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ABSTRACT 

Embedded systems development has interesting challenges due to the complexity of the tasks they 
execute. Most of the methods used for developing embedded applications are either hard to scale up for 
large systems, or require a difficult testing effort with no guarantee for bug-free software products. 
Instead, construction of system models and their analysis through simulation reduces both end costs and 
risks, while enhancing system capabilities and improving the quality of the final products. M&S let users 
experiment with “virtual” systems, allowing them to explore changes, and test dynamic conditions in a 
risk-free environment. We present a Model-driven framework to develop cyber-physical systems based 
on the DEVS (Discrete Event systems Specification) formalism. This approach combines the advantages 
of a simulation-based approach with the rigor of a formal methodology. We will discuss how to use this 
framework to incrementally develop embedded applications, and to seamlessly integrate simulation 
models with hardware components. Our approach does not impose any order in the deployment of the 
actual hardware components, providing flexibility to the overall process.  

1 INTRODUCTION 

Cyber-physical and embedded systems development poses some interesting challenges due to the 
complexity of the tasks they execute. Formal methods have showed promising results in this area; 
nevertheless, they are difficult to apply when the complexity of the system under development scales up. . 
Most existing methods for developing these systems are either hard to scale up for large systems, or 
require a difficult testing effort with no guarantee for bug-free products. Instead, in recent years, systems 
engineers have relied on the use of modeling and simulation (M&S) techniques in order to build better 
applications. Construction of system models and their analysis through simulation reduces both end costs 
and risks, while enhancing system capabilities and improving the quality of the final products. M&S let 
users experiment with “virtual” systems, allowing them to explore changes, and test dynamic conditions 
in a risk-free environment. This is a useful approach, moreover considering that testing under actual 
operating conditions may be impractical and in some cases impossible. Here we present a Model-driven 
framework to develop embedded systems based on the DEVS (Discrete Event systems Specification) 
formalism (Zeigler et al. 2000).  

DEVS provides a formal foundation to M&S that proved to be successful in different complex 
systems. This approach combines the advantages of a simulation-based approach with the rigor of a 
formal methodology. Another advantage of using DEVS is that different existing techniques (Bond 
Graphs, Cellular Automata, Partial Differential Equations, etc.) have been transformed into DEVS 
models. We discuss how to use this framework to incrementally develop embedded applications, and to 
seamlessly integrate simulation models with hardware components. Our approach does not impose any 
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order in the deployment of the actual hardware components, providing flexibility to the overall process. 
The use of DEVS improves reliability (in terms of logical correctness and timing), enables model reuse, 
and permits reducing development and testing times for the overall process. Consequently, the 
development cycle is shortened, its cost reduced, and quality and reliability of the final product is 
improved. 

2 BACKGROUND 

Because of the growing complexity of embedded systems and their need for high reliability, their 
software development is still time consuming, error prone, and expensive. Many techniques have been 
proposed and used in practice to check correctness of embedded software. Current embedded Engineering 
methodologies use modeling as a method to study and evaluate different system designs before building 
the real application. In this way, real systems would have a very high predictability and reliability. In 
order to apply this methodology, a designer must abstract the physical system at hand and build a model 
for it, then combine this with a model of the proposed controller design. Then, different techniques can be 
used to reason about these models and gain confidence in its correctness. Informal methods usually rely 
on extensive testing of the systems based on system specification (Rehman et al. 2007). These methods 
have limitations because, in order to guarantee software reliability, we need to apply exhaustive testing to 
the software component, using all possible input combinations, which is a costly process. Many 
techniques have been proposed to enable a practical alternative to this exhaustive software testing 
(Gerlich et al. 2007). However, we cannot guarantee a full coverage of all possible execution paths in a 
software component, thus leaving us with limited confidence in our software correctness.  

Formal software analysis use is growing as an alternative, as this technique allows full verification of 
software components to be free of errors. In last decades, these techniques have matured to be used in 
some industrial capacity for software and hardware correctness verification (Dwyer et al. 2007). Formal 
techniques can be used to prove the correctness of systems specifications. Nevertheless, they are usually 
constrained in their application, as they do not scale up well. Likewise, the designers need a high level of 
expertise in applying these techniques.  

Formal verification techniques are of two main types, deductive or algorithmic. Deductive techniques 
rely on representing the system and its specification with logic rules, and then try to deduct a proof of 
system correctness. Algorithmic techniques rely on molding the system in a graphical form, and coding 
specifications in logical queries. Then an algorithm for reachability analysis searches the graph space for 
nodes reachable from initial system configuration that satisfy specification queries. This method is also 
called model checking. New theoretical advances in model checking allow guaranteeing certain properties 
about models of such systems using a formal approach. Model checking techniques can be automated to 
improve the work of the software engineer. Timed automata (TA) theory (Alur and Dill 1994), in 
particular, has provided many practical results in this area. However, there is still a gap between a system 
model that is checked as an abstract entity, and the actual system implementation code to be run on a 
target platform. 

A different approach to deal with these issues considers using Modeling and Simulation (M&S) to 
gain confidence in the model correctness. The use of M&S is not new, and systems engineers have often 
relied on these methods in order to improve the study of experimental conditions during model definition. 
The construction of system models and their analysis through simulation reduces both end costs and risks, 
while enhancing system capabilities and improving the quality of the final products. M&S let users 
experiment with “virtual” systems, allowing them to explore changes, and test dynamic conditions in a 
risk-free environment. This is a useful approach, moreover considering that testing under actual operating 
conditions may be impractical and in some cases impossible. Nevertheless, no practical, automated 
approach exists to perform the transition that exists between the modeling and the development phases, 
and this often results in initial models being abandoned, resulting in increased initial costs that project 
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managers usually try to avoid. Simultaneously, M&S frameworks are not as robust as their formal 
counterparts are. 

The DEVS formalism provides a formal M&S framework that can be used to deal with these issues. 
DEVS was originally defined in the '70s as a discrete-event modelling specification mechanism (Zeigler 
et al. 2000). It is a systems theoretical approach that allows the definitions of hierarchical modular models 
that can be easily reused. A real system modeled with DEVS is described as a composite of submodels, 
each of them being behavioral (atomic) or structural (coupled), as seen in Figure 1. Each basic model 
consists of a time base, inputs, states, outputs and functions to compute the next states and outputs. As the 
formalism is closed under closure, coupled models can be integrated into a model hierarchy.  

 

Figure 1: Coupling of DEVS models (A1, A3, A4: atomic models) (Wainer 2009). 

A DEVS atomic model is formally described by: 
 

M = < X, S, Y, δint, δext, λ, D > 
X: input events set; 
S: state set; 
Y: output events set; δint: S → S, internal transition function; δext: Q x X → S, external transition function; where  
Q = { (s, e) / s ∈ S, and e ∈ [0, D(s)]}; λ: S→Y, output function; and 

D: S → R0+ ∪ ∞, elapsed time function. 

 
Each model is seen as having input and output ports to communicate with other models. The input 

and output events will determine the values to appear in those ports. The input external events are 
received in an input port, and the model specification should define the behavior under such inputs. The 
internal events produce state changes, whose results are spread through the output ports. The ports 
influences will determine if these values should be sent to other models. 

A basic model can be integrated with other DEVS basic models to build a structural model. These 
models are called coupled, and are formally defined as: 

 
CM = < X, Y, D, {M i}, {I i}, {Z ij}, select > 

X is the set of input events; 
Y is the set of output events; 
D is an index for the components of the coupled model, and  ∀i ∈ D, Mi is a basic DEVS model, where 
Mi = < Xi, Si, Yi, δinti, δexti, tai > 
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Ii is the set of influencees of model i, and ∀ j ∈ I i, and 
Zij: Yi → X j is the i to j translation function. 
Finally, select is the tie-break selector. 
 
A main advantage of the DEVS paradigm is that the models can be specified independently of the 

simulation mechanism. Zeigler also suggested an abstract simulation mechanism that will be briefly 
introduced in this section, as the tool here presented uses it. 

The simulation process begins by initializing all the component models. The state of each basic model 
is defined and the next internal transition for each of them is computed. The abstract simulator analyzes 
the external events and the scheduled internal transitions, and chooses the first model to be activated 
(called the imminent model). In the simulated time t, each component Mi has a state si, and has elapsed 
time ei. The next event in the system will be the one with lower scheduled time. If there is more than one 
component with that time, the select function will be used to select the imminent. Once chosen, the 
imminent model is activated. If a basic model receives an external event e ∈ X, the model executes the 
external transition function δext. As a result, the next internal event can be re-scheduled.  

When the time for an internal even arrives, the imminent model must execute its internal transition 
function. The first step is to execute the output function λ and to generate an output event y ∈ Y. Each 
output is sent to the influencees as a translated input, using the Zij translation function. After, the internal 
transition function δint will execute, resulting in a state change and the scheduling of a new internal 
transition function. The behavior for each of the internal and external transition functions is dependent of 
the basic model behavior. 

2.1 DEVS Model Definition in CD++ 

CD++ implements the DEVS theory. It allows defining models according to the specifications introduced 
in the previous section (Wainer 2009, Wainer 2002). The tool is built as a hierarchy of models, each of 
them related with a simulation entity. Atomic models can be programmed and incorporated onto a basic 
class hierarchy programmed in C++. A specification language allows defining the model's coupling, 
including the initial values and external events. 

Model definition in C++ allows the user great flexibility to define behavior. Nevertheless, a non-
experienced user can have difficulties in defining models using this approach. The provision of graphical 
notations can provide the modeler with a powerful tool to define models. Graph-based notations have the 
advantage of allowing the user to think about the problem in a more abstract way. Therefore, we have 
used an extended graphical notation to allow the user define atomic models behavior. Each graph defines 
the state changes according to internal and external transition functions, and each is translated into an 
analytical definition. For instance, the Figure 1 shows a state called "Start", whose duration is 15 time 
units.  

 

Figure 2: State Graphical Notation: Identifier, Time Length (Wainer 2002). 

The syntax for the state analytical specification is: 
state : stateId … 
stateId : lifetime 

 
Each model includes an interface with input/output ports. Ports are described by including their name 

and a type, based on the formal specification for DEVS models. They are specified as: 
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in  : portId:type  portId:type … 
out : portId:type  portId:type … 
 

Internal transition functions are represented by arrows connecting two states. Each of them can be 
associated to pairs of ports with values (p,v) corresponding to the output function. The syntax for the 
output function values is p!v. For instance, this figure represents that the model will change from state 
A to state B after 2 time units. First, the output function will send the value 8 through the port q1; 4 
through the port q2, and 12 through the port q3.  

 

Figure 3: Definition of an Internal Transition Function (Wainer 2002, 2009). 

The syntax for the internal transition function construction is the following: 
int : startState endState [outPort!value]+ 

 
Here we indicate the origin and destination states, and a port list with the corresponding values. For 

instance, the model in the previous figure can be described as: 
int : A B q1!8 q2!4 q3!12 

 
External transition functions are represented graphically by a dashed arrow connecting two states. 

The notation used to represent ports and expected values is similar to the one used for external transition, 
but replacing the exclamation mark by a question mark: p?v [ti..tf]. Here, ti...tf represent the initial and 
final expected simulated times for the external transitions. These values allow validating the timing of the 
models, raising an error if an external transition comes out of time. The syntax for this construction is the 
following: 

ext : startState endState inPort value timeRange 

 
It describes the origin and destination states, an input port and a time range counted since the instant 

arriving to the start state. 
All these constructions can be combined to define the behavior of atomic models. For instance, the 

following Figure 4 represents a simple model using all the constructions: 
 

 

Figure 4: Definition of an Atomic Model (Wainer 2002). 

This model can be formally specified as: 
Simple_Proc = < I, X, S, Y, δint, δext, λ, D > 

77



Wainer 
 

 
I = <PX, PY> where PX = { ("in", integer) }; PY = { ("out", integer)  }; 
X = Y = Ζ ;                S = { Start, Process, Finish }; 
 δext(s,e,x): 
 case port (in) { 
  4:  if (e < 1 or e > 3) error(); 
   phase = Process; 
   D = 10;    
  2:  if (e < 2 or e > 5) error(); 
    if (phase != finish)  
     phase = Process; 
     D = 10;            } λ(s): 
 case (phase) { 
  Finish:  send(out, 6); 
  Process: send(out, 1);  } 
 δint(s): 
 case (phase)  { 
  Process: phase = Finish;  D = 7;   
  Finish: phase = Start; D = 4;     } 
 
For instance, in this case we see that being in the Start phase, we need to receive an input (and trigger 

the external transition function) through port 4 between time units 1 and 3; otherwise there will be an 
error. If the input is received, we change to the phase Process, which lasts 10 time units. When this time 
is consumed, we trigger the output function (which outputs a value of 1 through port out), and an internal 
transition that switches to phase Finish. We schedule the next internal transition in 7 time units. At that 
point, we can receive an input through port 2 (between time units 2-5; otherwise it is an error), or wait 
until the internal transition is triggered. In the first case, we switch back to the Process phase. If we do not 
receive an input, we generate an output (with value of 6 through port out), we go back to the Start state. 

The previous graphical specification can be used to generate the following text definition, which is 
equivalent to the previous specifications (Wainer 2002): 

 
[exampleGG] 
in: in 
out: out 
state: Start Process Finish 
int: Process Finish out!1 
int: Finish Start out!6 
ext: Start Process  in 4 
ext: Finish Process  in 2 
Start: 4 
Process: 10 
Finish: 7 

Figure 5: Text Definition of the example in Figure 4 (Wainer 2002). 

After each atomic model is defined, they can be combined into a coupled model, which are defined 
using a specification language specially defined with this purpose. The language was built following the 
formal definitions for DEVS coupled models. Therefore, each of the components defined in section 2 for 
coupled models can be included.  
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As showed in the formal specifications presented earlier, four properties must be configured: 
components, output ports, input ports and links between models. We use the following syntax: 

Components: it describes the models integrating a coupled model. The syntax is: 
model_name@class_name, allowing more than one instance of the same model using different names. The 
class name reference to either atomic or coupled models.  

Out: it defines the names of output ports.  
In: it defines the names of input ports. 
Link: it describes the internal and external couplings. The syntax is: source_port[@model] 

destination_port[@model] . The name of the model is optional and, if it is not indicated, the coupled 
model being defined is used. 

 
[top] 
components: DeparturesQ@StoppableQueue Track@Track LandingQ@StoppableQueue  
    ControlTower@ControlTower Hangar  
in : In   out : Out  
link : out@DeparturesQ In_d@ControlTower link : out@LandingQ In_a@ControlTower 
link : In in@LandingQ       link : Out_a@Track In@Hangar 
link : Out_d@Track Out       link : Done_a@ControlTower in@LandingQ 
link : Stop_a@ControlTower stop@LandingQ link : Out@Hangar in@DeparturesQ 
link : Departing@ControlTower Departing@Track 
link : Landing@ControlTower Landing@Track link:Done_d@ControlTower in@DeparturesQ 
link : Stop_d@ControlTower stop@DeparturesQ 
 
[Hangar] 
components : selector@selector deposit1@queue  deposit4@queue deposit3@queue  
    deposit2@queue   Chosen@DeMux     
in : In  out : Out  
link : out1@selector in@deposit1  link : out2@selector in@deposit2 
link : out3@selector in@deposit3  link : out4@selector in@deposit4 
link : out@deposit1 in1@Chosen  link : out@deposit4 in4@Chosen 
link : out@deposit3 in3@Chosen  link : out@deposit2 in2@Chosen 
link : In in@selector     link : out@Chosen Out 

Figure 6: Coupled model definition. 

Let us consider the specification in the previous figure, which represents a small Airport. The [top] 
model always defines the coupled model at the top level. The control tower is connected to two queues: 
one for departures, and the other for arrivals. These queues are used to model the time employed by 
planes to enter or leave the airport area. The control tower is also connected to a model representing the 
track. Every time a plane is authorized to depart or land, the track model is activated. Finally, all landed 
planes go to a Hangar for maintenance. A plane can only leave after service. The hangar can be defined as 
an atomic model, or as a coupled model with different service stations for the planes. CD++ uses this 
information to generate instances of previously defined atomic models, or creates new instances of 
coupled models that can be later reused to form other multicomponent models.  

2.2 Simulation Algorithms 

As stated, the tool is based on the DEVS formalism, and provides an environment to build discrete events 
models. The system architecture was built using the abstract simulator concepts described in (Zeigler et 
al. 2000), and it can be summarized as in Figure 7. 

There are two basic classes: Models and Processors. The Models classes are devoted to define the 
conceptual models, and the Processors implement the simulation mechanism. There are different kinds of 
simulation Processors: Simulators, Coordinators and a Root-Coordinator. These processors are related 
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with the models in pairs: a Simulator is associated with an Atomic model, and a Coordinator with a 
Coupled model. Each existing model will have a unique associated processor. 

Model has instance variables processor (to identify its associated processor), parent (link to the 
coupled model containing this model), inport and outport (to specify model interaction). 

The Atomic class is used to represent the atomic basic models. The methods int-transfn, ext-transfn, 
outputfn and time-advancefn represent the internal transition, external transition, output and time 
advancement functions respectively. The functions will be overloaded by the modeller to define the 
desired behavior depending on the system to be modeled. Coupled-Model implements the hierarchical 
constructions defined by the modelling formalism. A coupled model is defined by specifying its 
components (children), and the coupling relationships. The coupling is specified by the receivers and 
influences instance variables, which allow the definition of the Zij function. 

The Processors are built to execute the abstract simulation procedures by implementing the DEVS 
theoretical concepts. Following these concepts, Simulators and Coordinators are built to manage atomic 
and coupled models, as stated earlier. The Root-Coordinator drives the simulation in its global aspects. It 
maintains the global time, and it is in charge of the start and finish of the simulation. It also collects the 
output results. It is related with the highest level coupled model and its corresponding coordinator. 

The coupling relationship is recorded in the instance variables devs-component and processor of the 
Processor and Model respectively. The parent variable is used to indicate the parent processor in the 
simulators hierarchy. The times of the last event and the next event are recorded to identify the imminent 
children, as to verify correctness in the message simulated times. 

 

 

Figure 7: Basic class hierarchy. 
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The simulation process is carried out by data transfer carried out through message passing. The 
messages include information related with the message’s origin, the time of the related event, and a 
content consisting of a port and a value. 

There are four different messages: 
*: used to signal a state change due to an internal event; 
X: used when an external event arrives (including its port and value); 
Y: model’s output; and 
done: indicating that a model has finished with its task. 

 

Figure 8: Relationship between Models and Processors. 

Simulation advances through message passing between the Processors. When the imminent model is 
selected, a  *-message is sent to its simulator, passing through the middle level coordinators. 

When an external message arrives, an X-message is consumed and the external transition function 
executed. The simulators return done-messages and Y-messages that are converted to new *-messages 
and X-messages, respectively. The messages are translated using the cell coupling previously defined. 

3 MODELLING AND SIMULATION FOR DEVELOPMENT OF EMBEDDED SYSTEMS 

In recent years, there have been a number of efforts focusing on defining new formal methods and tools 
for development of embedded systems, in particular those with real-time constraints. As discussed earlier, 
most existing methods are still hard to scale up, and they require expensive testing efforts with no 
guarantees for bug-free products. Instead, systems engineers have often relied on modeling and 
simulation (M&S) techniques to improve development and obtain higher quality products. M&S-based 
testing is widely used for the early stages of a project; however, when the development tasks switch 
towards the target environment, early models are often abandoned. In order to deal with these issues, we 
introduced a Discrete-Event Modeling methodology based on DEVS, which combines the advantages of a 
practical approach with the rigor of a formal method; in which one consistently use models throughout the 
development cycle.  

Building system models and their analysis through simulation (M&S) reduces cost and risk, allowing 
exploring changes and testing of dynamic conditions in a risk-free environment. This is a useful approach, 
moreover considering that testing under actual operating conditions may be impractical and in some cases 
impossible. Despite the net gains, most project managers are reluctant to use the techniques because they 
require extra initial resources in the construction of simulation models that will not be part of the 
delivered application. 

Our idea is to enable the incremental construction of embedded applications using a discrete-event 
modeling architecture both for simulation and as the final target architecture for products. DEVS is a 
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well -defined formalism that is expressive, operates at a high level of specification, and can be used both 
to represent computing systems and to describe physical systems. DEVS models have a rich structural 
representation of components, and formal means for explicitly specifying their timing, which is central in 
the design of cyber-physical systems. The use of DEVS offers the following advantages:  

 • Reliability: logical and timing correctness rely on DEVS’s system theoretical roots and sound 
mathematical theory. • Model reuse: DEVS has well-defined concepts for coupling of components and hierarchical, 
modular model composition.  • Hybrid modeling and knowledge reuse: it has been shown that DEVS is the most general discrete 
event formalism, and many embedded systems methods have been mapped to DEVS (i.e., VHDL, 
Petri Nets, Timed Automata, State Charts, etc.). An application can be built using different 
methods while keeping independence at the level of the executive, using the most adequate 
technique for each component, enabling the reuse of existing expertise on each part of system 
architecture.  • Process flexibility: these hybrid modeling capabilities are transparent for the executive, which is 
defined by an abstract mechanism that is independent from the model itself. Existing DEVS tools 
have showed their ability to execute such variety of models with high performance. • Testing: the construction of experimental frames (that is, sets of conditions under which the 
system is observed or experimented with) can be automated. 

 
The method uses M&S for the initial stages, and replaces models incrementally with hardware 

surrogates without modifying the original models. The transition can be done in incremental steps, 
incorporating models in the target environment after thorough testing in the simulated platform, allowing 
reuse of early models throughout the process. The approach does not impose any order in the deployment 
of the actual hardware, providing flexibility. Figure 9 shows the architecture of the methodology. 

 

Figure 9: Development cycle (Wainer and Castro 2011). 

Initially (1), we define a specification model of the System of Interest (SoI) using a formal model 
(using DEVS or alternative techniques translated to DEVS). Once the specification model is complete, 
model-checking is used for validation of the model properties (2). The same models are then used to 
define a DEVS simulation of the behavior of the different submodels under specific loads (3). Thus, we 
study system properties analytically, and complement the proofs using simulation models, which can also 
be used for hardware/software codesign activities (and with training purposes). 
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The same DEVS specification model can be used to derive test cases (4), which can be reused for the 
simulation studies. Deriving test cases from both the model (4) and from the simulation results (5) allows 
us to check that the models conform to the requirements. Once we are satisfied with both analytical and 
simulated results, the same components are incrementally incorporated into the target platform. A real-
time Executive (6) executes the models on a hardware surrogate (9). If the hardware is not readily 
available, the software components can still be developed incrementally and tested against a model of the 
hardware to verify viability and take early design decisions. As the design process evolves, both software 
and hardware models can be refined, progressively setting checkpoints in real prototypes. The executive 
allows to execute dynamic models and to schedule static and dynamic tasks (activating non-mandatory 
parts or alternate models under transient overloads). 
 At this point, for those parts of the model that are still unverified (in the formal and simulated 
environments), testing will increase the confidence of the engineer into the implemented system (7). Any 
modifications require going back to the same model specifications (8), which ensure that we can provide a 
consistent set of apparatuses throughout the development. As in any software life cycle, this process is 
cyclic, allowing refinement following a spiral approach. On each cycle of the spiral, we have a prototype 
application consisting of software/hardware components interacting with simulated subcomponents. 

3.1 E-CD++: an Environment for Modeling Embedded Systems 

The E-CD++ tool provides a mechanism to implement DEVS models (which can be implemented in C++ 
or using a built-in language) using DEVS formal specifications and following the approach defined above 
in Figure 9. For instance, in the following example, the ButtonInputModule model shows parts of a 
component of a cruise control system (CCS) (Yu and Wainer 2007). 

 
ButtonInputModule::ButtonInputModule ( const string &name ) : Atomic( name ), 
 in_BUTTON( addInputPort( "in_BUTTON") ), out_ON( addOutputPort( "out_ON") ),   
 out_RESUME( addOutputPort( "out_RESUME") )  
{ reactionTime = VTime( 0, 0, 0, 15 );  } 
 
Model &ButtonInputModule::externalFunction ( const ExternalMessage &msg ) { 
  if( msg.port() == in_BUTTON )   { 
 inType=(int)msg.value(); 
 holdIn( active, reactionTime ); 
  } } 
 
Model &ButtonInputModule::outputFunction ( const InternalMessage &msg ) { 
  switch(inType) { 
 case ON: //take action { 
   sendOutput( msg.time(), out_ON, HIGH) ;    
   break; } 
 case OFF: //take action { 
   sendOutput( msg.time(), out_OFF, HIGH) ;  
   break; } 
  ...} } 
 
Model &ButtonInputModule::internalFunction  ( const InternalMessage & ) { 
  passivate();}  

 
embedded-CD++ integrates simulation models and hardware components for the methodology. 

Figure 10 outlines the software hierarchy generated by the executive to execute the CCS model. The Root 
Coordinator manages the interaction with an Experimental Frame (used to test the model). A Coordinator 
synchronizes subcomponents. Timing constraints can be associated to each external input, and when the 
processing of such an event is completed, the Coordinators checks if the deadlines were met (to obtain 
performance metrics, or to provide alternate actions if a deadline be missed). 
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Figure 10: Embedded-CD++ simulation scheme (Yu and Wainer 2007). 

 This was the base for Embedded CD++ (E-CD++), designed to execute in embedded environments 
interacting with hardware surrogates. The time advance function is tied to the real-time clock, and 
inputs/outputs can interact with external devices, including runtime checks of the timing deadlines. The 
engine runs on a single board computer (SBC), and an Eclipse-based IDE helps non-expert users 
(including a graphical environment based on DEVS-graphs) following the methodology.  

We will show how to use our methodology to develop embedded applications incrementally, 
integrating simulation models and hardware components. Initially, we develop models entirely in E-
CD++, and we replace them with hardware surrogates at later stages of the process, making the transition 
in incremental steps, incorporating models in the target environment with hardware-software components 
after thorough testing in the simulated platform (using the specification models throughout the process). 

On http://cell-devs.sce.carleton.ca/mediawiki/index.php/Robocart the reader will find a sample 
application built as an experimentation environment for the construction of robotic controllers.  

Once satisfied with the overall behavior of the simulated model, we progressively replace simulated 
components with their hardware counterparts. The first step was to replace the button controller model 
(i.e., we use a keypad to receive requests, and we send them to the simulated model). The remaining 
components are unchanged. Replacing the component is straightforward: we only need to remove the 
original component from the coupled model definition. Testing the model only requires reusing the 
experimental frames used for simulation. After conducting extensive tests, we can also remove the 
remaining components to the microcontroller (Yu and Wainer 2007). 

Our method was applied on a prototype for an application (embedded in a Network Processor) 
managing the Quality of Service (QoS) of high-speed data-flows. We want to enforce low-level traffic 
shaping actions according to both high-level QoS policies (which assign network resources to the 
competing traffic) and the evolving performance of traffic. At the higher levels we find coarse-grained 
global policies (with a few changes per day). At lower levels, QoS shaping algorithms modify the 
assignment of network resources to data-flows (every few seconds). At the lowest levels, specific 
algorithms take granular decisions at the microsecond time scale, on a per-packet basis. We designed a 
prototype QoS shaper system that accepts policies from higher levels while knowing the status of the 
lowest level traffic (the packet drop-rate). Depending on the policies set and the drop-rate, information is 
sent to the lower packet-level algorithms to enforce granular decisions. I/O information is sent through 
real-time ports by E-CD++. When a QoS policy change comes from the higher levels, the model's 
parameters get different values, generating an adapted QoS Controller with new behavior.  
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We used an Intel IXP2400 Network Processor (an OC-48/2.5 Gbps line rate packet chip structured in 
two levels: the slow data path with an Intel XScale Core processor, and the fast data path, with 8 multi-
threaded micro engines - ME). The IXP2400 allows implementing reconfigurable rule engines that can be 
adapted on demand with high performance for the packet handling tasks. We embedded E-CD++ on the 
XScale Core processor as Core Component (either in standalone mode or linked with the MEs). The 
models executed by E-CD++ and the microblocks (software units of code that run multithreaded inside 
each of the MEs) interact in real-time. 

We followed the steps for an incremental co-development prototype of the system. On a first stage, 
we verified the system behavior in the E-CD++ standalone simulator. The QoS Actuator and Traffic 
Sensor models commands and sense the drop-rate values respectively. They talk to their counterparts in 
the Packet Processing system, a QoS Shaper and a Metering System that know how to communicate with 
the QoS Actuator and Traffic Sensor. 

                                                                                                 

 

Figure 11: Modeling a QoS processing system (Wainer and Castro 2011). 

Once the functionality of the QoS controller was verified, we moved it into the IXP chip. Then the 
micro engines take the place of their DEVS counterpart models (implementing traffic generation, traffic 
consumer, QoS Shaper, Metering System and Packet Processing Pipeline). The QoS Actuator and Traffic 
Sensor were redirected to special software/hardware Mapper models (signal forwarders that know how to 
communicate with the IXP libraries for doing the mapping). The scenario switch is completely 
transparent for the QoS Controller system. Finally, by means of a constant-rate packet-dropping generator 
code (running on the MEs), the whole system was validated. In the meantime, other hardware pieces were 
reprogrammed by a separate development team to prepare the RED algorithm to effectively react to the 
new Shaping commands, thus interleaving the software and hardware co-development process, and then 
starting a new incremental cycle of system verification and validation. 

4 CONCLUSION 

In recent years, the Software Engineering community has spent a tremendous effort in creating formal 
methods and tools for developing embedded systems, in particular, those with real-time constraints. 
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Despite these efforts, most existing methods are still hard to scale up, and they require expensive testing 
efforts with no guarantees for bug-free products. Instead, systems engineers have often relied on modeling 
and simulation (M&S) techniques to improve the development task and obtain higher quality products. 
M&S-based testing is widely used for the early stages of a project; however, when the development tasks 
switch towards the target environment, early models are often abandoned. Using an M&S-based 
development methodology based on discrete-event systems specifications like the one presented here 
combines the advantages of a practical approach with the rigor of a formal method, in which one 
consistently use models throughout the development cycle.  

The proposed methodology uses the DEVS formal modeling technique, improving the safety and 
development times of the simulations. An abstract simulation mechanism enables defining different 
simulation techniques without needing changing the models developed, as they follow the formal 
specifications of DEVS formalism. The models are easy to reuse thanks to the hierarchical construction. 
Consequently, the costs of development are reduced, the quality of the models improves, and non-expert 
users are able to start developing new applications with a fast learning curve. Several types of models can 
be integrated in an efficient fashion, allowing multiple points of view to be analyzed using the same 
model. The formalism allows improving the security and cost in the development of the simulations. 
Experimental results of application showed improvements for expert developers.  

We discussed how to transition from simulation in a model-based environment, and then execute the 
same models directly in a hardware surrogate. We showed the use of DEVS to build this kind of models, 
which allowed us to develop incrementally different applications including hardware components and 
DEVS models. The transition from simulated models to the actual hardware can be incremental, 
incorporating deployed models into the framework when they are ready. This approach does not impose 
any order in the deployment of the hardware components, providing flexibility to the overall process. The 
use of DEVS improves reliability (in terms of logical correctness and timing), enables model reuse, and 
permits reducing development and testing times. Consequently, the development cycle is shortened, its 
cost reduced, and quality and reliability of the final product improved. We showed the use of these 
methods in the E-CD++  toolkit, in which embedded systems can be designed following DEVS-based 
methodologies, and be implemented on different hardware (FPGA, SBCs, general purpose processors or 
specialized ones like the IXA platform). The verified models can be deployed to the targets without 
modifying a single line of code. In this way, we can provide advanced capabilities for rapid prototyping 
and development. 
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