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ABSTRACT

In this work, we introduce a new approach to constructing unbiased estimators when computing expectations
of path functionals associated with stochastic differential equations (SDEs). Our randomization idea is
closely related to multi-level Monte Carlo and provides a simple mechanism for constructing a finite
variance unbiased estimator with “square root convergence rate” whenever one has available a scheme that
produces strong error of order greater than 1/2 for the path functional under consideration.

1 INTRODUCTION

Suppose that we wish to compute an expectation of the form α = Ek(X), where X = (X(t) : t ≥ 0) is the
solution to the SDE

dX(t) = μ(X(t))dt +σ(X(t))dB(t), (1)

B = (B(t) : t ≥ 0) is an m-dimensional standard Brownian motion, μ : Rd → R
d , σ : Rd → R

d×m, k :
C[0,∞) → R, and C[0,∞) is the space of continuous functions mapping [0,∞) into R

d . In general, the
random variable (rv) k(X) cannot be simulated exactly, and one typically approximates X via a discrete-time
approximation Xh(·) which in turn leads to a biased estimator k(Xh). The traditional means of dealing with
the bias is to intelligently select the step size h and number of independent replications R as a function of
the computational budget c, so as to maximize the rate of convergence. However, as pointed out by Duffie
and Glynn (1995), such biased numerical schemes inevitably lead to Monte Carlo estimators for α that
exhibit slower convergence rates than the “canonical” order c−1/2 rate associated with Monte Carlo in the
presence of unbiased finite variance estimators.

However, Giles (2008) introduced an intriguing multi-level idea to deal with such biased settings that
can dramatically improve the rate of convergence and can even, in some settings, achieve the canonical
“square root” convergence rate associated with unbiased Monte Carlo. His approach, however, does not
construct an unbiased estimator. Rather, the idea is to construct a family of estimators (indexed by the
desired error tolerance ε) that has controlled bias. In this work, we show how it is possible, in a similar
computational setting, to go one step further and to produce (exactly) unbiased estimators. To the best of
the authors’ knowledge, this is the first simulation algorithm that is both unbiased and achieves “square
root convergence” for d-dimensional SDEs.

2 THE BASIC IDEA

We consider here a sequence (Xhn : n ≥ 0) of discrete-time time-stepping approximations to X that are all
constructed on a common probability space in such a way that:

i) Ek(Xhn) = Ek(X)+O(hn) as hn → 0;
ii) E|k(Xhn)− k(X)|2 = O(h2r

n ) as hn → 0 for some r > 0,
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where O( f (n)) represents a function which is bounded by some constant multiple of f (·) as hn → 0. Under
these conditions, we introduce a rv N, independent of B, that takes values in the positive integers and has
a distribution with unbounded support (so that P(N ≥ n)> 0 for n ≥ 1). For such a rv N,

Ek(X) = Ek(X1)+
∞

∑
n=1

E(k(X2−n)− k(X2−(n−1) ))

= Ek(X1)+
∞

∑
n=1

E
[
(k(X2−n)− k(X2−(n−1) ))I(N ≥ n)

]
/P(N ≥ n)

= E

[
k(X1)+

N

∑
n=1

(k(X2−n)− k(X2−(n−1) ))/P(N ≥ n)

]

� EZ.

i.e., Z is an unbiased estimator for α . This suggests computing α by generating iid replicates of the rv
Z. For iid unbiased estimators, “square root convergence rate” ensues if varZ < ∞ and if the expected
computational effort required per replication of Z is finite; see Glynn and Whitt (1992). The following
conditions guarantee the finite variance and the finite expected effort required so that our iid estimator
achieves the square root convergence rate; see Rhee and Glynn (2012) for proofs.

iii) P(N ≥ i)∼ c2−γi as i → ∞, for 0 < γ < 2r (where ai ∼ bi means that ai/bi → 1 as i → ∞)
iv) The effort required to compute k(X2−i) is O(2i).
v) 2r > 1.

It should be noted that these conditions essentially coincide with the conditions required by multi-level
Monte Carlo to converge at the same rate.

3 PRELIMINARY COMPUTATIONAL INVESTIGATION

We implemented our method and compared it to the multi-level Monte Carlo (MLMC) algorithm suggested
in Giles (2008). We considered the first moment of Geometric Brownian Motion (GBM) and the Cox-
Ingersoll-Ross process (CIR) at a fixed time point with typical parameters used in finance context. The
numerical scheme used to solve each of the SDEs was the Milstein scheme; see Rhee and Glynn (2012)
for more details.

The results from our method show that the new estimators are indeed unbiased, and computationally
comparable to those associated with MLMC despite the fact that we did essentially no tuning to optimize
the distribution of N for the purposes of this experiment. In particular, for the CIR example, our estimator
appears to require less work for comparable accuracy, while for the GBM example, MLMC is more efficient.
In addition, our estimator is (arguably) easier to implement than MLMC, since (in its current form) there
are no algorithmic parameters that are estimated “on the fly” within the algorithm (in contrast to MLMC).
Thus, the unbiased estimators introduced here offer a promising computational alternative to MLMC in
the presence of SDE numerical schemes having a strong order greater than 1/2.
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