Proceedings of the 2015 Winter Simulation Conference
L. Yilmaz, W. K. V. Chan, Moon, T. M. KRoeder, C. Macal, and M. D. Rossetti, eds.

PARALLEL AND DISTRIBUTED SIMULATION

Richard Fujimoto

School of Computational Science & Engineering
Georgia Institute of Technology
Atlanta, GA 30332, USA

ABSTRACT

Parallel and distributed simulation is a field cemed with the execution of a simulation program on
computing platforms containing multiple processors. This article focuses on the concurrent execution of
discrete event simulation programs. The field has evolved and grown from its origins in the 1970’s and
1980’s and remains an active field of research to this day. An overview of parallel and distributed
research is presented ranging from seminal workerfighd to address problems such as synchronization

to recent work in executing large-scale simulations on supercomputing platforms. Directions for future
research in the field are explored.

1 INTRODUCTION

The parallel and distributed simtitan field emerged in the 1970’s and 1980’s from two distinct,
overlapping research communities. On the one handpdnallel discrete event simulatio(PDES)
community was concerned with accelerating the etkatwf discrete event simulations through the
exploitation of high performance computing plathe. In approximately the same time frame the
distributed simulatiorcommunity formed growing out of researahd development efforts in the defense
community that focused on interconnecting separately developed simulations executing on computers
interconnected via local and wide area networkds Thsearch initially focused on simulations for
training purposes, but quickly broad to include areas such as analysis and test and evaluation of
physical devices. While there are importanffedences between work in PDES and distributed
simulation, there are also many common issares problems. Here, we informally charactepagallel

and distributed simulatioras a field that encompasses issues arising from both of these communities
stemming from the execution of individual simulation programs on platforms ranging from tightly
coupled parallel computing platforms or loosebtyipled machines connected via a wide area network.

2 PARALLEL DISCRETE EVENT SIMULATION

PDES is concerned with the technologies associated with distributing the execution of a single run of a
discrete event simulation program across multipec@ssors in a high performance computing system.
Such platforms include shared-memory multiprocesseand message-based cluster computers. The
central goal of PDES is typically to accelerate the execution of the simulation.

A discrete event simulation captures the behavi@oéctual or envisioned system over time. Unlike
other simulations that operate in a time-steppeddasiind evolve the state of the system from one time
step to the next, in a discrete event simulation chainggstem state occur at distinct, typically irregular,
points in simulation time. A sequential discreteemvsimulation program includes two fundamental
concepts: state variables that capture the stateeofytbtem being modeled, and event computations or

978-1-4673-9743-8/15/$31.00 ©2015 IEEE 45

Fujimoto

simply events that transition theat# variables from one state to thext. In a discrete event simulation
changes to simulation state ocamly through event computations. Each event contains a timestamp that
represents a point in simulation time at which theedtansition occurs. For example, a simulation of an
airport might include state variables representing the status of the runway, e.g., idle or busy, as well as
other aspects such as the number of aircraft waitinigite off or land. Events might include aircraft
arrivals or departures.

A parallel discrete event simulation program can be viewed as a collection of sequential discrete
event simulations that interact by exchanging tisregied messages. Each message represents an event
that is scheduled (sent) by one simulator to another. Each sequential simulator is referrelbgicak a
process or LP. For example, a simulation of the global air traffic system could be constructed by creating
a sequential simulation of each airport and allmvieach simulator to schedule events, i.e., send
messages, to other simulators. Messages transntitegleen airport simulators might represent the
arrival of an aircraft flying from one airport to another.

Much of the work in PDES ha®cused on the synchronization isswBriefly, the synchronization
problem is concerned with managing the executiora @DES program so that the results that are
produced are exactly, or in some cases approxiypaggual to a sequential execution of the same
program where all events are processed one #feerother in timestamp order. A large body of
knowledge evolved around different approachesatressing the synchronization algorithm, and
associated algorithms. Other research focused on issues associated with parallel execution such as
partitioning simulations, mapping LPs to the processof a parallel computer, and redistributing
computational workloads during program executionrriprove efficiency. A number of studies focused
on developing techniques to improve the performamfcéhe parallel simulator, e.g., to increase the
efficiency of the synchronization algorithm, often in the context of a particular application. Much of this
literature is discussed in (Fujimoto 2000) and the references therein.

3 DISTRIBUTED SIMULATION

Distributed simulation is concerned with the executibsimulations over computing platforms that span

a much broader geographic extent than parallel caanpulin contrast to parallel simulations where the
processors executing the simulation reside withircabinet inside a machine room, a distributed
simulation may execute on a set of machinesrdntenected through a local area network, globally
distributed computers communicating via the Ingégrror predictive simulations embedded within a
physical environment such as a sensor network mamgtdraffic in a city. A central object of utilizing
distributed simulation systems has been to allow exploitation of geographically distributed resources such
as equipment or people in the distributed simulaticer@ge, or executing simulations in close physical
proximity to live data streams to pretfature states of an operational systems.

A central issue in and often the principal motigatior utilizing distributed simulation concerns the
desire to integrate several different simulatorsrateg on different computing equipment into a single
simulation environment. For example, much of ¢hely work in distributed simulations was completed
in the defense community for training — tank simulatéirght simulators, computer generated forces, and
a variety of other models could be combinedcteate a distributed virtual environment into which
personnel could be embedded to trainhgpothetical scenarios and situations.

While synchronization, also known as time managenie the distributed simulation literature, is
also an issue in distributed simulation, it is not the only issue and typically is not the most important one.
Much of the early research in distributed siniola focused on distributing information among the
simulators participating in the distributed simulatim an efficient and timely manner. Much research
focused on communication protocols such as multicesthanisms or methods to reduce the amount of
data that needed to be communicated througlusieeof techniques such as dead reckoning (Miller and
Thorpe 1995) or data distribution management (Morse and Zyda 2001). Because a large emphasis in
distributed simulation has been to achieve oyperability among separately developed simulators, a

46

Fujimoto

substantial awunt of effort has focused on develogistandards to interconnect simulations. This has
resulted in the Distributed Interactive Simubati(DIS) (IEEE Std 1278.19B5 1995; IEEE Std 1278.2-
1995 1995) and the High Level ArchitectureL@) (IEEE Std 1516-2010 2M; IEEE Std 1516.1-2010
2010; IEEE Std 1516.2-2010 2010) stamida Many of the technical issues addressed by the distributed
simulation research community are discussed in (Fujimoto 2000; Tolk (ed.) 2012).

The remainder of this article is organized follows. The next section focuses on conservative
algorithms for addressing the synchronization pobl First and second generation algorithms are
discussed. Optimistic algorithms are described next, including coverage of the so-called local and global
control mechanisms. Finally, future directions fesearch in the field are discussed, highlighting six
areas of research that require further investigation.

4 CONSERVATIVE SYNCHRONIZATION

As discussed earlier, the simulation is assumed to be composed of a set of logical processes (LPs) that
communicate by exchanging timestamped event messkg#ss section we use the terms events and
messages synonymously. A synchronization algorithm is required to ensure that the parallel execution of
the simulation produces exactly the same results as a sequential execution on a single processor. In some
cases approximate results are acceptable, but theobtitle research in synchronization algorithms has
focused on producing exactly the sarmasults. One can show that this can be achieved by ensuring that
each LP processes events in timestamp order.

4.1 First Generation Algorithms

The parallel and distributed simulation field beganthia late 1970’s with seminal work by Chandy,
Misra, and Bryant who defined the synchronizatigroblem and a solution approach (Bryant 1977;
Chandy and Misra 1978, 1979). Unlike a timesteppeudiisition execution where all processors can work

on simulation computations in the current time stepcurrently, in a PDES program there are typically

very few events containing exactly the same time stamp. Thus, one must allow some LPs to advance
ahead of others in simulation time in order to capture a sufficient amount of concurrent execution. Space
does not permit a full exposition of the rich liter&tun synchronization algorithms. The following
attempts to highlight some of the main technical points. A more lengthy description is presented in
(Fujimoto 2000).

The Chandy/Misra/Bryant algorithomses a mechanism that blocke #ixecution of an LP until it can
guarantee that an event with a smaller timestariipnat later be received. This is accomplished by
requiring the messages sent from one LP to andihe sent in timestamp order, and the network
guarantees ordered delivery, i.e., messages are received in the same order in which they were sent. This
ensures events arriving on a single LP-to-LP linkraoeived in timestamp order. Messages arriving on a
single link may be stored in a first-in-first-out quewdich will hold messageis timestamp order (see
Figure 1(a)). If each FIFO queue contains at leam& message, the LP can simply pick the smallest
timestamped message, remove it from its queue, awkss it. If one or more FIFO queues are empty,
the LP must block. Unfortunately, this may lead ¢adlock situations where a cycle develops where one
LP in the cycle is waiting for the next LP in the cycle (see Figure 1(b)). The CMB algorithm solves this
problem by each LP sendimgull messages to neighboring LPs (LPs to which it may send event
messages) to provide a guarantee indicating theeshélinestamp value of any message it will later send
on that link. To make this guarantee each LP must declivekahead value. If an LP is currently at
simulation timeT, and its lookahead value is then any message later sent by the LP must have a
timestamp of at leagi+L. One can similarly associate lookah&atlies with links rather than LPs.

It can be shown that null messages avoid deadldokvever, this algorithm suffers from a problem
known aslookahead creepConsider the deadlock shown in Figure 1(b). Note that the smallest
timestamped event in this snapshot of the sydtama timestamp value of 7. Suppose each LP is at
simulation time 5, and has a lookahead of &a&ch LP will send a null message to its neighbors

47

Fujimoto

announcing its nextnessage will hava timestamp of at least 5.1 (unless of course a message with a
larger timestamp had already been sent), enabliiedp LP to advance to simulation time 5.1. Each LP

will then send another null message with a timestamp of 5.2, enabling the LPs to advance to 5.2. This will
repeat until each LP advances to simulation timedicating the message with timestamp 7 can now be
processed. Dozens of null messages will have to be sent and processed before the LP can determine that it
is safe to process this event. TiMdl clearly be very inefficient.

P 1
(waiting

onlLP2)

1

LP3
o (waiting
LP2 LP:3 P2 i onlP1)
(waiting -
ontP3) = I
(a) (b)

Figure 1: Conservative synchronization. (a) FIFO queues for CMB. (b) A deadlock situation.

4.2 Second Generation Algorithms

Second generation conservative algorithms addresselddkahead creep problem. The solution to this
problem lies in observing that the key piece of infafarmathat is required is the timestamp of the next
unprocessed event in the system. If the LPs in theiquis example knew this information they could
immediately advance to simulation time 7 withosénding rounds of null messages. Several
synchronization algorithms were subsequently proposed that utilize this information, thereby avoiding
lookahead creep (Chandy and Misra 1981; Chaang Sherman 1989; Groselj and Tropper 1988;
Lubachevsky 1989; Nicol et al. 1989).

Among these algorithms, we observe that algoritsoch as the Bounded Lag (Lubachevsky 1989)
and YAWNS (Nicol et al. 1989) algorithms diffeigsificantly from CMB in that unlike CMB they are
synchronous algorithms, meaning they utilize global synchronization points (barriers) as a fundamental
element of the algorithm. These algorithms dividedbmputation into a sequence of cycles, or epochs.

A global synchronization using a barrier primitive ged to separate the epochs. Each epoch involves (1)
determining which events can be safely processidout risk of an LP later receiving a smaller
timestamped event, (2) processing these safe evpossibly generating one or more new event
messages, and (3) delivering these messages to désiination LPs. The computation repeatedly
executes these epochs until gimulation has been completed.

All of the algorithms described above have the property that they strictly avoid allowing an LP to
process events out of timestamp order. Algorithinag have this property are referred tacasservative
synchronization algorithms. Among the many cong@rgasynchronization algorithms that have been
developed perhaps the most popular ones today are the original CMB algorithm and YAWNS, no doubt
due to their simplicity.

All conservative algorithms rely on a sufficiently large lookahead value to achieve good performance.
This is because if there is no lookahead constf@niequivalently, the lookahead value is zero), the
computation for the smallest timestamped event,7saythe above example, could in principle send a
new event to every other LP in the system with a timestamp of 7. This implies the only concurrent
execution that can occur arises fr@vents with exactly the same timestamp. Further, the simulation
program must be developed to have good lookghead any new event must have a timestamp
“reasonably” far into the simulated future. This nieeydifficult to accomplish for some applications, and
can make the code difficuid understand and maintain.

48

Fujimoto

The inportance of lookahead is illustrated in Figure 2. This diagram shows a snapshot of a distributed
simulation execution where each square box represadts\@nt, plotted according to the timestamp of
the event and the LP in which theeet occurs. As can be seen, theaBest timestamped event in the
system resides ibP A and has a timestamp ©f. In the absence of any lookahead constraints it is
possible that processing this eventild cause a message with timestagpo be sent to every other LP
in the simulation. This implies none of the othee®t are safe to process because it is possible a smaller
timestamped event will later arrive that should becpssed first. This suggests that only those events
with exactly the same timestamp can be processedurrently. This severely limits the amount of
concurrent processing that can be exploited because distrete event simulations will have very few
events containing exactly the same timestampth@rother hand, if each LP has a lookaheald, othen
the smallest new event that could be generated as a result of processing the evediahtistdhave a
timestamp ofTx+L, implying the events shown in red are all safe to process. This example illustrates the
importance of lookahead to achieve concurrentgssing of events for any conservative synchronization
algorithm.

LPD RIS R { Sy SSLLEREES & 1 B without lookahead
|I /"" —* possible message
PC ..._.;I_.._.__-___?;.._, ______ - B OK to process

with lookahead
* possible message

B W OK to process

LPB

LPA

M not OK to process yet

Ta Tatl Simulation Time

Figure 2: Lookahead. The events in red casdiely processed when exploiting a lookahead.

5 OPTIMISTIC SYNCHRONIZATION

In the early 1980's another approach to addngsshe synchronization problem was developed by
Jefferson and Sowizral. Their algorithm, called Time Warp, introduced a new approach to addressing the
synchronization problem (Jefferson 1985). Unlike coretere approaches that avoid errors, Time Warp
allows errors to occur, but theses a rollback mechanism to recover. Time Warp spawned a number of
new algorithms utilizing a rollback mechanismatthare now collectively known as optimistic
synchronization. The Time Warp algorithm consisténad parts, a local control mechanism and a global
control mechanism. Each of these are described next.

51 The Local Control Mechanism

Time Warp, does not rely on rules to block the ekeouof LPs. Rather, LPs are allowed to process
events, risking executing events out of timestangeiorWhen events are processed out of timestamp
order, e.g., if an LP processes an event with timestamp 100 and then receives an event from another LP
with timestamp 50, a rollback mechanism is invot@dndo the execution of those events processed out
of order, i.e., events with timestamp greater than 50.

An event computation can perform two actions thast be undone. It may modify state variables,
and it may send event messages to other LRwloldg modification of state variables can be
accomplished by taking a snapshot of the stateach LP prior to processing eaebent. This can be
done by simply making a copy of the state variables. This approach isagtedtate savindrhis may
be expensive in both time to copy the variables]l memory used to hold the saved state. For some
applications, state saving overheads may be ptotbAn alternative approach is to useremental
state savingvhere code is inserted into tleeent routines to make a copy afstate variable before the

49

Fujimoto

first time it is modified by an event. Unlike copyate saving, incremental state saving requires the
address of the variable to stored as well as the copied data. Nevertheless, incremental state saving is much
more efficient than copy state saving of an LP reguiréarge amount of memory to hold state variables,

and relatively few variables are modified by each ev&rihird approach to addressing this problem is to
usereverse computatiowhere the inverse of the event compiota is created and executed to undo an
event computation when rollback occurs. For example, the inverse of a computation that increments a
state variable is to decrement that variable. This approach has the advaatéigean reduce the amount

of computation required in the forward execution of the program which often forms the critical path of the
computation and often dictates the execution time, and it can significantly reduce the amount of memory
required. However, for many computations the isgecomputation cannot be generated. In this case,
reverse execution relies on incremental state saving to enable rollback.

The second action that must be undone are messads gerformed by the event computation. In
contrast to undoing the modification of state vaegalthat are confined to the LP being rolled back, a
message sent to another LP may have been prodegskdt LP, and may have caused the generation of
additional messages. These message may, in turn,beaveprocessed resulting in still more messages,
and so on. In fact, a single message send may himoteaf every other LP in the system. A mechanism is
required to undo all of these computations! Perhaps tis¢ ciever aspect of Time Warp is a very simple
mechanism called anti-messages was invented to undo a message send. An anti-message is an identical
copy of the original (positive) mesge that was sent except it has a flagnarking it as an anti-message.

To undo a message send, the LP need only send the anti-message to the same destination as the original
message. When the anti-messagesteived by the destination LP,tHe original positive message has

not yet been processed, then the message/anti-mgssagimply annihilate each other and storage for

both is reclaimed. If the positive message hasadly been processed, the LP receiving the anti-message

is rolled back to just before eéhpositive message was processed, aed the messagefmessage pair

can be annihilated. Rolling back an LP can result in the sending of additional anti-messages, which may
in turn cause additional rblhcks. Recursively applying this pracee will erase all of the effects of the
original message. The phenomena whereby anti-mesteage rollbacks in otd_Ps that may result in

the generation of additional anti-messages and still otHidracks are known as cascaded rollbacks.
Clearly cascaded rollbacks are undasie because they result in the utilization of computation and
communication resources without directly performing simulation event computations.

52 The Global Control M echanism

To enable rollback one typically tkes a copy of each LP’s state vateabso an old version of an LP’s
state can be later restored after a mailh These check-pointing operations are calkade saves. This
introduces the problem that one must be able ter lecover the memory utilized to hold the check-
pointed states, as well as any event that has been processed in cghelitre to be reprocessed later.
A second problem is some computations cannot bedrbbek, e.g., /0O operations performed by an LP.
Both of these problems are addressed by comgpudi lower bound on the testamp of any future
rollback that might occur. This computed value is knowglabal virtual time(GVT). Memory used for
saved state variables older than GVT (except onegse a rollback to GVT occurs) can be reclaimed and
used for other purposes, and irrevocable operaticeis &1 1/O that were performed at a simulation time
less than GVT may be performed.

GVT may be defined as the smallest timestanmwng those messages (events) and anti-messages
that have not yet been processed. Because rollaaeksaused by receiving a message or anti-message in
an LP’s past, these messages clearly must beidesed when determining a lower bound on the
timestamp of any future rollback. Therefore, if ormaild obtain a global snapshot of the computation,
GVT could be computed by simply finding the seage or anti-message with the smallest timestamp.
GVT computation is non-trivial because the GVT computation is typically performed asynchronously “in
background” during the execution of the Time Warp simulation.

50

Fujimoto

Several algorithm for computing GVT were dewgded. Samadi describes two key challenges that
must be overcome in computing GVT (Samadi 1985). The first igrémsient message problem. A
transient message is defined as a message thaebasént but has not yet been received. Clearly such
messages must be taken into account by thél @@¥mputation. Samadi proposes using message
acknowledgements to take these messagesaittount. The second is referred to asdineultaneous
reporting problemThis problem arises because different LPs will report their local minimum at different
points in wallclock time. Samadi addresses this problem by using a scheme to mark LPs and
acknowledgement messages sent by marked LPs. Thmadrawvback with Samadi's algorithm is the
overhead associated with having the send acknowledgement messages.

___________________ . cut point

_cut
------------ / message
[L L] post
4R SR I:l future

> wallclock time

Figure 3: Snapshot of computation used in Mattern’s algorithm for computing GVT.

Mattern proposes an elegant algorithm thabids the need to send message acknowledgements
(Mattern 1993). Mattern’s algorithm is based developing a distributapisbot of the execution of the
program. Specifically, each LP places a cut point thatles the timeline for the LP’s computation into a
“past” and “future” part, as shown in Figure 3. Each LP places its cut point asynchronously of the others,
so the cut points will in general occur at differening® in wallclock time (not to be confused with
simulation time). The set of cut points across all LPs formstaof the computation, and divides the
entire distributed computation into a past and futum. pamessage that is sent in the past part of the
computation, and received in the future part is referred tocas messageThere are two cut messages
shown in Figure 3. It can be shown that a va@i¥#T value may be computing by determining the
minimum timestamp among (1) any unprocessed messaggi-message within a snapshot of the LP at
its cut point and (2) any cut message. Like Satmaalgorithm, Mattern’'s algorithm must consider
transient messages. Rather than using messigevdedgements, each LP keeps a count of the number
of messages it has sent and the number of messages it has received. When the sum of these counters over
all LPs yield the same value there are no trahsi@ssages. Mattern’s algiim utilizes these concepts
to efficiently compute GVT. See (Fujimoto 2000y 8o more detailed discussion of Mattern’s algorithm
as well as other algorithms for computing GVT.

5.3 Other Optimistic Algorithms

From a performance standpoint, two central probléwed by optimistic algorithms are an excessive
amount of rollback and the time and memory requicedstate saving. A Tim&Varp system can suffer
from an excessive amount of rolled back compartaby, for example, some LPs may advance too far
ahead of others leading to long rollbacks as wsllexcessive memory utilization. Many optimistic
algorithms have been proposed to address thie.iddost attempt to limit the amount of optimistic
execution, i.e., the amount of event computation ihaterformed that may be later rolled back. For
example, an early technique involves using argljdivindow of simulated time and not only allowing
events whose timestamp fall beyond this windowbéoprocessed (Sokol and Stucky 1990). Another
approach delays message sends until it is guaranteed that the send will not be later rolled back, i.e., until
GVT advances to the simulation time at which the event was scheduled. Tina&sthe need for anti-
messages and avoids cascaded rollbacks, i.e., a rollback resuttieggeneration of additional rollbacks

51

Fujimoto

(Dickens andReynolds 1990; Steinman 1992). A rhen of other techniques have been proposed to
improve efficiency by controlling the amount of ralik, or improving the efficiency of the rollback
mechanism (Chen and Szymanski 2002, 20BGjmoto 1989; Zhang and Tropper 2001). Early
approaches to controlling the Time Warp execution used-defined parametersathhad to be tuned to
optimize performance. Later work focused adaptive approaches whetige simulation executive
automatically monitors the execution and adjusts copmmeters to maximizeerformance. Examples

of such adaptive control mechams are described in (Das and Fujimoto 1997; Ferscha 1995), among
others.

The second problem, memory use in Time Warp, touches upon two main issues. The first concerns
the amount of memory required for state saving. The second concerns the amount of time required to
perform state saving itself. Increased memory usage can significantly impact performance because
hardware caches may not operate very efficiefdlyprograms consuming large amounts of memory.
Several techniques have been developed toeaddthis problem. State saving can be performed
infrequently rather than before each event compmutdliin et al. 1993; Palaniswamy and Wilsey 1993).

An alternative to making a copy of an LP’s state variables, referred to as copy state saving, is to use
incremental state saving where the original value of a variable is copied just before it is modified by an
event computation (Ronngren et al. 1996; West Radesar 1996). One can roll back computations to
reclaim memory resources (Jefferson 1990; Lin amisBrl991). The memory used by some state vectors

can be reclaimed even though their time stampriggetathan GVT (Preiss and Loucks 1995). Another
approach attempts to do away with state savingether and instead use rese execution to undo event
computations (Carothers et al. 1999). A reverse exatethmpiler is used to automatically generate the

code that computes the inverse of each event computation, and this inverse code is executed when for
each event that must be rolled back. Reverse execution offers the advantage that the burden of executing
code to enable rollback, i.e., state saving in cotiweal Time Warp implementations, is moved to
rollback operations rather than the forward executfoevents. This makesdloverheads associated with

state saving less likely to be on the critical path of the computation. In some case, the inverse operation
for event computations cannot be created, soehblmique typically relies on incremental state saving for

such irreversible computations.

Synchronization is a well-studied area of researckthé parallel and distributed simulation field.
Neither optimistic nor conservative synchronizatialgorithms dominate the other with respect to
performance; indeed, the optimal approach usuallyedds on the application. In general, if the
application has good lookahead and programming the application to exploit this lookahead is not overly
burdensome, conservative approaches are the mettobwiog. Indeed, much research has been devoted
to improving the lookahead of simulation applioas, e.g., see (Deelman et al. 2001). Otherwise,
optimistic synchronization offers greater promideisadvantages of optimistic synchronization include
the potentially large amount of memory that may lgiired, and the complexity of optimistic simulation
executives. Techniques to reduce memory utilization may further aggravate the complexity issue.

6 DIRECTIONS FOR FUTURE RESEARCH

Below we briefly describe six areas for future research in parallel and distributed simulation.

PDES on Massively Parellal Supercomput&ser the years numerous successes have been achieved
demonstrating the capabilities of PDES technoldgyaccelerate the execution of discrete event
simulations. For example, (Fujimoto et al. 200&yamined packet-level simulation of computer
communication networks on supercomputers. A metrés defined indicating the number of packet
transmissions that could be simald per second of wallclock tim@TS) by the parallel simulator.
Experiments yielding performance as high as 10Bom PTS were completed using a conservative
synchronization algorithm executing on a supercompugiry 1,536 processors in 2003. By comparison,
comparable simulators executing on a sequentiahma yielded performance less than 100,000 PTS. In
2007 studies using a synthetic benchmark called PHOLD yielded performance exceeding 529 million

52

Fujimoto

events per second (@acket transmission, discussedliear typically consists of two events) using an
optimistic synchronization algorithm on a 16,38%bgassor machine (Perumalla 2007) and in 2009
performance of 12.26 billion events per second using 65,536 processors were achieved (D. W. Bauer Jr.
et al. 2009), both using IBM Blue Gene machines. In 2013 Barnes et. al were able to achieve 504 billion
events per second using almost 2 million cores of a Bkme/Q machine (Barnes et al. 2013). Studies of
large-scale simulations of specific applications inelegidemic spread (Bisset et al. 2009; Perumalla and
Seal 2010) and electromagnetic signal propagation (D. W. Bauer Jr. et al. 2009). These studies yielded
event rateper coreof 138K (2003), 32K (2007), 187K (290 and 256K (2013) events/second/core,
representing only a factor of 2 improvement in single core performance over a span of 10 years.
Performance improvements today are being driven stleatirely by increases in parallelism. Processor
clock rates have seen only modest increases since AB®5F0 physical constraints concerning heat
dissipation, resulting in an explosion in the nhumblecores in supercomputer architectures since 2005.
Throughout much of the 1990's and up until 2088 most powerful supercomputers contained only
thousands of cores. The most polwemachines today contain millions.

Exploiting GPU PlatformsA graphics processing unit (GPU) is a hardware accelerator that off-loads
computational tasks from the central processing (@RU). A principal limitation of GPUs for PDES
applications is the single-instruction-stream, multiple-data-stream (SIMD) execution paradigm. GPUs are
designed to support data parallel kgagions where the same operation is performed across multiple data
elements. Early work in PDES examined SIMIxhatectures for queueing network and Ising spin
simulations (Lubachevsky 1989) and logic simalatof electronic circuits (Chung and Chung 1991).
Work by (Kunz et al. 2012) using GPUs involvestisig events according to event type and clustering
their execution to allow SIMD execution. Schedulargl load balancing are discussed in (Romdhanne et
al. 2013). Use of GPUs for cellular aotata simulations have been expldiin application such as traffic
simulation (Perumalla et al. 2009; Xu et al. 2014), systems biology (Falk et al. 2011), and Ising Spin
(Hawick et al. 2011). In (Park and Fishwick 20HLtime-stepped-like meahism to implement the
discrete event simulation. Another approach utilizingrae step approach — generate events, sort them,
process them and use of time parallel simulation technigusscribed in (Li, Cai, et al. 2013). In (Liu
et al. 2014) a method for hybrid simulation of telmoounication networks is described where a discrete
event packet-level simulation is performed the CPU while a continuous numerical fluid flow
simulation of traffic is executed by the GPU.

Exploiting Cloud Computing Platformé significant impediment limiting widespread exploitation of
PDES technology for large-scale simulation applicatlas been the need toveaaccess to suitable high
performance computing machines. The cloud’s “payou-go” economic model eliminates the need to
purchase, operate and maintain high performanoguting equipment locally (Fujimoto et al. 2010).
Further, by providing parallel and distributed simulatsoftware as a service, cloud computing offers the
ability to hide many of the complications of extng parallel and distributed simulation codes from the
user, offering the potential to make exploitationttag technology less risky than is the case today. An
important issue in cloud computing environments concerns resource sharing. Computing,
communications, and I/O resources are shared among many users. Individual users are not guaranteed
exclusive access to the processassigned to that user’s virtual cluster. This creates a significant amount
of uncertainty and variability in the computati@mvironment on which the parallel or distributed
simulation code executes. This variability is cited as a likely cause of performance degradations of
conservatively synchronized PDES codes executing ¢h (&@nmechelen et al. 2012). This can lead to
difficulties for parallel simulation applications, esgdlyi those that utilize optimistic synchronization
techniques. Architectures designed to provide flexibource sharing are described in (He et al. 2012;

Li, Chai, et al. 2013; Liu et al. 2012).

Data Driven Distributed SimulatiorDynamic Data Driven Application Systems (DDDAS) (Darema
2004) are computational systems that dynamically incorporate data from a physical system into executing
computations, thereby providing the ability of the application to dynamically steer the measurement

53

Fujimoto

process. Thee approaches have been widely itddand applied to various science and engineering
disciplines for a myriad of purposes. One typicpplacation concerns system monitoring, such as
examining the structural and material health (Cortial et al. 2007; Farhat et al. 2006), tracking wildfires
(Brun et al. 2012; Douglas et al. 2006; Mande&let2012; Mandel et al. 2005) and hurricanes (Allen
2007), or prediction and tracking regional scale Weaphenomena (Plale et al. 2005). A second use
concerns optimizing the opei@ns of a physical system. For example, in an emergency situation alternate
evacuation scenarios may be modeled and evaluat@dén to minimize evacuation time (Chaturvedi et

al. 2006). The evacuation plan may need to adapt as the evacuation evolves when unforeseen events arise
(Chaturvedi et al. 2006). Additional examples udg path planning founmanned aerial vehicles
(Kamrani and Ayani 2007; Madey et al. 2012), tuningapeeters for computer networks (Ye et al. 2008),
managing semiconductor manufacturing systems (Low et al. 2005), and managing surface transportation
systems to mitigate congestion (Fujimoto et al. 2007; Suh et al. 2014). They have been proposed for
decision support systems for manufacturing appboati as described in (Lendermann et al. 2005). An
approach to distributed, online simulations ofgiag networks is discussed in (Huang et al. 2010).

Power and Energy ConsumptioRower consumption has become a major concern for many parallel
and distributed computing applications. The need to reduce power consumption is clear in mobile and
embedded computing where reduced power consumptionesait in increase battery life or enable the
use of smaller batteries thereby reducing the sizevaight of devices. In high-end computing power
consumption is a dominant cost associated with operating large data centers and supercomputers, and a
substantial amount of effort has goiméo developing techniques to reduce these costs. So far, work in
power and energy aware computing has largely focaeddw-level aspects of the computing system in
terms of effectively utilizing specific hardware capitibs and the development of operating systems and
compilers to reduce energy usage consistent witformeance constraints. The design of a simulation,

e.g., in terms of data structures and algorithms waspect to energy and power consumption has not
been extensively studied. The relationships among model detail and fichelifyoaver consumption are
not well understood. These tradeoffs must considelyais of data produced by the simulation, which
will likely be greater for more detailed model, &udition to the execution of the simulation model.
Further, modeling results must be produced in alyinfeshion when the model is used for managing
operational systems, imposing réiahe constraints on model execution time. The frequency and amount
of data utilized by the simulation will have a largnpact on power consumption and energy use. In
addition to the power required to transmit the datta daalysis algorithms will also consume energy to
process incoming data. Further, synchronization algostban significantly affect the amount of energy
that is consumed.

Interoperable Modelsin (Petty and Weisel; 2003) composability is defined as “the capability to
select and assemble simulation components in vagonshinations into valid simulation systems to
satisfy specific user requirements.” Composabilitynist a binary, yes/no property, but rather is
characterized by degrees. Three levels of integration are proposed in (Page et al. 2004), and refined in
(Tolk 2012) to define seven levels that hightigseveral key issues to achieving composeability. A
longstanding goal of the distributed simulation community has been to achieve “plug-and-play”
interoperability where one is able to automatically compose separately developed simulations
independent of the context into which they are eddbd. This implies model composeability, and is far
from the capabilities of current technologies. Mutiddeling or multi-paradigm modeling addresses the
problem of constructing heterogens models of systems where the components of the system are
modeled using different modeling approaches. Multi-modeling has been widely used in embedded system
design and cyber-physical systems where models, computations, and networks are combined with
physical devices. Computer Automated Multi-PagadiModeling (CAMPaM) strives to create domain-
independent frameworks to support the develogmein heterogeneous aedels (Mosterman and
Vangheluwe 2004). These systems must address issoesrned with integration of multiple modeling
formalisms, integrations of modekt different levels of abstrach, and metamodels. A metamodel

54

Fujimoto

defines themodeling language. The same metaleling language can describe multiple modeling
languages, and thus can be used to specify sgstlat utilize multiple formalisms (Cetinkaya and
Verbraeck 2011; Vangheluvand Lara 2002). The metamodel provides a means of describing the overall
system composed of the different constituent modeormalisms supported by the modeling system.
Compilers or translators provide a means to autiocally transform a metamodel for a system into a
simulation model utilizing multipleformalisms. Finally, the mmodeling language itself can be
described by a meta-metamodel language. Pioldnand AToM3 are examples of multi-modeling
frameworks (De Lara and Vangheluwe 2002; Ptolemaeus (ed.) 2014).

7 CONCLUSIONS

Parallel and distributed simulation continues to be an important field of research. A rich body of literature
has developed addressing problems such as synchronization to ensure correct results are produced. The
field continues to evolve, driven by requirementewa from application and changes in the underlying
computing platforms. Future research will need to address requirements and constraints derived from
applications as well as major changes inuhderlying computing platform and software.

ACKNOWLEDGMENTS

Support for Fujimoto’s research in parallel and distributed simulation has been provided by the National
Science Foundation under Grant 1441208 and the AteFOffice of Scientific Research under Grant
FA9550-13-1-0100.

REFERENCES

Allen, G. 2007. "Building a Dynamic Data Driveipplication System for Hurricane Forecasting." In
Computational Science — ICCS 20@dited by Y. Shi, G. D. v. Albada, J. Dongarra, and P. M. A.
Sloot, 1034-1041. Berlin: Springer Berlin Heidelberg.

Barnes, P. D., C. D. Carothers, D. R. Jefferson, and J. M. LaPre. 2013. "Warp Speed: Executing Time
Warp on 1,966,080 Cores." Rrinciples of Advanced Discrete Simulati@27-336.

Bauer Jr., D. W. C. D. Carothers, and A. Holder. 2009. "Scalable Time Warp on Blue Gene
Supercomputers.” IRrinciples of Advanced and Distributed Simulati@B-44.

Bisset, K. R., J. Chen, X. Feng, V. S. A. Kumard 8. V. Marathe. 2009. "Epifast: A Fast Algorithm for
Large Scale Realistic Epidemic Sim- Ulations on Distributed Memory Systemsaitemational
Conference of Supercomputjt80-439.

Brun, C., T. Artés, T. Margalef, and A. Cortés. 2012. "Coupling Wind Dynamics into a DDDAS Forest
Fire Propagation Prediction System." IRAroceedings of the International Conference on
Compuational Science

Bryant, R. E. 1977. "Simulation of Packet Communications Architecture Computer SysterltBT-In
LCS-TR-188.

Carothers, C. D., K. Perumalla, and R. M. Fujimdt899. "Efficient Optimistic Parallel Simulation
Using Reverse ComputatiorACM Transactions on Modeling and Computer Simula8¢®):224-

253.

Cetinkaya, D., and A. Verbraeck. 2011. "Metamaugland Model Transformations in Modeling and
Simulation." In Proceedings othe 2011 Winter Simulation Conferenaited by S. Jain, R. R.
Creasey, J. Himmelspach, K. P. White, and M. Fu, 3048-3058. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers, Inc.

Chandy, K. M., and J. Misra. 1979. "Distributed Simulation: A Case Study in Design and Verification of
Distributed ProgramsIEEE Transactions on Software Engineer®g-5 (5):440-452.

55

Fujimoto

Chang, K. M., and J. Misra. 1981. "Asynchronous Distributed Simulation Via a Sequence of Parallel
Computations.'Communications of the ACR#H (4):198-205.

Chandy, K. M., and R. Sherman. 1989. "The Conditi@went Approach to Distributed Simulation.” In
Proceedings of the SCS Multiconference on Distributed Simu/|&&89.

Chaturvedi, A., A. Mellema, S. Filatyev, andGore. 2006. "DDDAS for Fire and Agent Evacuation
Modeling of the Rhode Island Nightclub Fire." @omputational Science — ICCS 20@#glited by V.

N. Alexandrov, G. D. v. Albada, P. M. &loot, and J. Dongarra, 433—439. Berlin: Springer.

Chen, G., and B. K. Szymanski. 2002. "LookbagkNew Way of ExploitingParallelism in Discrete
Event Simulation.” In the 16th Workshop on Parallel and Distributed Simuletk+162.

Chen, G., and B. K. Szymanski. 2003. "Four Types of LookbackPtdeeedings of the 17th Workshop
on Parallel and Distributed SimulatioB3-10.

Chung, M., and Y. Chung. 1991. "An Experimenfaialysis of Simulation Clock Advancement in
Parallel Logic Simulation on an Simd Machine."Advances in Parallel anDistributed Simulation,
125-132. SCS Simulation Series.

Cortial, J., C. Farhat, L. J. Guibas, and M.d&hagkhar. 2007. "Compress8dnsing and Time-Parallel
Reduced-Order Modeling for Structurale<h Monitoring Using a Dddas." I@omputational
Science — ICCS 2007, edited by Y. Shi, G. D. v. Albada, J. Dongarra, and P. M. A. Sloot, 1171-1179.
Berlin: Springer.

Darema, F. 2004. "Dynamic Data Driven Apptioas Systems: A New Paradigm for Application
Simulations and Measurements."linernational Conference o@omputational Science

Das, S. R., and R. M. Fujimoto. 1997. "AdaptMemory Management and Optimism Control in Time
Warp." ACM Transactions on Modeling and Computer Simulati¢®):239-271.

De Lara, J., and H. Vangheluw2002. "Atom3: A Tool for Multi-Formalism and Meta-Modelling.” In
Proceedings of the Fundamental Approaches to Software Engingeditgd by R.-D. Kutsche, and
H. Weber, 174-188. Springer.

Deelman, E., R. Bagrodia, R. Sakellariou, and W&®001. "Improving Lookahead in Parallel Discrete
Event Simulations of Large-Scale Applications Using Compiler Analysid?tdreedings of the 15th
Workshop on Parallel and Distributed Simulatiénal3.

Dickens, P. M., and J. Reynolds, P. F. 1990. "Srads with Local RollbacRtolreedings of the SCS
Multiconference on Distributed Simulatioh61-164.

Douglas, C. C., R. A. Lodder, J. D. Beezley, J. ManR. E. Ewing, Y. Efendiev, G. Qin, M. Iskandara-
ni, J. Coen, A. Vodacek, M. Kritz, and G. Haase. 2006. "DDDAS Approaches to Wildland Fire
Modeling and Contaminant Tracking." Proceedings of the 2006 Winter Simulation Conference
edited by L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, 2117-
2124. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Falk, M., M. Ott, T. Ertl, M. Klann, and H. Koeppl. 2011. "Parallelized Agent-Based Simulation on Cpu
and Graphics Hardware for Spatial and Stochastic Models in Biology.9thnInternational
Conference on Computational Methods in Systems Biol&382.

Farhat, C., J. G. Michopoulos, F. K. Chang, LGdibas, and A. J. Lew. 2006. "Towards a Dynamic Data
Driven System for Structural aridaterial Health Monitoring." InComputational Science — ICCS
20086 edited by V. N. Alexandrov, G. D. v. Albada, M. A. Sloot, and J. Dongarra, 456—464. Berlin:
Springer Berlin Heidelberg.

Ferscha, A. 1995. "Probabilistic Adaptive Direct Optimism Control lin Time WarpPrt&teedings of
the 9th Workshop on Parallel and Distributed Simulatib20-129.

Fujimoto, R. M. 1989. "Time Warpn a Shared Memory Multiprocessor." Transactions of the Society for
Computer SimulatioB (3):211-239.

Fujimoto, R. M. 2000Parallel and Distributed Simulation Systerigiley Interscience.

Fujimoto, R. M., M. Hunter, J. Sirichoke, M. PalekH.-K. Kim, and W. Suh. 2007. Ad Hoc Distributed
Simulations. IrPrinciples of Advanced and Distributed Simulation

56

Fujimoto

Fujimoto, R. M., A. W. Malik, and A. J. Park. 2010. "Parallel and Distributed Simulation in the Cloud."
SCS Modeling and Simulation Magazine, Society for Modeling and Simulatiod, (B)tl.

Fujimoto, R. M., K. Perumalla, A. Park, H. Wu, M. H. Ammar, and G. F. Riley. 2003. Large-Scale
Network Simulation: How Big? How Fast? Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems

Groselj, B., and C. Tropper. 1988. "The Time of Next Event Algorithm.Prioceedings of the Scs
Multiconference on Distributed SimulatioPb-29. Society for Computer Simulation.

Hawick, K. A., A. Leist, and D. P. Playne0Q2l. "Regular Lattice and Small- World Spin Model
Simulations Using Cuda and Gpubiternational Journal of Parallel Programming 39 (2):183-201.
He, H., R. Li, X. Dong, Z. Zhang, and H. Han. 2012. "An Efficient and Secure Cloud-Based Distributed

Simulation System.Journal of Applied Mathematics & Information Scien6g8):729-736.

Huang, Y.-L., M. Hunter, C. Alexopoulos, and R. Mijimoto. 2010. "Ad Hoc Distributed Simulation of
Queueing Networks." IRrinciples of Advanced and Distributed Simulations

IEEE Std 1278.1-1995. 1993EEE Standard for Distributed Intective Simulation -- Application
Protocols New York, NY: Institute of Electrical and Electronics Engineers, Inc.

IEEE Std 1278.2-1995. 199¥EE Standard for Distributed Interactive Simulation -- Communication
Services and ProfiledNew York, NY: Institute of Electrical and Electronics Engineers Inc.

IEEE Std 1516-2010. 201(EEE Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA) - Framework and Ruleslew York, NY: Institute of Electrical and Electronics Engineers, Inc.

IEEE Std 1516.1-2010. 2010EEE Standard for Modeling and Simulation High Level Architecture
(HLA) - Interface SpecificatioNew York, NY: Institute of Electrical and Electronics Engineers, Inc.

IEEE Std 1516.2-2010. 201dEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA) -- Object Model Template (OMT) Specificatidew York, NY: Institute of
Electrical and Electronics Engineers, Inc.

Jefferson, D. 1985. "Virtual Time. ACM Transactions on Programming Languages and Sysims
(3):404-425.

Jefferson, D. R. 1990. "Virtual Time li: Storage Management in Distributed SimulatioRroteedings
of the Ninth Annual ACM Symposium on Principles of Distributed Comptag9.

Kamrani, F., and R. Ayani. 2007. Using on-Line Simulation for Adaptive Path Planning of URS&E.
International Symposium on Distributed Simulation and Real-Time Applications

Kunz, G., D. Schemmel, J. Gross, and K. Weh2@l12. "Multi-Level Parallelism for Time and Cost
Efficient Parallel Discrete Event Simulation on Gpus."Plrinciples of Advanced and Distributed
Simulation 23-32.

Lendermann, P., M. Y. H. Low, B. P. Gan, N. Julka, L.-P. Chan, L. H. Lee, S. J. E. Taylor, S. J. Turner,
W. Cai, X. Wang, T. Hung, L. F. McGinnis, and S. Buckley. 2005. "An Integrated and Adaptive
Decision-Support Framework for High-Tech Manufacturing and Service NetworkBrotreedings
of the 2005 Winter Simulation Conferenedited by M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and
J. A. Joines, 2052-2062. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers,
Inc.

Li, B.-H., X. Chai, B. Hou, C. Yang, T. Li, T. Lin, Z. Zhang, Y. Zhang, W. Zhu, and Z. Zhao. 2013.
"Research and Application on Cloud Simulation.'Siimmer Computer Simulation Confererce’-

170.

Li, X., W. Cai, and S. Turner. 2013. "Gpu Acesdtedthree-Stageexecution Model for Event-Parallel
Simulation.” InPrinciples of Advanced Discrete Simulati&7-66.

Lin, Y.-B., and B. R. Preiss. 1991. "Optimal Memdwanagement for Time Warp Parallel Simulation.”
ACM Transactions on Modeling and Computer Simulatiga).

Lin, Y.-B., B. R. Preiss, W. M. Loucks, and E. Dazowska. 1993. "Selecting the Checkpoint Interval in
Time Warp Simulations.” InProceedings of the 7th Workshop on Parallel and Distributed
Simulation 3-10.

57

Fujimoto

Liu, J., Y.Liu, Z. Du, and T. Li. 2014. "GPU-Assisted Hybrid Netk Traffic Model." InPrinciples of
Advanced Discrete Simulatip63-74.

Liu, X., X. Qiu, B. Chen, and K. Huang. 2012.16Gd-Based Simulation: The State-of-the-Art Computer
Simulation Paradigm.” IRrinciples of Advanced and Distributed Simulati@t-74.

Low, M. Y. H., K. W. Lye, P. Lendermann, S. J. Turner, R. T. W. Chim, and S. H. Leo. 2005. "An Agent-
Based Approach for Managing Symbiotic Siation of Semiconductor Assembly and Test
Operation.” InProceedings of the 14th Internationddint Conference on Autonomous Agents and
Multiagent System®85-92. New York: Association for Computing Machinery, Inc.

Lubachevsky, B. D. 1989. "Efficient Distributed ént-Driven Simulations of Multiple-Loop Networks."
Communications of the ACBPR (1):111-123.

Madey, G. R., M. B. Blake, C. Poellabauer, i, R. R. McCune, and Y. Wei. 2012. Applying Dddas
Principles to Command, Control and Mission Planning for UAV Swarfreceedings of the
International Conference on Compuational Science

Mandel, J., J. D. Beezley, A. K. Kochanski, Y. Kondratenko, and M. Kim. 2012. Assimilation of
Perimeter Data and Coupling with Fuel Moistunea Wildland Fire — Atmosphere DDDAS. In
International Conference on Compuational Science

Mandel, J., L. S. Bennethum, M. Chen, J. L. Coen, C. C. Douglas, L. P. Franca, C. J. Johns, M. Kim, A.
V. Knyazev, R. Kremens, V. Kulkarni, G. QiA, Vodacek, J. Wu, W. Zhao, and A. Zornes. 2005.
"Towards a Dynamic Data Driven Appliian System for Wildfire Simulation." Ii€omputational
Science — ICCS 2008dited by V. S. Sunderam, G. D. v. Albada, P. M. A. Sloot, and J. J. Dongarra,
632-639. Berlin: Springer Berlin Heidelberg.

Mattern, F. 1993. "Efficient Algorithms for Distributed Snapshots and Global Virtual Time
Approximation.” InJournal of Parallel and Distributed Computing

Miller, D. C., and J. A. Thorpe. 1995. "Simnet: The Advent of Simulator NetworkPigp&eedings of
the IEEE83 (8):1114-1123.

Morse, K. L., and M. Zyda. 2001. "Multica§trouping for Data Distribution Managemen§IMPRA -
Journal of Simulation Practice and Thedfgll (Elsevier).

Mosterman, P., and H. Vangheluwe. 2004. "Computer Automated Multi-Paradigm Modeling: An
Introduction."Simulation: Transactions of The Sociéty Modeling and Simulation Internation8D
(9):433-450.

Nicol, D. M., C. Micheal, and P. Inouye. 1989. "Efficient Aggregaton of Multiple Lps in Distributed
Memory Parallel Simulations." IRroceedings of the 1989 Winter Simulation Confereadéed by
E. A. MacNair, K. J. Musselman, and P. Heimher, 680-685. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers, Inc.

Page, E. H., R. Briggs, and J. A. Tufarolo. 200floward a Family of Maturity Models for the
Simulation Interconnection Problem." 8pring 2004 Simulation taroperability Workshop

Palaniswamy, A. C., and P. A. Wilsey. 1993. "An Analytical Comparison of Periodic Checkpointing and
Incremental State Saving." IRroceedings of the 7th Workshop on Parallel and Distributed
Simulation 127-134.

Park, H., and P. Fishwick. 2011. "An Analysis of Queuing Network Simulation Using Gpu-Based
Hardware Acceleration ACM Transactions on Modeling and Computer Simulafibr{3).

Perumalla, K. S. 2007. "Scaling Time Warp-Bag#dcrete Event Execution to 10**4 Processors on a
Blue Gene Supercomputer.” Broceedings of the ACM @wputing Frontiers Conference

Perumalla, K. S., G. A. Brandon, B. Y. Srikanttind K. S. Sudip. 2009. "Gpu-Based Real-Time
Execution of Vehicular Mobility Models iharge-Scale Road Network Scenarios."Finnciples of
Advanced and Distributed Simulaticd®b-103.

Perumalla, K. S., and S. K. Seal. 2010. "Reversible Parallel Discrete-Event Execution of Large-Scale
Epidemic Outbreak Models." In Principles of Advanced and Distributed Simulation, 106-113.

58

Fujimoto

Petty M. D., and E. W. Weisel;. 2003. "A Composability Lexicon." IBEE Spring Simulation
Interoperability Workshop.

Plale, B., D. Gannon, and D. Reed. 2005. Towafynamically Adaptive Weather Analysis and
Forecasting in Leadnternational Conference o@omputational Science

Preiss, B. R., and W. M. Loucks. 1995. "Memdvlanagement Techniques for Time Warp on a
Distributed Memory Machine." IProceedings of the 9th Workshop on Parallel and Distributed
Simulation 30-39.

Ptolemaeus (ed.), C. 2018ystem Design, Modeling, and Simulation Using PtolenBtolemy.org

Romdhanne, B. B., M. S. M. Bouksiaa, N. Nikaeind C. Bonnet. 2013. "Hybrid Scheduling for Event-
Driven Simulation over Heterogeneous ComputersPrinciples of Advanced Discrete Simulation
47-56.

Ronngren, R., M. Lilienstam, J. Montagnat, and R. Ayani. 1996. "Transparent Incremental State Saving
in Time Warp Parallel Discrete Event Simulation."Proceedings of the 10th Workshop on Parallel
and Distributed Simulatiqr70-77.

Samadi, B. 1985. "Distributed Simulation, Algorite and Performance Analysis." Computer Science
Department, University of California, Los Angeles, Los Angeles, California.

Sokol, L. M., and B. K. Stucky. 1990. "MTW: Expmental Results for a Constrained Optimistic
Scheduling Paradigm.” IRroceedings of the SCS Multiconference on Distributed Simu/dt@s
173.

Steinman, J. S. 1992. "Speedes: A Multiple-Syoclzation Environment for Parallel Discrete Event
Simulation."International Journal on Computer Simulati@b1-286.

Suh, W., M. Hunter, and R. M. Fujimoto. 2014. "Ad Hoc Distributed Simulation for Transportation
System Monitoring and near-Term PredictioBifhulation Modeling Practice and Theoty:1-14.

Tolk (ed.), A. 2012Engineering Principles of Combat Modeling and Distributed Simulatitoboken,
New Jersey: John Wiley and Sons

Tolk, A. 2012. "Challenges of Distributed Simulation.” In Engineering Principles of Combat Modeling
and Distributed Simulatigredited by A. Tolk. John Wiley and Sons Inc.

Vangheluwe, H., and J. D. Lara. 200Rleta-Models Are Models Too." In Proceedings of the 2002
Winter Simulation Conferengedited by E. Yicesan, C.-H. Chenl.JSnowdon, and J. M. Charnes,
597 — 605. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Vanmechelen, K., S. De Munck, and J. Bidexve. 2012. "Conservative Distributed Discrete Event
Simulation on Amazon EC2." Imternational Symposium on Cluster, Cloud, and Grid Computing
853-860.

West, D., and K. Panesar. 1996. "Auatio Incremental State Saving." Proceedings of the 10th
Workshop on Parallel and Distributed Simulatigi8-85.

Xu, Y., G. Tan, X. Li, and X. Song. 2014. "Mesoscopic Traffic Simulation on Cpu/Gpu." In Principles of
Advanced Discrete SimulatipB89-49.

Ye, T., H. Kaur, S. Kalyanaraman, and M. Yuk&€08. "Large-Scale Network Parameter Configuration
Using an on-Line Simulation FrameworkEEE/ACM Transactions on Networking 16:777-790.

Zhang, J. L., and C. Tropper. 2001.hélr Dependence List in Time Warp." Rroceedings of the 15th
Workshop on Parallel and Distributed Simulati@5-45.

AUTHOR BIOGRAPHIES
RICHARD FUJIMOTO is Regents’ Professor in the SchoolGdmputational Science and Engineering
at the Georgia Institute of Technology. Heceived a Ph.D. in Computer Science & Electrical

Engineering from the University of California-Berkeley in 1983. His email address is
fujimoto@cc.gatech.edu

59

