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ABSTRACT 

In a worldwide environment, sustaining high yield with a minimum number of quality controls is key for 
manufacturing plants to remain competitive. In high-mix semiconductor plants, where more than 200 
products are concurrently run, the complexity of designing efficient control plans comes from the larger 
amount of data and number of production parameters to handle. Several sampling algorithms were pro-
posed in the literature, but most of them are seen impracticable when coming to an industrial implementa-
tion. In this paper, we present and discuss the industrial implementation of a dynamic sampling algorithm 
in a high-mix semiconductor plant. We describe how the sampling algorithm has been modified, and 
point out the set of questions that have been raised by the industrial program. Results indicate that more 
than 30% of control operations on lots could be avoided without increasing the material at risk in produc-
tion. 

1 INTRODUCTION 

One of the strategies identified by semiconductor manufacturers to improve competiveness is to better 
manage controls throughout production (Mouli and Scott 2007). As controlling 100-percent is neither fea-
sible nor interesting, dynamically identifying the right lots to control is critical to reduce costs without 
impacting product quality or increasing risks. 

Several sampling algorithms are proposed in the literature (Purdy 2007; Sun and Johnson 2008). 
However, the specificity of each semiconductor manufacturer is such that most dynamic sampling algo-
rithms proposed are too complex to industrialize. The IT infrastructure, the number of data to handle, the 
return on investment, or the company culture are some of factors that often lead to impracticability of 
many sampling algorithms. 

In this paper, we present the industrial implementation of the dynamic sampling algorithm proposed 
by (Dauzère-Pérès et al. 2010) within the 300mm site of STMicroelectronics in Crolles, France. We first 
describe the sampling algorithm and financial metrics we developed to assess the potential gains. Then, 
we explain how the sampling algorithm has concretely been implemented using a mechanism introduced 
in (Nduhura Munga et al. 2011) for handling a large amount of data in short CPU times. At last, we dis-
cuss the various questions that have been raised by the industrialization program. We focus on defectivity 
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controls and especially on the reduction of the material at risk, i.e. the potential loss in case a problem oc-
curs. Financial metrics indicate a potential gain up to $1,000,000, and the industrial deployment showed 
that more than 30% of control operations on lots could be avoided without increasing the material at risk 
in production. 

The paper is structured as follows. In section 2, we describe controls in semiconductor manufacturing, 
and clarify the position of our work. Section 3 presents the problem we address. Section 4 and Section 5 
are devoted to the description of the dynamic sampling algorithm and its industrial implementation re-
spectively. In section 6, we discuss the questions that have been raised when industrializing the approach. 
Section 7 concludes the paper and gives directions for further research. 

2 CONTROLS IN SEMICONDUCTOR MANUFACTURING 

In semiconductor manufacturing, controls are necessary evils because of the prohibitive amount of time 
required to manufacture a functional IC (Boussetta and Cross 2005). Different levels of controls exist de-
pending on the point of view adopted (Bassetto and Siadat 2009). For each level of control, one or several 
types of controls can be defined. More generally, six main levels of controls can be defined (Wright 
2001):  

 Facilities or technical installations. The goal is to ensure the best possible environment for the 
fabrication of wafers: Clean room ambient characteristics (temperature, humidity, pressure, etc.), 
fluids, liquids, gases, energy (load, intensity, voltage), etc. 

 Equipment sensors. To ensure efficient processing operations, all variations have to be detected 
and analyzed. For that, several types of sensors need to be placed on different production tools to 
trigger alarms and actions in manufacturing systems. 

 Fab or In-Line measurements. This level of control groups measurements done on silicon wa-
fers with a large variety of techniques: Ellipsometry, reflectivity, scanning electron microscopy, 
visual inspection, pixel to pixel comparison, resistivity, scatterometry, etc. The goal is to monitor 
both the process and the tool drifts. 

 Parametric testing addresses basic parameters of electrical devices: Transistor voltage thresholds, 
leakage current, oxide breakdown voltage, etc. 

 Final or functional tests aim at verifying that the semiconductor devices function properly. 
 Physical characterization and wafer level reliability evaluate component life-time under various 

stressing conditions (humidity, temperature, corrosion, etc). 
 Among these six levels of controls, we focus on “Fab or In-Line measurements”, and especially on 
defectivity controls that aim at detecting defects on wafers. Different types of defects exist (corrosion, 
particles, scratches, voids, extra-patterns, etc.) and they are mainly generated by production tools (Pepper 
et al. 2005). All production tools are concerned, since even the smallest tool has mechanical parts moving, 
and thus, a potential generation of defects on wafers. The complexity is therefore in the number of tools to 
control with a minimum number of control operations on lots. Additional factors such as the depth of con-
trol (one control operation may validate several tools) (Nduhura Munga et al. 2011) (Rodriguez-Verjan et 
al. 2011), the capture rate (all defects cannot be detected at any production stage) (Shantikumar 2007), the 
kill ratio (all defects do not have the same impacts on wafers), the product criticality (some products are 
more critical than others), the customer requirements, etc. contribute in increasing the complexity of de-
signing efficient defectivity control plans.  

3 PROBLEM DESCRIPTION 

A control without real added value is waste of time and money. This is what has been highlighted within 
the framework of our works related to defectivity controls. Figure 1 shows an example that illustrates the 
drawbacks of static sampling for defectivity controls. Lots L2, L4, and L6 are flagged at the start of the 
production for defectivity controls after processing operations. The sampling plan is to control one lot 
every two lots, i.e. 50% of lots. However, the variability and factory dynamics are such that TOOL1 may 

2152



Nduhura Munga, Dauzère-Pérès, Vialletelle, and Yugma 
 

 

process all flagged lots i.e. L2, L4, L6 whereas TOOL2 does not process any. Consequences are an over-
control for TOOL1 and lack-of-control for TOOL2. 
 

 

Figure 1: Drawbacks of Static Sampling 

To solve this problem, lots should be dynamically selected in front of defectivity steps depending on 
the history of each lot. In the case illustrated in Figure 2, a dynamic sampling will lead to selecting, for 
example, lots L2, L3, and L6 to ensure a sampling rate of 50%. 

 

 

Figure 2: Dynamic Sampling 

The challenge is in the dynamic selection of the best lots to control. A control operation on a lot (de-
fectivity control) may cover several processing tools leading to a significant number of parameters to ana-
lyze. However, all tools and processing operations are not equivalent i.e. the criticality or priority vary 
depending on the tool, the processing operation, or the product type. Dynamically selecting the best lot to 
control implies the ability to compute and analyze in real-time all the information linked to both the lot 
history and production constraints. (Dauzère-Pérès et al. 2010) proposed an algorithm based on a formula 
that helps to give a weight to each lot arriving in front of inspection steps. The smaller the weight associ-
ated to a set of lots, the larger the priority of the lots in the set on inspection tools. This weight is called 
Global Sampling Indicator (GSI) and it is based on both the depth of control and tools criticality. The next 
section presents this GSI, its evaluation through simulations, and, financial metrics we developed to as-
sess the potential gains before the industrial implementation. 

4 DYNAMIC SAMPLING: GLOBAL SAMPLING INDICATOR (GSI) 

This section first recalls the approach for dynamically sampling lots, and then explains the financial met-
rics that are used to evaluate the impact of a sampling strategy. For more information on the approach, see 
(Dauzère-Pérès et al. 2010). 
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4.1 GSI Sampling Algorithm 

The dynamic sampling algorithm proposed by (Dauzère-Pérès et al. 2010) is based on a score or weight 
called GSI for Global Sampling Indicator. Each time a lot l is available for inspection and a set S of lots is 
already waiting to be inspected, a GSI score (and other parameters linked to the production constraints) is 
used to decide whether to include the lot l in the set S and skip another lot l’ in S, or to skip the available 
lot l. The GSI score is linked to sets of lots. The aim is to define a weight that gives information on both 
the added value of an available lot l in term of risk reduction, and the added value of the available lot l 
within the set S of lots waiting to be inspected. For that, the sampling algorithm compares the GSI score 
of different sets obtained by removing l’ and adding l, i.e.     SlllS  '' , and the original set of 
lots without including the available lot l, i.e. S. The set with the minimum GSI score is selected, hence the 
decision of sampling or not the available lot l. The GSI score is given by:  
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Where:  
 R = Number of risk types. 
 NRV(S) = New risk value if lots in set S are inspected. 
 ILr = Inhibit Limit for risk type r, i.e. the maximum number of wafers that can be run be-

tween two inspections for risk r. 
 α and β (α ≥ 1 and β ≥ 1) are parameters that are used to put more (for α) or less(for β) em-

phasis on getting as far as possible from ILr. 
 Before being industrialized, the GSI sampling algorithm had to be simulated, validated, and potential 
gains assessed. For that, a sampling simulator has been developed (Yugma et al. 2011) and Table 1 pre-
sents some of the statistics (provided by the simulator) that have been used to quantify the potential gains. 
Simulations on historical data were run over a period of three months, and the results are provided for the 
GSI sampling algorithm and actual fab sampling. In our experiments, the risk value is the W@R (Wafer 
at Risk), which is the number of wafers processed on production tools between two defectivity control 
operations, i.e. the material at risk. Reducing this number without increasing the number of controls has a 
direct impact on the insurance costs for the company, hence the gain in the product costs. Table 1 shows 
the number of sampled lots, measured lots and skipped lots, together with number of wafers above the In-
hibit Limits, the average medium W@R and average maximum W@R for the production tools.  

Table 1: Evaluating the GSI sampling algorithm. 

 GSI sampling Fab Sampling 
Number of sampled lots 3.8*A A 

Number of measured lots 0.9*A A 
Number of skipped lots 2.9*A 0 

Wafers above IL 7,759,743 9,517,277 
Medium W@R (Average) 0.28*B B 

Maximum W@R (Average) 0.39*C C 
 
 Note that, with a reduced number of measurements (0.9*A) compared to Fab sampling, the GSI sam-
pling algorithm reduces the average medium W@R and average maximum W@R by 72% and 61% re-
spectively. Among these six statistics, the number of wafers processed on production tools above the In-
hibit Limits has been seen to be most practical for the assessment of financial gains as described in the 
next section. 
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4.2 Evaluating the GSI Sampling Algorithm: Financial Metrics 

To evaluate the gains of the GSI sampling algorithm and therefore quantify the return on investment, we 
defined three different metrics. Among these three metrics, one has been seen to be more practical for our 
works related to defectivity controls. However, depending on the fab or the type of the risk addressed, one 
metric may be more suitable than another. The three metrics are:  

1. The number of metrology tools that can be saved by using the GSI sampling algorithm. The idea 
is to compute the number of metrology tools required with the GSI sampling algorithm to obtain 
performance indicators that are as good as in current Fab sampling. However, as the goal is to not 
to reduce the number of measured lots but to reduce the number of measurements without added 
value, this first metric is not the most suitable. 

2. The downtime costs incurred when Inhibit Limits are exceeded. The idea is to consider that a fi-
nancial cost is incurred when a production tool is stopped because an Inhibit Limit is exceeded. 
The resulting downtime is a non productive time which costs money. We assume that the produc-
tion tool stays down until the W@R becomes smaller than its corresponding Inhibit Limit. How-
ever, the problem of this second metric is that, in practice, a production tool will not always be 
stopped when its Inhibit Limit is exceeded. Therefore, this second metric is not the most relevant. 

3. The risk related costs incurred when Inhibit Limits are exceeded. The idea is to consider that the 
risk of losing wafers increases when the W@R of a production tool is above its Inhibit Limit. 
Based on a probability of failure, it is possible to calculate how much money could be lost. This 
last metric seems to be the most practical and was used to quantify the potential gains. 

 Using results reported in Table 1, the potential gains were computed using the following formula: 

$**)743,759,7277,517,9( PPGain LOSS . 

 where PLOSS represents the probability of losing wafers when a production tool is above its Inhibit 
Limit, and P$ is the average wafer cost. PLOSS is linked to both the production environment and simulation 
period. Its value may thus be discussed depending on the processing operations and product types. In our 
works related to defectivity controls in the 300mm fab of STMicroelectronics, we considered a probabil-
ity of 1/2000 and a wafer cost of $1,500, which gives:  

150,318,1$1500*)2000/1(*)743,759,7277,517,9( Gain . 

 This significant potential gain, in addition to the performance indicators introduced in (Yugma et al. 
2011), has been one the main motivations that led to the industrialization of the GSI sampling algorithm. 

5 INDUSTRIAL IMPLEMENTATION 

A survey of the literature (Nduhura Munga et al. 2012) showed that several sampling algorithms were 
impracticable for industrial implementation. This was also one of the main challenges for the GSI sam-
pling algorithm. If simulations showed that significant gains could be achieved, additional types of evalu-
ations had to be performed regarding the IT infrastructure, the data management and availability, the 
training of operators, the company culture, or the management of resources. The risk was to see potential 
savings completely eradicated by additional types of investments (IT, resources, trainings, etc.).  
 Another challenge that had to be faced was the type of risk to be mastered. Indeed, in the first evalua-
tion of the GSI sampling algorithm, only the risk at the tool level (W@R, Wafer at Risk) was evaluated. 
However, in a high-mix environment as in the 300mm site of STMicroelectronics in Crolles, France, sev-
eral types of risks related to defectivity controls need to be mastered: the number of wafers processed in 
the same chamber between two controls, the number of wafers at the same operation, with the same tech-
nology, recipe, resin, etc. The dynamic selection of lots should therefore ensure an optimal coverage of all 
of the types of risk. For that, the IPC (for the French “Indice Permanent par Contexte”, which means 
“Permanent Index per Context”) mechanism proposed in (Nduhura Munga et al. 2011) was industrialized 
to support the industrial implementation of the GSI sampling algorithm. The IPC is a counter linked to 
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several types of contexts (recipe, resin, technology, etc.). It has been introduced to simplify the risk com-

putations. Each time a lot is processed on a production tool and verifies a given context, an IPC ( c
lIPC ) 

is attached to the lot for the considered context as described in (Nduhura Munga et al. 2011). Using this 
IPC information, the GSI formula for a set S of lots was adapted as follows: 
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 where: 
 N : Number of contexts, 

 c
lIPC : IPC of lot l for context c, 

 c
cLLMIPC )( : IPC of the lot Last Lot Measured (LLM) for context c, i.e. the last lot that has re-

duced the risk for context c, 
 cIL : Inhibit Limit for context c, 

 α and β (α ≥ 1 and β ≥ 1) are parameters that are used to put more (for α) or less(for β) em-
phasis on getting as far as possible from the Inhibit Limit. 

 Using the IPC information, the industrial implementation of the GSI sampling algorithm was consid-
ered as the only way to optimize the use of metrology tools by dynamically selecting the best lots to 
measure. Each context c (tool, chamber, recipe, resin, technology, etc.) is taken into account in the GSI 
formula, and the dynamic selection of lots aims at minimizing all the types of risks (contexts) in produc-
tion. 
  The industrialization phase has been divided into three parts devoted to the sampling, skipping and 
scheduling of lots on metrology tools. The first part of the project focused on the skipping of lots in me-
trology and a first evaluation showed that more than 30% of control operations on lots could be released 
without increasing the risk in production. However, several questions have been raised by this transition 
from static to dynamic sampling. In the next section, we present some of these questions that constitute 
new directions for further research. 

6 DISCUSSIONS AND PERSPECTIVES 

The industrial implementation of the GSI sampling algorithm showed that a significant number of control 
operations on lots could be released without increasing the risk in production, hence a better management 
of metrology tools. However, modifying the sampling policy, i.e. replacing static sampling by dynamic 
sampling, changed the way engineers were working, leading to new problems that need to be solved. Here 
are some these new problems that are perspectives for further work:  

1. Defectivity tool qualifications. Using start or static sampling, lots were flagged at the start of the 
production, i.e. the percentage of lots to be measured was defined at the start of production. 
Therefore, information on the products of the lots to be measured was known, and the qualifica-
tions of defectivity tools was taken into account to balance the measurement workload on the dif-
ferent types of defectivity tools. By dynamically selecting lots in front of metrology steps, there is 
no prior information on the set of lots to be measured. The consequence is that some defectivity 
tools may not be used enough if the right lots are not selected, and other defectivity tools may be 
too much loaded, leading to long cycle times for the lots waiting to be measured.  

2. Excursion management, i.e. when a process or tool falls out of specification. Using static 
sampling, lots were flagged for regular measurements at some predefined steps. This means that, 
each time a problem was detected on a lot, it was easy to quickly identify the source of the prob-
lem by quantifying the added defects of each processing step. Using a dynamic sampling ap-
proach, the complexity of isolating the source of defects is increased, since lots are selected based 
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on the information they bring and not explicitly at all the metrology steps. An additional analysis 
must be performed before isolating the source of the excursion knowing that no production tool is 
stopped before this source is identified. 

 These problems show the types of complexity that need to be faced when trying to deploy a new 
strategy or approach within a high-mix semiconductor plant. As different types of organizations are called 
to work and collaborate (qualifications, sampling, scheduling, excursion management, production, etc.), 
each time a novel solution is proposed, the impact on the other activity types need to be clearly under-
stood and assessed. Although this may vary from one company to another, significant efforts are required 
to convince and highlight the added value of the new solution. This is what has been experienced before 
industrially implementing the GSI sampling algorithm, explaining why many sampling algorithm pro-
posed in the literature were impracticable. 

7 CONCLUSION 

In this paper, we presented and discussed the industrial implementation of a dynamic sampling algorithm 
within the 300mm site of STMicroelectronics in Crolles, France. We focused on defectivity controls and 
especially on the reduction of the material at risk, i.e. the potential loss in case a problems occurs. The 
dynamic sampling algorithm is based on a Global Sampling Indicator that evaluates the impact of measur-
ing a set of lots and not only one lot. It has been industrialized using a Permanent Index per Context 
mechanism that help handling a very large amount of data in short CPU times. Results show a quick re-
turn on investment and a significant reduction of the number of control operations on lots without added 
value. 
 The industrial program has highlighted new problems that are interesting perspectives for further re-
search. These new problems concern defectivity tool qualifications, the design of control plans and excur-
sion management. 
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