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ABSTRACT

We discuss the application of multilevel Monte Carlo methods to elliptic partial differential equations
with random coefficients. Such problems arise, for example, in uncertainty quantification in subsurface
flow modeling. We give a brief review of recent advances in the numerical analysis of the multilevel
algorithm under minimal assumptions on the random coefficient, and extend the analysis to cover also
tensor–valued coefficients, as well as point evaluations. Our analysis includes as an example log–normal
random coefficients, which are frequently used in applications.

1 INTRODUCTION

There are many situations in which modeling and computer simulation are indispensable tools and where
the mathematical models employed have been demonstrated to give adequate representations of reality.
However, the parameters appearing in the models often have to be estimated from measurements and are,
therefore, subject to uncertainty. This uncertainty propagates through the simulations and quantifying its
impact on the results is frequently of great importance.

A good example is provided by the problem of assessing the safety of a potential deep geological
repository for radioactive wastes. Any radionuclides leaking from such a repository could be transported
back to the human environment by groundwater flowing through the rocks beneath the earth’s surface. The
very long timescales involved mean that modeling and simulation are essential in evaluating repository
performance. The study of groundwater flow is well established, and there is general scientific consensus
that in many situations Darcy’s Law can be expected to lead to an accurate description of the flow (de Marsily
1986). The main parameter appearing in Darcy’s Law is the permeability, which characterizes how easily
water can flow through the rock under a given pressure gradient. In practice it is only possible to measure
the permeability at a limited number of spatial locations, and these measurements are too sparse to infer
the structure of the permeability over the whole computational domain for the simulation. This fact is
the primary source of uncertainty in groundwater flow calculations, and quantifying the impact of this
uncertainty on predictions of radionuclide transport is essential for reliable repository safety assessments.

A widely used approach for dealing with uncertainty in groundwater flow is to represent the permeability
as a random field (Delhomme 1979; de Marsily et al. 2005). A model frequently used is a log–normal
random field, with a covariance function that is only Lipschitz continuous. Individual realizations of such
fields have low spatial regularity and significant spatial variation, making the problem of solving for the
pressure very costly. The slow rate of convergence of the standard Monte Carlo algorithm means that many
such realizations are required to obtain accurate results, rendering the problem computationally unfeasible.

In this paper, we therefore employ the multilevel Monte Carlo (MLMC) method. This method was
first introduced by Giles (2008) in the context of stochastic differential equations in finance, and similar
ideas were also used by Heinrich (2001) and Brandt and Ilyin (2003). In the context of our groundwater
flow model problem, it was shown in for example (Cliffe et al. 2011) and (Teckentrup et al. 2012), that
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the multilevel method leads to a significant reduction in the computational cost required to achieve a given
accuracy.

The main challenge in the numerical analysis of MLMC methods for elliptic partial differential equations
(PDEs) with random coefficients, is the quantification of the numerical discretization error, or in other
words the bias of the estimator. Models for the random coefficient frequently used in applications, such
as log–normal random fields, are not uniformly coercive, making the numerical analysis challenging. A
rigorous analysis of the MLMC algorithm under minimal assumptions on the random coefficient was recently
carried out by Charrier, Scheichl, and Teckentrup (2011) and Teckentrup et al. (2012). In particular, uniform
coercivity or boundedness were not assumed in these papers. If one does assume uniform coercivity and
boundedness of the coefficient, the analysis of the discretization error is classical, and an analysis of the
MLMC method for this case can be found in (Barth, Schwab, and Zollinger 2011). Other related works
on numerical errors for elliptic PDEs with random coefficients are (Charrier 2012) and (Gittelson 2010).

The aim of this paper is to extend the theory in (Teckentrup et al. 2012). We here consider the case
of more general, tensor–valued models of the permeability, which are often used in applications to model
orthotropic media. We will also prove convergence of the MLMC algorithm for point evaluations of the
pressure or the Darcy flux.

The outline of the paper is as follows. In §2, we describe the multilevel Monte Carlo algorithm applied
to elliptic PDEs with random coefficients, and discuss its performance. In §3, we then prove an upper
bound on the computational cost of the multilevel Monte Carlo estimator. We recall some of the main
results from (Charrier, Scheichl, and Teckentrup 2011; Teckentrup et al. 2012), before extending the results
to tensor–coefficients and point evaluations.

2 MULTILEVEL MONTE CARLO SIMULATION

The classical equations governing a steady state, single phase flow, are Darcy’s law coupled with an
incompressibility condition. These equations can be written in second order form as

−div(A∇u) = f , in D⊂ Rd , (1)

subject to appropriate boundary conditions. Here, A is the permeability tensor, u is the resulting pressure
field, and f are the source terms. Modeling A as a random field, u also becomes a random field.

In applications, one is then usually interested in finding the expected value of some functional Q = M(u)
of the solution u to our model problem (1). This could for example be the value of the pressure u or the
Darcy flux −A∇u at or around a given point in the computational domain, or outflow over parts of the
boundary. Since u is not easily accessible, Q is often approximated by the quantity Qh := M(uh), where uh
is a finite dimensional approximation to u, such as the finite element solution on a sufficiently fine spatial
grid Th.

To estimate E [Q], we then compute approximations (or estimators) Q̂h to E [Qh], and quantify the
accuracy of our approximations via the root mean square error (RMSE)

e(Q̂h) :=
(
E
[
(Q̂h−E(Q))2])1/2

.

The computational cost Cε(Q̂h) of our estimator is then quantified by the number of floating point operations
that are needed to achieve a RMSE of e(Q̂h)≤ ε . This will be referred to as the ε–cost.

The classical Monte Carlo (MC) estimator for E [Qh] is

Q̂MC
h,N :=

1
N

N

∑
i=1

Qh(ω
(i)),

where Qh(ω
(i)) is the ith sample of Qh and N independent samples are computed in total.
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There are two sources of error in the estimator (2), the approximation of Q by Qh, which is related
to the spatial discretization, and the sampling error due to replacing the expected value by a finite sample
average. This becomes clear when expanding the mean square error (MSE) and using the fact that for Monte
Carlo E[Q̂MC

h,N ] = E[Qh] and V[Q̂MC
h,N ] = N−1V[Qh], where V[X ] := E[(X −E[X ])2] denotes the variance of

the random variable X : Ω→ R. We get

e(Q̂MC
h,N )

2 = N−1V[Qh]+
(
E[Qh−Q]

)2
. (2)

A sufficient condition to achieve a RMSE of ε with this estimator is that both of these terms are less than
ε2/2. For the first term, this is achieved by choosing a large enough number of samples, N =O(ε−2). For
the second term, we need to choose a fine enough finite element mesh Th, such that E[Qh−Q] = O(ε).

The main idea of the MLMC estimator is very simple. We sample not just from one approximation
Qh of Q, but from several. Linearity of the expectation operator implies that

E[Qh] = E[Qh0 ]+
L

∑
`=1

E[Qh`−Qh`−1 ]

where {h`}`=0,...,L are the mesh widths of a sequence of increasingly fine triangulations Th` with Th :=ThL ,
the finest mesh. Hence, the expectation on the finest mesh is equal to the expectation on the coarsest mesh,
plus a sum of corrections adding the difference in expectation between simulations on consecutive meshes.
The multilevel idea is now to independently estimate each of these terms such that the overall variance is
minimized for a fixed computational cost.

Setting for convenience Y0 := Qh0 and Y` := Qh`−Qh`−1 , for 1≤ `≤ L, we define the MLMC estimator
simply as

Q̂ML
h,{N`} :=

L

∑
`=0

Ŷ MC
`,N`

,

where Ŷ MC
`,N`

is the standard MC estimator for Y`,

Ŷ MC
`,N`

=
1
N`

N`

∑
i=1

Y`(ω(i)).

Here, it is important to note that Y`(ω(i)) = Qh`(ω
(i))−Qh`−1(ω

(i)), i.e. the quantity Y`(ω(i)) is computed
using the same sample on both meshes.

Since all the expectations E[Y`] are estimated independently in (2), the variance of the MLMC estimator
is ∑

L
`=0 N−1

` V[Y`] and expanding as in (2) leads again to a MSE of the form

e(Q̂ML
h,{N`})

2 := E
[(

Q̂ML
h,{N`}−E[Q]

)2
]
=

L

∑
`=0

N−1
` V[Y`] +

(
E[Qh−Q]

)2
.

As in the classical MC case before, we see that the MSE consists of two terms, the variance of the estimator
and the error in mean between Q and Qh. Note that the second term is identical to the second term for the
classical MC method in (2). A sufficient condition to achieve a RMSE of ε is again to make both terms
less than ε2/2. This is easier to achieve with the MLMC estimator, as

• for sufficiently large h0, samples of Qh0 are much cheaper to obtain than samples of Qh;
• the variance Y` tends to 0 as h`→ 0, meaning we need fewer samples on Th` , for ` > 0.

Let now C` denote the cost to obtain one sample of Qh` . Then we have the following results on the
ε–cost of the MLMC estimator (cf. Cliffe et al. (2011), Giles (2008)).
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Theorem 1 Suppose there are positive constants α,β ,γ,cM1,cM2,cM3 > 0 such that α≥ 1
2 min(β ,γ) and

M1. |E[Qh−Q]| ≤ cM1 hα ,

M2. V[Qh`−Qh`−1 ] ≤ cM2 hβ

` ,

M3. C` ≤ cM3 h−γ

` ,

Then, for any ε < e−1, there exist an L and a sequence {N`}L
`=0, such that e(Q̂ML

h,{N`})< ε and

Cε(Q̂ML
h,{N`}) .


ε−2, if β > γ,

ε−2(logε)2, if β = γ,

ε−2−(γ−β )/α , if β < γ,

where the hidden constant depends on cM1,cM2 and cM3. For the classical MC estimator we have
Cε(Q̂MC

h ) . ε−2−γ/α , where the hidden constant depends on cM1 and cM3.
The convergence rates α and β in Theorem1 are related to the convergence of the spatial discretization

error, and have been proven for various quantities of interest in (Charrier, Scheichl, and Teckentrup 2011)
and (Teckentrup et al. 2012). In §3.2, we further extend this theory to point evaluations of the pressure and
the flux. Typical values of α and β for the model problem considered in this paper are α = 1 and β = 2
for rough models of the permeability and α = 2 and β = 4 for smoother models (this is made more precise
in §3). The rate γ is related to the cost of numerically solving the PDE for one realization of the random
coefficient. This involves producing a sample of the random coefficient, and solving a linear system of
equations. The cost of solving the linear system will generally be dominant, and with an optimal linear
solver, the cost of one such solve is proportional to h−d

` , the number of unknowns, and so γ ≈ d.
In Table 1, we show the ε–costs as predicted by Theorem1, for typical values of α and β . We assume

an almost optimal linear solver, and take γ to be slightly larger than d. We see that the gains we can expect
from using the MLMC estimators are always significant, usually in the order of two orders of magnitude.
It is also worth noting that although the actual ε–costs are higher in the case of the rough model problem
with α = 1 and β = 2, the gains we can expect from MLMC are also greater in this case.

Table 1: Upper bounds for the ε-costs of classical and multilevel Monte Carlo from Theorem1 in the
cases α = 1,β = 2 (left) and α = 2,β = 4 (right), with γ = d +δ in both cases, where δ > 0 is a small
constant. d is the spatial dimension from (1).

α = 1, β = 2 α = 2, β = 4
d MC MLMC MC MLMC
1 ε−3 ε−2 ε−5/2 ε−2

2 ε−4 ε−2 ε−3 ε−2

3 ε−5 ε−3 ε−7/2 ε−2

The reduction in cost associated with the MLMC estimator over standard MC is largely due to the fact
that the number of samples needed on the finer grids is greatly reduced. Most of the uncertainty can already
be captured on the coarse grids, and so the MLMC estimator shifts some of the computational effort on
to the coarse grids. Exactly how much of the computational effort can (and should) be shifted towards
the coarse grids, depends on the model problem and the quantity of interest Q. The MLMC algorithm
described above chooses the number of samples on each level in such a way that the computational cost
of the estimator is minimized, subject to the overall variance of the estimator being less than ε2/2. This
can lead to three different scenarios: the computational cost could be predominantly on the coarse levels,
spread evenly across the levels, or predominantly on the fine levels. This corresponds to the three upper
bounds given in Theorem1 above.
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To make this more precise, note that for given {N`} and {C`}, the computational cost of the MLMC
estimator is

C (Q̂ML
h,{N`}) =

L

∑
`=0

N`C`.

Treating the N` as continuous variables, the cost of the MLMC estimator is minimized for a fixed variance
by choosing

N` h
√

V[Y`]/C` ,

with the constant of proportionality chosen so that the overall variance is ε2/2. The total cost on level `
is then proportional to

√
V[Y`]C`, and hence

C (Q̂ML
h,{N`}) .

L

∑
`=0

√
V[Y`]C`.

If the variance V[Y`] decays faster with ` than the cost C` increases, i.e. if β > γ , the dominant term
will be on level 0. Similarly, if V[Y`] decays slower than C` increases, the dominant term will be on the
finest level L, and if V[Y`] decreases at the same rate as C` increases, the cost is spread evenly across all
levels. In the context of our model problem in subsurface flow, we are usually in the last regime, where
β < γ . Especially in 2 or 3 space dimensions, the cost of obtaining one sample grows very rapidly, and the
dominant cost will always be on the finest level. It is worth noting that if β = 2α , and like here, β < γ , the
cost of the MLMC estimator is of the order ε−γ/α . This is in fact the same cost as taking only one sample
on the finest grid, since we have to choose h h ε1/α to get a MSE of O(ε2), and the cost of one solve
is then C . h−γ = ε−γ/α , by assumption M3. This means that asymptotically our multilevel Monte Carlo
method for the stochastic problem has the same complexity as a deterministic solver for one realization of
the same problem.

Another issue which influences the cost of the MLMC estimator, is the choice of the coarsest mesh size
h0. The bigger h0 is, the more levels we can include in the MLMC estimator, and the bigger the potential
gains are with respect to standard MC. Although the choice of h0 does not influence the asymptotic bounds
on the cost given in Theorem1, the choice of h0 does have an effect on the absolute cost of the MLMC
estimator for any fixed accuracy ε . In practical applications, h0 must often be chosen to give a minimal
level of resolution to the problem in order to get the MLMC estimator with the smallest absolute cost. For
the model problem in subsurface flow, where the permeability varies on a very fine scale and is highly
oscillatory, very coarse meshes do not yield a good representation of the problem, and including them in the
MLMC estimator can lead to a larger absolute cost than necessary. One way to circumvent this problem,
is to use smoother representations of the permeability on the coarse levels. It was shown in (Teckentrup
et al. 2012) that, without introducing any additional bias in the MLMC estimator, this strategy allows for
the inclusion of much coarser levels, and hence gives a significantly lower absolute cost of the MLMC
estimator, even in the context of short correlation lengths.

The rest of the paper is devoted to proving theoretical convergence rates, and thus justifying assumptions
M1 and M2 in Theorem1.

3 NUMERICAL ANALYSIS

For simplicity, we consider a particular instance of model problem (1), posed on a Lipschitz–polygonal
domain D ⊂ R2 and with homogeneous Dirichlet conditions: Given a probability space (Ω,A ,P) and
ω ∈Ω, find u : Ω×D→ R such that

−div(A(ω,x)∇u(ω,x)) = f (ω,x), for x ∈ D, (3)

u(ω,x) = 0, for x ∈ Γ j .
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The differential operators div and ∇ are with respect to x ∈ D, and Γ := ∪m
j=1Γ j denotes the boundary

of D, partitioned into straight line segments. Note that due to the tensor–valued coefficient A(ω,x), this
problem is more general than those studied in our earlier papers (Charrier, Scheichl, and Teckentrup 2011)
and (Teckentrup et al. 2012).

We will carry out a finite element error analysis of (3), under minimal assumptions on the coefficient
tensor A and on the source term f . In particular, we do not assume that A is coercive and bounded uniformly
in ω , since this is not the case for example for log–normal random fields, which can take values arbitrarily
close to zero or infinity for any given realization. The crucial observation is that for each fixed ω , we
have a uniformly coercive and bounded problem (in x). The first step in our error analysis is therefore
to derive an estimate on the finite element error for a fixed ω . However, in order to be able to compute
moments (expectations) of the error, it is crucial that we keep track of how all the constants that appear
in our estimates depend on ω , or in other words on A and f .

The coefficient tensor A(ω, ·) is assumed to take values in the space of real–valued, symmetric 2×2
matrices. Given the usual norm |v| :=

(
∑

2
i=1 |v2

i |
)1/2

on R2, we choose the norm on R2×2 as the norm
induced by | · |, or any matrix norm equivalent to it.

For all ω ∈Ω, let now Amin(ω) be such that

A(ω,x)ξ ·ξ & Amin(ω)|ξ |2, ∀ξ ∈ R2, uniformly in x ∈ D,

and define
Amax(ω) := ‖A(ω, ·)‖C(D,R2×2).

We make the following assumptions on the input data:

A1. Amin ≥ 0 almost surely and 1/Amin ∈ Lp(Ω), for all p ∈ (0,∞).
A2. Ai, j ∈C t(D), i, j ∈ {1,2}, and A ∈ Lp(Ω,C t(D, R2×2)), for some 0 < t ≤ 1 and for all p ∈ (0,∞).
A3. f ∈ Lp∗(Ω,Ht−1(D)), for some p∗ ∈ (0,∞].

Here, the space C t(D, R2×2) is the space of 2× 2 matrix–valued, Hölder–continuous functions with
exponent t, Hs(D) is the usual fractional order Sobolev space, and Lq(Ω,B) denotes the space of B-valued
random fields, for which the qth moment (with respect to the measure P) of the B–norm is finite, see e.g
(Charrier, Scheichl, and Teckentrup 2011). A space which will appear in the error analysis later is the
space Lq(Ω,H1

0 (D)), which denotes the space of H1
0 (D)–valued random fields with the norm on H1

0 (D)
being the usual H1(D)–seminorm | · |H1(D). It is possible to weaken Assumptions A1 and A2 to 1/Amin

and ‖A‖C t(D,R2×2) having finite moments of order pa, for some pa ∈ (0,∞), but we will not do this here
for ease of presentation.

An example of a random tensor A(ω,x) that satisfies Assumptions A1 and A2, for all p ∈ (0,∞),
is a tensor of the form A = exp(g1)K1 + exp(g2)K2, where g1 and g2 are real–valued Gaussian random
fields with a Hölder–continuous mean and a Lipschitz continuous covariance function, and K1 and K2 are
deterministic tensors satisfying (deterministic versions of) assumptions A1–A2. For example, gi, i = 1,2,
could have constant mean and an exponential covariance function, given by

E
[
(gi(ω,x)−E[gi(ω,x)])(gi(ω,y)−E[gi(ω,y)])

]
= σ

2 exp(−‖x− y‖/λ )

where σ2 and λ are real parameters known as the variance and correlation length, and ‖ ·‖ denotes a norm
on R2. It follows from the results in (Charrier, Scheichl, and Teckentrup 2011) that the resulting random
tensor satisfies assumptions A1–A2, for any t < 1/2. If we instead choose a smoother covariance function,
like the Gaussian covariance

E
[
(gi(ω,x)−E[gi(ω,x)])(gi(ω,y)−E[gi(ω,y)])

]
= σ

2 exp(−‖x− y‖2/λ
2)
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the resulting random tensor A satisfies assumptions A1–A2 with t = 1.
To simplify the notation in the following, let 0 <CA, f < ∞ denote a generic constant which depends

algebraically on Lq(Ω)–norms of Amax, 1/Amin, ‖A‖C t(D,R2×2) and ‖ f‖Ht−1(D), with q < p∗ in the case of
‖ f‖Ht−1(D). We will also use the notation b . c for two positive quantities b and c, if b/c is uniformly
bounded by a constant independent of A, f and h.

We will study the PDE (3) in weak (or variational) form, for fixed ω ∈Ω. This is not possible uniformly
in Ω, but almost surely. In the following we will not explicitly write this each time. With f (ω, ·)∈Ht−1(D)
and 0 < Amin(ω)≤Amax(ω)< ∞, for all x ∈D, the variational formulation of (3), parametrized by ω ∈Ω,
is

bω

(
u(ω, ·),v

)
= Lω(v) , for all v ∈ H1

0 (D), (4)

where the bilinear form bω and the linear functional Lω (both parametrized by ω ∈Ω) are defined as usual,
for all u,v ∈ H1

0 (D), by

bω(u,v) :=
∫

D
A(ω,x)∇u(x) ·∇v(x)dx and Lω(v) := 〈 f (ω, ·),v〉Ht−1(D),H1−t

0 (D) .

We say that for any ω ∈ Ω, u(ω, ·) is a weak solution of (3) iff u(ω, ·) ∈ H1
0 (D) and satisfies (4). The

following result is classical. It is based on the Lax-Milgram Lemma (cf Hackbusch 2010).
Lemma 1 For almost all ω ∈Ω, the bilinear form bω(u,v) is bounded and coercive in H1

0 (D) with respect
to | · |H1(D), with constants Amax(ω) and Amin(ω), respectively. Moreover, there exists a unique solution
u(ω, ·) ∈ H1

0 (D) to the variational problem (4) and

|u(ω, ·)|H1(D) .
‖ f (ω, ·)‖H−1(D)

Amin(ω)
.

We now consider finite element approximations of our model problem (3) using standard, continuous,
piecewise linear finite elements. This is not the only possible choice, and the MLMC estimator works
equally well with other spatial discretizations. See for example (Cliffe et al. 2011) for results with finite
volume discretizations, and (Graham, Scheichl, and Ullmann 2012) for an error analysis in the case of
mixed finite elements.

Denote by {Th}h>0 a shape-regular family of simplicial triangulations of the domain D, parametrized
by its mesh width h := maxτ∈Th diam(τ).

Associated with each triangulation Th we define the space

Vh :=
{

vh ∈C(D) : vh|τ linear, for all τ ∈Th, and vh|Γ = 0
}

of continuous, piecewise linear functions on D that vanish on the boundary.
The finite element approximation of u in Vh, denoted by uh, is now found by solving

bω

(
uh(ω, ·),v

)
= Lω(v) , for all v ∈Vh,

The key tools in proving convergence of the finite element method are Cea’s lemma and a best
approximation result (cf Hackbusch 2010; Brenner and Scott 2008):
Lemma 2 (Cea’s Lemma) Let Assumptions A1–A3 hold. Then, for almost all ω ∈Ω,

|(u−uh)(ω, ·)|H1(D) ≤
(

Amax(ω)

Amin(ω)

)1/2

inf
vh∈Vh
|u(ω, ·)− vh|H1(D).

Lemma 3 Let v ∈ H1+s(D)∩H1
0 (D), for some 0 < s≤ 1. Then

inf
vh∈Vh
|v− vh|H1(D) . ‖v‖H1+s(D) hs

where the hidden constant is independent of v and h.
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In order to conclude on the the convergence of u to uh in the Lp(Ω,H1
0 (D))–norm, or in other words

on the convergence of moments of the H1(D)–seminorm of the error, it is hence crucial that we can bound
moments of ‖u‖H1+s(D), for some 0 < s ≤ 1. The spatial regularity of u depends both on the regularity
of A and f , and on the geometry of the domain D, so we need the following definition in addition to
assumptions A1–A3.
Definition 1 Let 0 < λ∆(D) ≤ 1 be such that for any 0 < s ≤ λ∆(D),s 6= 1

2 , the Laplace operator ∆ is
surjective as an operator from H1+s(D)∩H1

0 (D) to Hs−1(D). In other words, let λ∆(D) be no larger
than the order of the strongest singularity of the Laplace operator with homogeneous Dirichlet boundary
conditions on D.

In general, the value of λ∆(D) depends on the geometry of D, and the type of boundary conditions
imposed. For the particular model problem (3), we have that λ∆(D) = 1 for convex domains. For non-convex
domains, we have λ∆(D) = minm

j=1 π/θ j, where θ j is the angle at corner S j, and m is the number of corners
in D. Hence, λ∆(D)> 1/2 for any Lipschitz polygonal domain.

In the particular case of scalar coefficients, the following result was proven in (Teckentrup et al. 2012).
Theorem 2 Suppose A = aI2, for some a : Ω×D→ R, and let Assumptions A1-A3 hold for some
0 < t ≤ 1. Then,

‖u(ω, ·)‖H1+s(D) .
Amax(ω)‖A(ω, ·)‖2

C t(D,R2×2)

Amin(ω)4 ‖ f‖Ht−1(D),

for almost all ω ∈Ω and for all 0 < s < t such that s≤ λ∆(D). Hence,

‖u−uh‖Lp(Ω,H1
0 (D)) ≤ CA, f h s, for all p < p∗ ,

with CA, f < ∞ a constant that depends on the input data, but is independent of h. If A1-A3 hold with
t = λ∆(D) = 1, then ‖u−uh‖Lp(Ω,H1

0 (D)) ≤CA, f h.

From Theorem2, one can easily deduce convergence rates α and β for Theorem 1, for Q = |u|H1(D).
Assume p∗ > 2, and 0 < t < 1. Using the reverse triangle inequality, we get

E
[∣∣|u|H1(D)−|uh` |H1(D)

∣∣]≤ E
[
|u−uh` |H1(D)

]
= ‖u−uh`‖L1(Ω,H1

0 (D)) .CA, f hs
`, (5)

and so α = s. Similarly, using V(X)≤ E
[
X2
]
, the reverse triangle inequality, the triangle inequality and

E
[
X2
]
= ‖X‖2

L2(Ω)
, we have

V
[∣∣∣|uh` |H1(D)−|uh`−1 |H1(D)

∣∣∣]≤ E
[(
|uh`−uh`−1 |H1(D)

)2
]
.CA, f h2s

` , (6)

and so β = 2s. If t = 1, one can similarly show that assumptions M1–M2 are satisfied with α = 1 and
β = 2.

As in the deterministic setting, one can use Theorem2, together with a duality argument, to prove
convergence of the finite element error for other quantities of interest. These quantities include ‖u‖L2(D),
for which one can prove convergence rates twice those of the H1(D)–seminorm (see Charrier, Scheichl,
and Teckentrup 2011), and all functionals which are continuously Fréchet differentiable, for which one
can prove convergence rates up to twice those of the H1(D)–seminorm, depending on the functional (see
Teckentrup et al. 2012).

The remainder of this section will be devoted to extending the theory above. In §3.1, we prove an
analogue of Theorem2 in the case of more general tensor coefficients A. In §3.2, we prove convergence of
a functional that does not fit into the framework of functionals covered in (Teckentrup et al. 2012), namely
point evaluations.
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3.1 Regularity of the Solution for Tensor Coefficients

The main result in this section is that Theorem2 holds also for more general tensor coefficients.
Theorem 3 Let Assumptions A1-A3 hold for some 0 < t ≤ 1. Then,

‖u(ω, ·)‖H1+s(D) .
Amax(ω)‖A(ω, ·)‖2

C t(D,R2×2)

Amin(ω)4 ‖ f‖Ht−1(D),

for almost all ω ∈Ω and for all 0 < s < t such that s≤ λ∆(D). Hence, u ∈ Lp(Ω,H1+s(D)), for any p < p∗.
If A1-A3 hold with t = λ∆(D) = 1, then the above bound holds with s = 1, and u ∈ Lp(Ω,H2(D)).

The proof of Theorem3 is very similar to the proof in the case of scalar coefficients, which can be
found in full in (Teckentrup et al. 2012, §5) and (Charrier, Scheichl, and Teckentrup 2011, §A). We will
therefore only give the final result, together with the main ideas of the proof, in this section. For a detailed
proof, see (Teckentrup 2013).

Proof of Theorem3. (Sketch) The proof follows closely that of (Teckentrup et al. 2012, §5.1). We denote
by Aω the differential operator −div(A∇·). From a result in perturbation theory, it suffices to show that
there exists a constant Csemi(ω) such that

‖v‖H1+s(D) ≤Csemi(ω)‖Aωv‖Hs−1(D), for all v ∈ H1+s(D)∩H1
0 (D), (7)

in order to conclude that u(ω, ·)∈H1+s(D). To prove the existence of such a constant Csemi(ω), we combine
regularity results for operators with constant coefficients in polygonal domains, with regularity results for
operators with variable coefficients in smooth domains.

We first choose a smooth (C 2) domain D′ ⊂ D, which roughly speaking coincides with D away from
the corners, and does not contain any of the corners. A slight generalization of the proof in (Charrier,
Scheichl, and Teckentrup 2011, §A), establishes a bound as in (7) for all functions w ∈H1+s(D′)∩H1

0 (D
′).

Secondly, in order to characterize the behavior of the function v near the corners, we let W be a
polygonal subdomain of D, which includes some corner S j. We first show that

Amin(ω)‖w‖H1+s(W ) . ‖A
j
ωw‖Hs−1(W ), for all w ∈ H1+s(W )∩H1

0 (W ),

where A j
ω is the operator Aω , with coefficients frozen at the corner S j. This is done by using the Cauchy–

Schwartz and the Poincaré inequalities, together with the definition of Amin(ω).
Using the triangle inequality, we then have

Amin(ω)‖w‖H1+s(W ) .
(
‖Aωw‖Hs−1(W )+‖Aωw−A j

ωw‖Hs−1(W )

)
,

and so the crucial step is now to bound ‖Aωw−A j
ωw‖Hs−1(W ). This is done by showing that this difference

can be bounded in terms of ‖A−A(S j)‖C(W ,R2×2) and ‖A‖C t(W ,R2×2), which, by our regularity assumption
A2, can be made arbitrarily small by making W arbitrarily small. This establishes a bound as in (7) for
functions w ∈ H1+s(W )∩H1

0 (W ).
The final estimate (7) can then be deduced by combining the two results with the help of suitable

cut–off functions. The final result is that (7) holds with

Csemi(ω) =
Amax(ω)‖A(ω, ·)‖2

C t(D,R2×2)

Amin(ω)4 .
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3.2 Convergence of Point Evaluations

The aim of this section is to derive bounds on moments of ‖(u−uh)(ω, ·)‖L∞(D) and ‖(u−uh)(ω, ·)‖W 1,∞(D).
This will give us convergence rates of the finite element error for point evaluations of the pressure u and the
Darcy flux −A∇u. A classical method used to derive these estimates, is the method of weighted Sobolev
spaces by Nitsche. The results presented in this section are specific to continuous, linear finite elements
on triangles, but extensions to higher spatial dimensions and/or higher order elements can be proved in a
similar way (see e.g. Ciarlet (1978)).

The main result is the following theorem. A detailed proof can again be found in (Teckentrup 2013).
Theorem 4 Assume u ∈ H1

0 (D)∩C r(D), for some 0 < r ≤ 2. Then

‖(u−uh)(ω, ·)‖L∞(D) .
Amax(ω)

Amin(ω)
hr | lnh|‖u(ω, ·)‖C r(D).

If 1 < r ≤ 2, we furthermore have

|(u−uh)(ω, ·)|W 1,∞(D) .
Amax(ω)

Amin(ω)
hr−1 | lnh|‖u(ω, ·)‖C r(D).

Proof. (Sketch) Using the method of weighted norms by Nitsche, as is done in for example (Ciarlet
1978, §3.3), one can derive the quasi–optimality result

‖(u−uh)(ω, ·)‖L∞(D) + h |(u−uh)(ω, ·)|W 1,∞(D) .

Amax(ω)

Amin(ω)
inf

vh∈Vh

(
‖u(ω, ·)− vh‖L∞(D) + h| lnh| |u(ω, ·)− vh|W 1,∞(D)

)
,

which holds for any h sufficiently small, and where again the dependence on A has been made explicit.
The claim of the proposition then follows from the best approximation result

inf
vh∈Vh
‖u(ω, ·)− vh‖L∞(D) . hr ‖u(ω, ·)‖C r(D),

which can be found in e.g. (Schatz 1980), and holds for all 0 < r ≤ 2.

In order to conclude on the convergence of moments of ‖(u−uh)(ω, ·)‖L∞(D) and |(u−uh)(ω, ·)|W 1,∞(D),
it remains to prove a bound on moments of ‖u(ω, ·)‖C r(D), for some 0 < r ≤ 2. One way to achieve this
is to use the Sobolev Embedding Theorem (see e.g. Ciarlet 1978, §3.1). We know from Theorem3 that
u(ω, ·) ∈ H1+s(D), for some 0 < s≤ 1, which gives the following convergence rate.
Theorem 5 Let Assumptions A1–A3 be satisfied, for some 0 < t ≤ 1, and let 0 < s ≤ t be such that
u ∈ Lp(Ω,H1+s(D)), for all p < p∗. Then

‖u−uh‖Lp(Ω,L∞(D)) . CA, f h s | lnh| ,

for all p < p∗, with CA, f a finite constant dependent on A and f , but independent of h and u.

Proof. It follows from the Sobolev Embedding Theorem that H1+s(D) is continuously embedded into
C s(D), for any 0 < s≤ 1. The claim of the Theorem then follows directly from Theorem4.

Alternatively, one can use regularity theory in Hölder spaces to derive a bound on ‖u(ω, ·)‖C r(D)
directly, without going through the Sobolev Embedding Theorem. Theorems 8.33 and 8.34 in (Gilbarg and
Trudinger 2001) give the following.
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Theorem 6 Let Assumptions A1–A3 be satisfied, for some 0 < t ≤ 1 and p∗ > d/(1− t), and suppose D
is a C 1+t domain. Then u(ω, ·) ∈C 1+t(D), and

‖u(ω, ·)‖C 1+t(D) ≤Creg

(
‖u(ω, ·)‖C(D)+‖ f (ω, ·)‖Lp∗ (D)

)
, (8)

where the constant Creg depends on Amin(ω),Amax(ω) and ‖A(ω, ·)‖C t(D,R2×2).
A similar result can be proved for polygonal domains D, where the regularity of u will again depend

on t and the angles in D. In particular, u(ω, ·) ∈ C 1+t(D) for any rectangular domain (Grisvard 1985,
Theorem 6.2.10).

Theorem6 suggests that ‖u− uh‖Lp(Ω,L∞(D)) and ‖u− uh‖Lp(Ω,W 1,∞(D)) should converge with h 1+t and
h t , respectively. These rates are better than those proved in Theorem5, which gave a lower convergence
rate for the L∞(D)–norm and no convergence for the W 1,∞(D)–norm. To be able to conclude rigorously on
these convergence rates, we would, as in Theorem3, have to know exactly how the constant Creg depends
on Amin(ω),Amax(ω) and ‖A(ω, ·)‖C t(D,R2×2). Theorem6 does, however, allow us to conclude on these
higher convergence rates path wise (i.e. for almost all ω ∈Ω, as in Theorem4).

The results in this section can be used in the same way as in (5) and (6) to prove convergence rates
α and β in Theorem1 for point evaluations. Using the fact that u(ω, ·) ∈C 1(D) (cf Theorem6) for almost
all ω , we for example have for evaluations of the norm of the Darcy flux −A∇u at a point x∗ ∈ D

E
[∣∣|A∇u(x∗)|− |A∇uh`(x

∗)|
∣∣]≤ E [|A(x∗)| |(∇u−∇uh`)(x

∗)|]≤ E [Amax |u−uh` |W 1,∞(D) ].CA, f hα
` ,

where α = t, if we use the rates suggested by Theorem6. Similarly, we have

V
[∣∣|A∇u(x∗)|− |A∇uh`(x

∗)|
∣∣]≤ E

[
A2

max |u−uh` |
2
W 1,∞(D)

]
.CA, f h2α

` ,

and so β = 2α , where α is as above. This can easily be generalized to point evaluations of the Darcy flux
in a given coordinate direction. The proof for point evaluations of the pressure is also similar, and leads to
convergence rates α = s and β = 2s, if we use Theorem5, and α = 1+ t and β = 2(1+ t), if we use the
rates suggested by Theorem6.

4 CONCLUSIONS

We have considered the application of multilevel Monte Carlo methods to elliptic PDEs with random
coefficients, in the important case of coefficients which are not uniformly coercive and bounded with
respect to the random parameter. This includes, for example, log–normal random fields. Under minimal
assumptions on the random coefficient, we have proven convergence of the multilevel Monte Carlo algorithm,
together with an upper bound on its computational cost. We have shown that the convergence analysis
in (Charrier, Scheichl, and Teckentrup 2011) and (Teckentrup et al. 2012) holds also in the case of more
general, tensor–valued coefficients, and also for point evaluations of the pressure and the flux.

Although the analysis in this paper was presented for a specific model problem posed on a two–
dimensional domain, most of the analysis holds true also in three spatial dimensions. The crucial difference
is that in order to obtain the required regularity result, one would also have to consider the behavior of
the solution near edges of the domain. It is of course also possible to include other boundary conditions
and/or lower order terms in the differential operator, provided these are regular enough.
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