; and

D: S - Rgp™ U «, elapsedime function.

Each model is seen as having input and output ports to communicate with other models. The input
and output events will determine the values to appear in those ports. The input external events are
received in an input port, and the model specification should define the behavior under sucf ngputs
internal events produce state changes, whose results are spread through the output ports. The ports
influences will determine if these values should be sent to other models.

A basic model can be integrated with other DEVS basic models to buildctustiumodel. These
models are called coupled, and are formally defined as:

CM=<XY,D,{M} {l }{Z}, select >
X is the set of input events;
Y is the set of output events;
D is an index for the components of the coupled model, and
Vi e D, M is a basic DEVS model, where
Mj = <X, S, Yj, inti. dexti 1§ >
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li is the set of influencees of model i, andl € I;, and
Zii: Yi — Xjis the i to j translation function.
Finally, select is the tiebreak selector.

A main advantage of the DEVS pargui is that the models can be specified independently of the
simulation mechanism. Zeigler also suggested an abstract simulation mechanism that will be briefly
introduced in this section, as the tool here presented uses it.

The simulation process begins by initializing all the component models. The state of each basic model
is defined and the next internal transition for each of them is computed. The abstract simulator analyzes
the external events and the scheduled internal transitions, and chooses thedakto be activated
(called the imminentmodel). In the simulated time t, each componenh&% a state,sand haslapsed
time e. The next event in the system will be the one with lower scheduled time. If there is more than one
component with that time, the select function will be used to select the immiece. chosen, the
imminent model is activated. If a basic model receives an external evet ¢he model executes the
external transition functiodex. As a result, the next internal event can be re-scheduled.

When the time for an internal even arrives, the imminent model must execute its internal transition
function. The first step is to execute the output functi@nd to generate an output event y sEach
output is sent to the influeees as a translated input, using ther@nslation function. After, the internal
transition function & will execute, resulting in a state change and the scheduling of a new internal
transition function. The behavior for each of the internal and external transition functions is dependent of
the basic model behavior.

2.1 DEVS Model Definition in CD++

CD++ implements the DEVS theory. It allows defining models according to the specifications introduced
in the previous section (Wainer 2009, Wainer 2002). The tool is built as a hierarchy of models, each of
them related with a simulation entity. Atomic models can be programmed and incorporated onto a basic
class hierarchy programmed in C++. A specification language allows defining the model's coupling,
including te inial values and external events.

Model definition in C++ allowsthe user great flexibility to define behavior. Nevertheless, a non
experienced user can have difficulties in defining models using this approach. The provision of graphical
notations camprovide the modeler with a powerful tool to define models. Graph-based notations have the
advantage of allowing the user to think about the problem in a more abstract way. Therefore, we have
used an extended graphical notation to allow the user define atomic models behavior. Each graph defines
the state changes according to internal and external transition functions, and each is translated into an
analytical definition. For instance, the Figure 1 shows a state called "Start", whose duration is 15 time
units.

Figure 2: State Graphical Notation: Identifier, Time Len@tfainer 2002).

The syntax for the state analytical specification is:
state : stateld ...
stateld : lifetime

Each model includes an interface with input/output ports. Ports are described by including their name
and a type, based on the formal specification for DEVS models. They are specified as:
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in : portld:itype portld:type ...
out : portld:itype portld:type ...

Internal transition functions are regented by arrows connecting two states. Each of them can be
associated to pairs of ports with values (p,v) corresponding to the output function. The syntax for the
output function values is p! v.For instance, this figure represents that the model will change from state
A to state B after 2 time units. First, the output function will send the value 8 through the port q1; 4
through the port g2, and 12 through the port g3.

ql!
gzl
s q3112

Figure 3: Definition ofan Internal Trantion Function (Wainer 2002, 2009).

The syntax for the internal transition function construction is the following:
i nt : startState endState [outPort!lvalue]+

Here we indicate the origin and destination states, and a port list with the corresponding-ealues.

instance, the model in the previous figure can be described as:
int : ABql!8g2!4q3!12

External transition functions are represented graphically by a dashed arrow connecting two states.
The notation used to represent ports and expected valugsl#s 0 the one used for external transition,
but replacing the exclamation mark by a question matkit...t;]. Here, ti...tf represent the initial and
final expected simulated times for the external transitions. These values allow validatiimging of the
models raisingan error if an external transition comes out of time. The syntax for this construction is the

following:
ext : startState endState inPort value timeRange

It describes the origin and destination states, an input port and a tigeeaaunted since the instant
arriving to the start state.

All these constructions can be combined to define the behavior of atomic models. For instance, the
following Figure 4 represents a simple model using all the constructions:

Atomic

) in?4[1.3]
itvitite ger ’ Start Process
TL=4 TL=1D ’ ot integer
wzs Y
-

-

Outla out! 1

Figure 4: Definition of an Atomic Model (Wainer 2002).

This model can be formally specified as:
Simple_Proc =<1, X, S, Y,if, dex, A, D >
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| = <P, P'>where P ={("in", integer) }; P' = { ("out", integer) };
X=Y=Z7; S Start, Process, Finish };

dex(S,€,X):
case port (in) {
4: if (e <lore>3)error();
phase = Process;
D = 10;
2. if(e<2ore>5)error();
if (phase != finish)
phase = Process;
D =10; }
A(S):
case (phase) {
Finish: send(out, 6);
Process: send(out, 1);}

Sint(S):
case (phase) {
Process: phase = Finish; D =7;
Finish:phase = Start; D = 4; }

For instance, in this case we see that being in the (Btase, we need to receive an input (and trigger
the external transition function) through port 4 between time units 1 and 3; otherwise there will be an
error. If the input is received, we change to the pRaseess, which lasts 10 time units. When this time
is consumed, werigger the output function (which outputs a value of 1 through poyt aod an internal
transition that switches to phaBaish. We schedule the next internal transition in 7 time units. At that
point, we can receive an input through port 2 (between time uiitotherwise it is an error), or wait
until the internal transition is triggered. In the first case, we switch back to the Process phase. If we do not
receive an inputie generate an output (with value of 6 through pon, e go backo theStart state.

The previous graphical specification can be used to genbeat®ellowingtext definition which is
equivalent to the previous specificatiofWainer 2002):

[exampleGG]

in:in

out: out

state: Start Process Finish
int: Process Finish out!1
int: Finish Start out!6
ext: Start Process in 4
ext: Finish Process in 2
Start: 4

Process: 10

Finish: 7

Figure 5:Text Definition of the example in Figure(Wainer 2002)
After each atomic model is defined, they can be combined into a coupled, mbdg are defined
using a specification language specially defined with this purpose. The language was built following the

formal definitions for DEVS coupled models. Therefore, each of the components defined in section 2 for
coupled models can be included.
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As showed in thdformal specifications presented earlidour properties must be configured:
components, output ports, input ports and links between models. We use the following syntax:

Conponents: it describes the models integrgt a coupled model. The syntax is:
model_name@class_name, allowing more than one instance of the same model using different names. The
class name reference to either atomic or coupled models.

aut : it defines the names of output ports.

I n: it defines thenames of input ports.

Li nk: it describes the internal and external couginghe syntax is:source_port{@model]
destination_port{@model] . The name of the model is optional and, if it is not indicated, the coupled
model being defined is used.

[top]
components: DeparturesQ@ StoppableQueue Track@Track LandingQ@ StoppableQueue
ControlTower@ControlTower Hangar

in:In out : Out

link : out@DeparturesQ In_d@ControlTower  link : out@LandingQ In_a@ControlTower
link : In in@LandingQ link : Out_a@Track In@Hangar

link : Out_d@Track Out link : Done_a@ControlTower in@LandingQ

link : Stop_a@ControlTower stop@LandingQ  link : Out@Hangar in@DeparturesQ

link : Departing@ControlTower Departing@ Track

link : Landing@ControlTower Landing@Track link:Done_d@ControlTower in@DeparturesQ
link : Stop_d@ControlTower stop@DeparturesQ

[Hangar]

components : selector@selector depositl@queue deposit4@queue deposit3@queue
deposit2@queue Chosen@DeMux

in:In out: Out

link : outl@selector in@depositl link : out2@selector in@deposit2
link : out3@selector in@deposit3 link : out4@selector in@deposit4
link : out@depositl inl@Chosen link : out@deposit4 in4@Chosen
link : out@deposit3 in3@Chosen link : out@deposit2 in2@Chosen
link : In in@selector link : out@Chosen Out

Figure 6: Coupled model definition.

Let us consider the specification in the previous figure, which represents a small Aihgqgrtop]
model always defines the coupled model at the top level. The control tower isteshttetwo queues:
one for departures, and the other for arrivals. These queues are used to model the time employed by
planes to enter or leave the airport area. The control tower is also connected to a model representing the
track. Every time a plane is authorized to depart or land, the track model is activated. Finally, all landed
planes go to a Hangar for maintenance. A plane can only leave after service. The hangar can be defined as
an atomic model, or as a coupled model with different service stafiiwrntbie planes. CD+tses this
information to generate instances of previously defined atomic models, or creates new instances of
coupled models that can be later reused to form other multicomponent models.

2.2 Simulation Algorithms

As stated, the tool is based on the DEVS formalism, and provides an environment to build discrete events
models. The system architecture was built using the abstract simulator concepts described in (Zeigler et
al. 2000), and it can be summarized as in Figure 7

There are two basic classes: Models and Processors. The Models classes are devoted to define the
conceptual models, and the Processors implement the simulation mechanism. There are diffent kinds
simulaticn Processors: Simulators, Coordinators and a Rootdinator. These processors are related
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with the models in pairs: a Simulator is associated with an Atomic model, and a Coordinator with a
Coupled model. Each existing model will have a unique associated processor.

Model has instance variablgzrocessor(to identify its associated processagpprent (link to the
coupled model containing this model), inpartd outpor{to specifymodel interaction).

The Atomicclass is used to represent the atomic basidetso The methodsit-transfn exttranstn,
outputfn andtime-advancefnrepresent the internal transition, external transition, output and time
advancement functions respectively. Thactionswill be overloaded by the modelléo define the
desired behawr depending on the system to be modefédupledModel implementsthe hierarchical
constructions defined by the modelling formalism. A coupled model is defined by specifying its
componentsahildren), and the coupling relationships. The coupling is specified by the recaivers
influencesnstance variables, whidllow the definition of the Zfunction.

The Processorsare built to execute the abstract simulation procedures by implementing the DEVS
theoreticalconcepts. Following these concepts, SimulatmdCoordinatorsare built to manage atomic
and coupled models, as stated earlier. The-Rootdinatordrives the simulation in its global aspects. It
maintains the global time, and it is in charge of the start and finish of the simulation. It also collects the
output results. It is related with the highest level coupled model and its corresponding coordinator.

The coupling relationship is recorded in the instance variat@escomponentandprocessorof the
Processor and Model respectively.eTparent variable is used to indicate the parent processor in the
simulators hierarchy. The times of the last event and the next event are recorded to identify the imminent
children, as to verify correctness in the message simulated times.

Entity

Ist
name

\ 4 Y
Model Processor

processor parent

parent devs-component
inport time-of-last-event
outport time-of-next-event
cell-position

4 \ 4 A J A J A
Atomic-Model Coupled-Model Simulator Co-ordinator Root Co-ordinator

ind-vars children * child clock
int-transfn receivers wait-list
ext-transfn influences
outputfn

time-advancefn

Figure 7: Basic class hierarchy
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The simulation process is carried out by data transfer carried out through message passing. The
messages include information related with the message’s origin, theofirthe related event, and a
content consiting of a port and a value.

There are four different messages:

*: used to signal a state change due to an internal event;

X: used when an external event arrives (including its port and value);

Y: model’s outputand

done: indicating that a model has finished with its task.

Processors
Root
Models
X Y |Done
Coordinator Coupled
x| * Y |Done
Simulator Atomic

Figure 8: Relationship between Models and Processors.

Simulation advances through message passing between the Protgbssorshe imminent model is
selected, a -fmessage is sent to its simulator, passing through the middle level coordinators.

When an external message arrivesXamessage is consumed and the externakitian function
executed. The simulators return donessages and-Wessages that are converted to nemessages
and Xmessages, respectively. The messages are translated using the cell coupling previously defined.

3 MODELLING AND SIMULATION FOR DEVELOPMENT OF EMBEDDED SYSTEMS

In recent years, there have beenumber ofefforts focusing ordefining newformal methods and tools

for development of embedded systemsarticular those with redime constraints. As discussed earlier,

most existing methods are still hard to scale up, and they require exptsting efforts with no
guarantees for bufyee products. Instead, systems engineers have often relied on modeling and
simulation (M&S) techniques to improve development and obtain higher quality productsbd4&8-

testing is widely used for the early stages of a project; however, when the development tasks switch
towards the target environment, early models are often abandoned. In order to deal with these issues, we
introduced a DiscretBvent Modeling methodology based on DEVS, which combines the adpesnof a

practical approach with the rigor of a formal method; in which one consistently use models throughout the
development cycle.

Building system models and their analysis through simulation (M&S) reduces cost and risk, allowing
exploring changes and testing of dynamic conditions in amgkenvironment. This is a useful approach,
moreover considering that testing under actual operating conditions may be impractical and in some cases
impossible. Despite the net gains, most project managers are reluctant to use the techniques because they
require extra initial resources in the construction of simulation models that will not be part of the
delivered application.

Our idea is to enablthe incremental construction of embedded applications using &tdiseent
modeling architecturéoth for simulation and as the final target architecture for products. DEVS is a
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well -defined formalism that is expressive, operates at a high level of specification, and can be used both
to represent computing systems anddescribe physical systems. DEVS models have a rich structural
representation of components, and formal means for explicitly specifying their timing, which is central in
the design of cybephysical systems. The use of DEVS offers the following advantages

¢ Reliability. logical and timing correctness rely on DEVS'’s system theoretical roots and sound
mathematical theory.

o Model reuse DEVS has weldefined concepts for coupling of components and hierarchical,
modular model composition.

o Hybrid modeling and knowledge reuse: it has been shibatrDEVS is the most general discrete
event formalism, and many embedded systems methods have been mapped to DEVS (i.e., VHDL,
Petri Nets, Timed Automata, State Charts, etc.). An application can be built using different
methods while keeping independence at the level of the executive, using the most adequate
techniquefor each component, enabling the reusexgting expertisen each part of system
architecture.

e Process flexibility these hybrid modeling capabilities are transparent for the executive, which is
defined by an abstract mechanism that is independent from the model itself. Existing DEVS tools
have showed their ability to execute such variety of models with high performance.

e Testing the construction ofexperimental frames (that is, sets of conditions under which the
system is observed or experimented with) can be automated.

The method uses M&S for the initial stages, and replaces models incrementally with hardware
surrogateswithout modifying the original modeldhe transition can be done in incremental steps,
incorporating models in the target environment after thorough testing in the simulated platform, allowing
reuse of early models throughout the process. The approach does not impose any order in the deployment

of the actual hardware, providing flexibility. Figuresi®ows the architecture of theethodology.
i)

: i -
| Test Case Derivation
i DEVS ) RO
Sol- ; _’ Specification DEVS Simulafion |~ _ -
3]
. Model -
(2) (6) U 1
(®) : : ' 8
Model-Checking DEVS RT =
@) Executive

k]

Target
Platform

Figure 9: evelopment cycle (Wainer and Castro 2011).

Initially (1), we define a specification model of the System of Interest (Sol) using a formal model
(using DEVS or alternative techniques translated to DEVS). Once the specification model is complete,
modelchecking is used foralidation of the model properties (2). The same moalesthen used to
definea DEVS simulation of the behavior of the different submodels under specific loads (3). Thus, we
study system properties analytically, and complement the proofs using simulation models, which can also
be used for hardware/software codesign activities (and with training purposes).
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The same DEVS specification modeah be used to derive test cases (4), which can be reused for the
simulation studies. Deriving test cases from bothtbdel (4) and from the simulation results (5) allows
us to check that the models conform to the requirements. Once we are satisfied with both analytical and
simulated resultghe same componerase incrementally incorporated into the target platform. A-real
time Executive (6) executes the models ohaadware surrogate (9). If the hardware is not readily
available, the software components can still be developed incrementally and tested against a model of the
hardware to verify viability and take early design decisions. As the design process evolves, both software
and hardware models can be refined, progressively setting checkpoints in real prototypes. The executive
allows to execute dynamic models and to schedule static and dynamic tasks (activatimgndatory
parts or alternate models under transient overloads).

At this point, for those parts of the model that are still unverified (in the formal and simulated
environments), testing will increase the confidence of the engineer into the implemergad (3ysiAny
modifications require going back to tekeme model specificatio8), which ensure that we can provide a
consistent set of apparatuses throughout the development. As in any software life cycle, this process is
cyclic, allowing refinement follwing a spiral approach. On each cycle of the spiral, we have a prototype
application consisting of software/hardware components interacting with simulated subcomponents.

3.1 E-CD++: an Environment for Modeling Embedded Systems

The ECD++tool provides amechanism to implement DEVS models (which can be implemented in C++
or using a built-in language) using DEVS formal specificatenms following the approach defined above

in Figure 9. For instance, in the following examplee ButtoninputModulemodel shows parts of a
component of a cruise control system (CCS) (Yu and Wainer 2007)

ButtonIinputModule::ButtonInputModule ( const string &name ) : Atomic( name ),
in_BUTTON( addInputPort( “in_BUTTON") ), out_ON( addOutputPort( "out_ON") ),
out_RESUME( addOutputPort( "out. RESUME") )

{ reactionTime = VTime(O0, 0,0, 15); }

Model &ButtoninputModule::externalFunction ( const ExternalMessage &msg ) {
if( msg.port() == in_BUTTON ) {
inType=(int)ymsg.value();
holdIn( active, reactionTime );

1}

Model &ButtonlnputModule::outputFunction ( const InternalMessage &msg ) {
switch(inType) {

case ON: //take action {
sendOutput( msg.time(), out_ON, HIGH) ;
break; }

case OFF: //take action {
sendOutput( msg.time(), out_OFF, HIGH) ;
break; }

-1}

Model &ButtonlnputModule::internalFunction ( const InternalMessage & ) {
passivate();}

embedded=D++ integrates simulation models and hardware components for the methodology.
Figurel10 outlines the software hierarchy generated by the executive to execute the CCS model. The Root
Coordinatormanages the interaction with an Experimental Frame (used to test the model). A Coordinator
synchronizesubcomponents. Timing constraints can be associated to each external input, and when the
processing of such an event is completed, the Coordinators checks if the deadlines were met (to obtain
performance metrics, or to provide alternate actions if a deadline be missed).
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Experimental Frame
(event/laog files)

External events outputs
{(lnButton, inBreak, etc.) (throttle}

i mRT-CD++ T
; Root Coordinator r Wwall-

Clock
messages YSsages

ProcModule: ButtonInputModule:
coordinator Atomic Coordinator

messagei//ﬂ

——
Event list
(deadline

information)

This was the base for Embedded CD++(JB++), designed to execute in embedded environments
interacting with hardware surrogates. The time advance function is tied to thtemeeaock, and
inputs/outputs can interact with external devices, includingmenthecks of the timing deadlines. The
engine runs on a single board computer (SBC), and an Eclipse-based IDE helps non-expert users
(including a graphical environment based on DEVS-graphs) following the methodology.

We will show how to use our methodologg develop embedded applications incrementally,
integrating simulation models and hardware components. Initially, we develop models entirely in E-
CD++, and we replace them with hardware surrogates at later stages of the process, making the transition
in incremental steps, incorporating models in the target environment with hasbhfavare components
after thorough testing in the simulated platfousiig the specification models throughout the prgcess

On http://celkdevs.sce.carleton.ca/mediawiki/index.php/Robodhe reader will find a sample
application built as an experimentation environment for the construction of robotic controllers.

Once satisfied with the overall t@vior of the simulated model, we progressively replace simulated
components with their hardware counterparts. The first step was to replace the button controller model
(i.e., we use a keypad to receive requests, and we send them to the simulated model). The remaining
components are unchanged. Replacing the component is straightforward: we only need to remove the
original component from the coupled model definition. Testing the model only requires reusing the
experimental frames used for simulation. After conducting extensive tests, walscaremove the
remaining components to the microcontro{(u and Wainer 2007)

Our methodwas applied on a prototype for an application (embedded in a Network Processor)
managing the Quality of Service (QoS) of higteed datflows. We want to enforce lovevel traffic
shaping actions according to both higkel QoS policies (which assign network resources to the
competing traffic) and the evolving performance of traffic. At the higher levels we find apaised
global policies (with a few changes per day). At lower levels, QoS shaping algorithms modify the
assignment of network resources to déaas (every few seconds). At the lowest levels, specific
algorithms take granular decisions at the microsecond time scale, ofpacket basis. We designed a
prototype QoS shaper system that accepts policies from higher levels while knowing the status of the
lowest level traffic (thgpacket droprate). Depending on the policies set and the datp; information is
sent to the lower packétvel algorithms to enforce granular decisions. I/O information is sent through
reattime ports by BED++. When a QoS policy change comes from the higher levels, the model's
parameters get different values, generating an adapted QoS Controller with new behavior.
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We wed an Intel IXP2400 Network Processor (an432.5 Gbps line rate packet chip structured in
two levels: theslow data path with an Intel XScale Core processor, antagtadata path, with 8 multi-
threadednicro engines ME). The IXP2400 allows implementing reconfigurable rule engines that can be
adapted on demand with high performance for thé&gidtandling task3Ve embedded E£D++ on the
XScale Core processor as Core Component (either in standalone mode or linked with the MEs). The
models executed by ED++ and themicroblocks(software units of code that run multithreaded inside
each of the MES) interact in retine.

We followedthe stepdor an incremental cdevelopment prototype of the system. On a first stage,
we verified the system behavior in theCb++ standalone simulator. The QoS Actuator and Traffic
Sensor models commands and sehsedroprate values respectively. They talk to their counterparts in
the Packet Processing system, a QoS Shaper and a Metering System that know how to communicate with
the QoS Actuator and Traffic Sensor.

IXP2400 N IXP2400 N
Chip QoS Policy Manager Chip QoS Policy Manager
QoS Controller QoS Controller
QoS Traffic - QoS Traffic
Actuator Sensor Actuator Sensor
r 7
QoS Shaper N
Traffi Traffi
Generator —| |—> Consumer
Packet Processing
Pipeline
T QoS Shaper Meter
rin m
DEVS Models ctering Syste DEVS Models SRS Sty
on ECD++ on ECD++ Mapper Mapper
CIC++ CiC++ SW/HW
Driver
HAL
Microengine C Microengine Microengine C Microen
Space QoS Shaper Space
Packet Processing
Tratic || Pipeline Ll ra
Generator CaITEmET
Metering System

Simulated DEVS QoS system and DEVS Packet Processing system Simulated DEVS QoS system and real-world Packet Processing system

Figure 11: Modeling a QoS processing syst@ainer and Castro 2011).

Once the functionality of the QoS controller was verified, we moved it into the IXP chip. Then the
micro enginegake the place of their DEVS counterpart models (implementing traffic generation, traffic
consumer, QoS Shaper, Metering System and Packet Processing Pipeline). The QoS Actuator and Traffic
Sensor were redirected to special software/hardiMamper models(signal forwarders that know how to
communicate with the IXP libraries for doing the mapping). The scenario switch is completely
transparent for the QoS Controller system. Finally, by means of a cerat@picketropping generator
code (running on thRIES), the whole system was validated. In the meantime, other hardware pieces were
reprogrammed by a separate development team to prepare the RED algorithm to effectively react to the
new Shaping commands, thus interleaving the software and hardware co-development process, and then
starting a new incremental cycle of system verification and validation.

4  CONCLUSION

In recentyears, the Software Engineering community has spent a tremendous effort in creating formal
methods and tools for developing embeddedesys, in particular, those with retithe constraints.
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Despite these efforts, most existing methods are still hard to scale up, and they require expensive testing
efforts with no guarantees for bfige products. Instead, systems engineers have often relied on modeling
and simulation (M&S) techniques to improve the development task and obtain higher quality products.
M&S-based testing is widely used for the early stages of a project; however, when the development tasks
switch towards the target environmemarly models are often abandonddsing an M&Sbased
development methodology based on discestent systems specificatiotike the one presented here
combines the advantages of a practical approach with the rigor of a formal method, in which one
consisently use models throughout the development cycle.

The proposed methodology uses the DEVS formal modeling technique, improving the safety and
development times of the simulations. Abstract simulation mechanism enables defining different
simulation techiques without needing changing the models developed, as they follow the formal
specifications of DEVS formalism. The models are easy to mbasiks to the hierarchical construction.
Consequently, the costs of development are reduced, the quality of the models improves, and non-expert
users are able to start developing new applications with a fast learning curve. Several types of models can
be integrated in an efficient fashion, allowing multiple points of view to be analyzed using the same
model. The formalism allows improving the security and cost in the development of the simulations.
Experimental results of application showed improvements for expert developers.

We discussed how tmansitionfrom simulation in a model-based environment, and then esduoait
same modeldirectly in ahardware surrogat&Ve showed the use of DEVS to build this kind of models,
which allowed us to develop incrementally different applications including hardware components and
DEVS models. The transition from simulated mod&isthe actual hardware can be incremental,
incorporating deployed models into the framework when they are ready. This approach does not impose
any order in the deployment of the hardware components, providing flexibility to the overall process. The
use of DEVS improves reliability (in terms of logical correctness and timing), enables model reuse, and
permits reducing development and testing times. Consequently, the development cycle is shortened, its
cost reduced, and quality and reliability of the final product improVéd.showed the use of these
methods in the ESD++ toolkit, in which embedded systems can be designed following DiEas8d
methodologies, and be implemented on different hardware (FPGA, SBCs, general purpose processors or
specialized onedkie the IXA platform). The verified modelsan be deployed to the targets without
modifying a single line of code. In this way, we qaovideadvanced capabilities for rapid prototyping
and development.
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