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ABSTRACT 

We present a new Petri net simulation environment to enable graphical hierarchical modeling, hybrid 
simulation, and animation of processes in life sciences, and technical applications, among others. In order 
to model these most different processes, a new powerful and universally usable mathematical modeling 
concept – extended Hybrid Petri (xHPN) – has been established. This specification is used for the Petri 
Net library (PNlib) realized by the object-oriented modeling language Modelica. In contrast to other ap-
proaches, we enable users to simultaneously reconstruct, analyze, and simulate complex dynamic models 
in one view. Therefore, we have connected the PNlib to VANESA, an open source tool for visualization 
and analysis of networks. Additionally, the PNlib is connected to Matlab/Simulink to use all the Matlab 
power for post-processing simulation results. To demonstrate this powerful environment, we are reporting 
our experience by modeling a technical and a general biological application case. 

1 INTRODUCTION 

Petri nets with their various extensions are a universal graphical modeling concept for representing pro-
cesses from different application fields in nearly all degrees of abstraction. They support the qualitative 
modeling approach as well as the quantitative one. Once a qualitative Petri net model has been estab-
lished, the quantitative data can be added successively. Furthermore, the processes can be modeled dis-
cretely as well as continuously and, in addition, discrete and continuous processes can also be combined 
within one Petri net model to so-called hybrid Petri nets (see e.g. (David and Alla 2001) and Figure 1). 
The Petri net formalism with all its extensions is so powerful that nearly all other formalisms are includ-
ed. Hence, only one formalism is needed regardless of the chosen modeling approach (qualitative vs. 
quantitative, discrete vs. continuous, deterministic vs. stochastic), which is appropriate for the regarded 
system. Additionally, the Petri net formalism is easy to understand for researchers from different disci-
plines (biology, mathematics, informatics, engineers, business economists etc.) who work together in the 
modeling process. Thus, it is an ideal way for intuitive representing and communicating new knowledge 
of investigated systems. Besides, Petri nets allow hierarchical structuring of models and offer the possibil-
ity of different detailed views for every observer of the model. 

In order to use Petri nets as a graphical modeling concept, Petri nets for their part have to be pro-
grammed by means of an appropriate language. The object-oriented modeling language Modelica, devel-
oped and promoted by the Modelica Association since 1996 for primarily modeling, simulation, and pro-
gramming of physical and technical systems and processes (Modelica Association 2010), is ideally suited 
for this task. Modelica has become the de-facto standard for hybrid, multidisciplinary modeling. Each Pe-
tri net component, place and transition can be described object-oriented with the aid of a model in the 
Modelica language. These models are defined on the lowest level by discrete (event-based), differential, 
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and algebraic equations (hybrid DAEs). An appropriate Modelica-tool enables graphical and hierarchical 
modeling, hybrid simulation, and animation. 

 
Figure 1: The relationships between the different Petri net formalisms. 

To simplify the modeling process itself and, in addition, to give all involved researchers an adapted 
view of the model at a specific level of detail, models have to be constructed in a hierarchical structure. 
The Petri nets on the one hand and the Modelica language on the other enable hierarchical modeling con-
cepts by wrapping the basic Petri net components to sub-models. These models can be used multiple 
times for specific processes in the same model, or across different models. 

In addition to the modeling concept and the transformation to the Modelica language, appropriate 
mathematical methods are needed to analyze the established models. Thus, it is possible to determine 
model parameters, evaluate the robustness of the parameters towards small changes, simulate determinis-
tically as well as stochastically, and optimize and control the underlying processes. Matlab/Simulink is 
ideally suited for performing these analysis. A bridge between Modelica models and Simulink is already 
available so that all the Matlab power can be used for the post-processing of the simulation results. 

In order to show further powerful possibilities of the PNlib, we present the connection to VANESA 
(www.vanesa.sf.net), a software application for the modeling and simulation of biological processes. The 
software application makes use of the xHPN formalism realized in the PNlib to model and simulate bio-
logical systems based on project experimental data, information derived from integrated databases, and 
knowledge drawn by hand. 

The paper is structured in the following way. At first related works are presented to clarify the de-
mand of a new Petri net simulation environment. Afterwards, the developed Petri net formalism is intro-
duced which has been used as specification for the implementation of the Petri nets components in the 
Modelica language. Implementation details, the connection to VANESA for modeling and visualization, 
and the connection to Matlab/Simulink for the post-processing of simulation results are part of section 4. 
Section 5 demonstrates two application cases based on the developed Petri net formalism. The first appli-
cation demonstrates hierarchical modeling and hybrid simulation of a Senseo coffee machine within the 
PNlib. Further on, section 6 provides an example from the biological application field to present the con-
nection to VANESA. 

2 RELATED WORKS 

Three different Petri net libraries are available on the Modelica homepage (www.modelica.org). The first 
was developed by Mosterman et al., which enables the modeling of a restricted class of discrete Petri nets, 
called normal Petri nets (Mosterman et al. 1998). The places of normal Petri nets can only contain zero or 
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one token and all arcs can only be weighted with a value of one. External signals initiate the firing of 
transitions. Conflicts between several transitions are solved by priorities. The second Petri net library is 
an extension of the previous one and was developed by Fabricius (Fabricius 2001). The places can con-
tain a non-negative integer number of tokens and be limited to non-negative integer minimum and maxi-
mum capacities. Furthermore, transitions are timed with fixed or stochastic delays. The third library, 
called StateGraph, is based on Grafcharts, which combine the function chart formalism of Grafcet with 
the hierarchical states of Statecharts (Johnsson and Årzén 1999). Transitions of state graphs have exactly 
one input and one output place. In addition, the places can only contain zero or one token and all arc 
weights are equal to one. The StateGraph library is part of the Modelica standard library and was devel-
oped by Otter et al. (Otter et al. 2005). 

To enable modeling of most different kinds of processes with Petri nets in Modelica, the existing li-
braries have to be extended by following aspects: 

� Transfer of the discrete Petri net concept to a continuous one, 
� Support of edges with (functional) weightings, 
� Support of test-, inhibitor, and read arcs, 
� Support of different conflict resolutions (random decisions), 
� Combination of discrete and continuous Petri net components to hybrid Petri nets. 

Beside the Modelica language, three common tools are available for modeling processes with the hy-
brid Petri net formalism: Cell Illustrator, Snoopy, and SimHPN. 

The Cell Illustrator is a commercial, widely-used tool available as a Java Web Start application that 
enables to draw, model, elucidate, and simulate complex biological processes and systems based on ex-
tended hybrid functional Petri nets (Nagasaki 2010). Discrete and continuous processes can be connected 
to perform hybrid simulations. The drawback of the Cell Illustrator is that the simulation is like a “black 
box”. There is no information about how the Petri nets and the corresponding processes are defined, 
which are necessary for modeling and simulation, e.g. how conflicts in Petri nets are resolved, how the 
hybrid simulation is performed, and which integrators are used. In addition, there is no possibility to adapt 
solver settings in order to achieve reliable simulation results. The post-processing possibilities of simula-
tion results for parameter estimation, process optimization etc. are also rather limited. 

Snoopy is a freely available unifying Petri net framework to investigate biomolecular networks (Rohr 
2010). A Petri net can be modeled time-free (qualitative model) or its behavior can be associated with 
time (quantitative model) such as stochastic, continuous, and hybrid Petri nets; thereby, different models 
are convertible into each other. It is also possible to structure the models hierarchically in order to manage 
complex networks. The drawback of Snoopy is that a continuous Petri net is interpreted as a graphical 
representation of a system of ordinary differential equations. Hence, the general Petri net property of non-
negative marks cannot be held during simulation. Additionally, conflict situations of hybrid Petri nets are 
trapped not completely and, thus, negative markings can occur. Furthermore, places cannot be provided 
with capacities and no functions can be assigned to arcs in hybrid Petri nets. 

SimHPN is a commercial MATLAB-based tool for modeling hybrid Petri nets (Júlvez and Mahulea 
2012). The drawback of this tool is that not all conflicts occurring in hybrid Petri nets are solved and, ad-
ditionally, test and inhibitory arc as well as capacities are not supported. Furthermore, there are no infor-
mation available about processes important for simulation. 

Hence, these problems led to the development of a new Petri net simulation environment specified by 
the established xHPNbio formalism. The xHPNbio elements are modeled object-oriented, which allows 
an easy way to maintain, extend, and modify them. Furthermore, the hybrid simulation is performed by an 
appropriate Modelica-tool. Using this approach it is even possible to adopt several solver settings to 
achieve more reliable simulation results. Moreover, the xHPNbio formalism is already integrated in 
VANESA, an easy-to-use biological modeling tool. Using VANESA scientists are able to reconstruct and 
simulate biological pathways either by drag-and-drop or by loading networks from databases. Based on 
the xHPNbio formalism reconstructed networks can be automatically translated into the Petri net lan-
guage and later on simulated in one active window in VANESA.  In Addition, a bridge from Modelica to 
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Matlab/Simulink is established to use all the Matlab-power for the post-processing of the simulation re-
sults. 

3 EXTENDED HYBIRD PETRI NETS (XHPN) 

The xHPN formalism comprises three different processes, called transitions: discrete, stochastic, and 
continuous transition, two different states, called places: discrete and continuous places, and four differ-
ent arcs: normal, inhibitor, test, and read arc (see Figure 1). Discrete places contain a non-negative integer 
quantity, called tokens or marks, while continuous places contain a non-negative real quantity. These 
marks initiate transitions to fire according to specific conditions. These firings lead to changes of the 
marks in the connected places. 

Discrete transitions are provided with delays. Firing conditions fire only then, when the associated 
delay is passed and the conditions are fulfilled. These fixed delays can be replaced by exponentially dis-
tributed random values. Such a corresponding transition is called stochastic transition. Thereby, the 
characteristic parameter  of the exponential distribution can functionally depend on the markings of sev-
eral places (cp. Heiner et al. 2008). It is recalculated at each point in time when the respective transition 
becomes active or when one or more markings of involved places change (cp. Proß et al. 2012). Based on 
the characteristic parameter, the next putative firing time  of the transition can be 
evaluated. Thus, it only fires when this point in time is reached. 

Both – discrete and stochastic transitions - fire by removing the arc weight from all input places and 
adding the arc weight to all output places. In contrast, the firing of continuous transitions takes places as a 
continuous flow determined by the firing speed depended on markings and/or time. 

Places and transitions are connected by “normal” arcs, which are weighted by non-negative integer 
and real numbers, respectively. But functions can also be written at the arcs depending on the current 
markings of the places and/or time. Places can also be connected to transitions by test, inhibitor, and 
read arcs. Then their markings do not change during the firing process. In the case of test and inhibitor 
arcs, the markings are only read to influence the time of firing, while read arcs only indicate the usage of 
the marking in the transition, e.g. for firing conditions or speed functions. If a place is connected to a tran-
sition by a test arc, the marking of the place must be greater than the arc weight to enable firing. If a place 
is connected to a transition by an inhibitor arc, the marking of the place must be less than the arc weight 
to enable firing. In both cases the markings of the places are not changed by firing. The same place can be 
connected to the same transition by a test and, in addition, by a normal arc as well as by an inhibitor and a 
normal arc. These arcs are called double arcs. 

The conversion of a discrete to a continuous marking is realized by connecting a discrete transition to 
a continuous place and the conversion from a continuous to a discrete marking is realized by connecting a 
continuous place to a discrete transition. However, the conversion is always performed by discrete transi-
tions. Discrete places can only influence the time when continuous transitions fire, whereas their marking 
cannot be changed during the firing process. It is important to mention that discrete transitions always fire 
in a discrete manner by removing and adding marks after a delay is passed, regardless of whether a dis-
crete or a continuous place is connected to it. However, continuous transitions always fire in a continuous 
flow, so that a discrete place can only be connected to continuous transition if it is input as well as output 
of the transition with arcs of the same weight. 

Summarized, an xHPN comprises of: 
� discrete and continuous places, 
� discrete, stochastic, and continuous transitions, 
� places can be connected to transitions by normal, test, inhibitor, read arcs, and double arcs (test or 

inhibitor arc and normal arc), while transitions can only be connected to places by normal arcs, 
� arc weights can be non-negative functions depending on markings and/or time,  
� discrete places must be input and output of continuous transitions with arcs of the same weight, 
� places can be provided with minimum and maximum capacities, 
� discrete transitions can be provided with delays, 
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� stochastic transitions can be provided with hazard functions depending on the markings, 
� continuous transitions can be provided with maximum speed functions depending on the mark-

ings and/or time, 
� all transitions can be provided with additional firing conditions depending on all possible model 

variables, and 
� conflicts of places are solved by providing the input and output transitions, respectively, with pri-

orities or probabilities. These conflicts can occur between a discrete or continuous place and two 
or more discrete transitions, but also between a discrete place and two or more continuous transi-
tions if the discrete place is input and output of the transitions with arcs of the same weights (cp. 
Proß and Bachmann 2012). If the discrete place is connected by test arcs instead of loop connec-
tions, there will be no conflict. 

A formal definition of the xHPN-formalism and the corresponding processes is given in 
(Proß et al. 2012). 
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Figure 2: Left: Icons of the PNlib (from left to right); top: discrete and continuous place; middle: discrete, 
stochastic, and continuous transition; bottom: test, inhibitor, and read arc. Right: The connector variable m 
for the marking of a place is output of places and input of transitions (left). The connector variable fire 
for the firability of a transition is output of transitions and input of places (right). 

4 PNLIB – A MODELICA BASED LIBRARY FOR MODELING XHPNS 

The xHPN formalism and the corresponding definitions for activation, enabling, and firing (see Proß 
2012), which are essential for simulation have been implemented by means of the object-oriented model-
ing language Modelica to enable graphical hierarchical modeling, hybrid simulation, and animation. 
Modelica is developed and promoted by the Modelica Association since 1996 for modeling, simulation, 
and programming of physical and technical systems and processes. Additionally, the Modelica standard 
library available from the Modelica Association is able to model mechanical (1D/3D), electrical (analog, 
digital, machines), thermal, fluid, control systems, and hierarchical state machines. Furthermore, several 
libraries have been developed in the last decade for specific applications. An overview can be found on 
the Modelica homepage (www.modelica.org ). The development of the language and libraries is ongoing 
and driven by several European projects (EUROSYSLIB, MODELISAR, OPENPROD, and MODRIO). 
Since the year 2000, Modelica has been used successfully in industry, which is documented in the pro-
ceedings of many Modelica conferences and journals. 

Modelica models are described on the textual level by discrete, differential, and algebraic equations 
(hybrid DAEs) and by schematics on the graphical level. A schematic consists of connected components 
which are defined by other components. On the lowest level they are connected by equations in the Mod-
elica syntax. Therefore, the components have connectors, which describe the interaction between them. 
By drawing a line from one component to another, a connection is established to enable interactions. In 
this manner a model is constructed. Several components can be structured in libraries, called packages, 
which provide hierarchical modeling. 
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Moreover, the wrapping technique enables the representation of sub-models consisting of several 
connected components by a specific adapted icon in order to simplify the modeling process. These sub-
models can be used multiple times in the same model or across different models. In addition, this ap-
proach offers an easy-to-use-model at the top level with an intuitive and familiar adapted view. 

However, for graphical modeling, simulation, and animation an appropriated environment is needed. 
Several commercial and open- source tools are available. A full list can be found on the Modelica homep-
age (www.modelica.org). 

4.1 Implementation 

Each of the xHPN components - transitions, places, and arcs - is modeled by its own Modelica model, 
which is organized and structured in a Modelica package, called PNlib (Petri Net library). All compo-
nents are defined on the lowest level by discrete (event-based), algebraic, and differential equations (cp. 
Proß and Bachmann 2012). The object-oriented modeling of places, transitions, and arcs can only be real-
ized if the Petri net components are able to interchange variables. Modelica makes this interaction possi-
ble by means of the specialized class connector. A connector comprises variables, which are calculat-
ed in one component, but also needed in the connected components for further calculations. The 
connectors of the Petri net component models are represented by red and white triangles with Petri net 
icons (see Figure 2 left). Figure 2 (right) shows two examples of connector variables. The current marking 
of a place m is calculated in the place model. However, it is also needed in the connected input and output 
transitions to determine if they can become active. Hence, it is an output of the place connectors and an 
input of the transition connectors. On the other hand, the variable fire is determined in the transitions, 
but also needed in the connected places for the recalculation of the marking. Hence, it is an output of the 
transition connectors and an input of the place connectors. 

The main process of the place model is the recalculation of the marking after firing a connected tran-
sition. In the case of the discrete place model, this is realized by the discrete equation 

when fire or reStart then 
   m = if fire then pre(m) + firingSumIn – firingSumOut else reStartTokens; 
end when; 

whereby pre(m) accesses the marking t immediately before the transitions fire. To this amount, the arc 
weight sum of all firing input transitions is added and the arc weight sum of all firing output transitions is 
subtracted from it. Additionally, the marking is reset to reStartTokens when the user-defined Bool-
ean condition reStart becomes true. The marking of continuous places can change continuously as 
well as discretely. This is implemented by the following construct: 

der(m) = conMarkChange; 
when discreteFire then 
   reinit(m, m+discreteMarkChange); 
end when; 
when reStart then 
   reinit(m, reStartMarks); 
end when; 

whereby the der-operator accesses the derivative of the marking m according to time. The continuous 
mark change is performed by a differential equation, while the discrete mark change is performed by the 
reinit-operator within a discrete equation. This operator causes a re-initialization of the continuous 
marking each time a connected discrete transition fires. Additionally, the marking is re-initialized by 
reStartMarks when the user-defined Boolean condition reStart becomes true. Via the connector 
variable m, places report their current markings to the transitions (see Figure 2 right). Based on the current 
markings of the places, it is checked in the transition model by an algorithmic procedure if the transition 
can become active. A discrete transition waits until the delay is passed and a stochastic transition waits till 
the next putative firing time is reached before firing. Based on this information, the places enable some of 
the active transitions to fire. At this point, several conflicts can occur which have to be resolved 
appropriately by the methods mentioned in (Proß 2012, Proß and Bachmann 2012) to get a successful and 
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reliable simulation. When a transition is enabled by all its connected places, it is firable and reports this 
via the connector variable fire to the connected places (see Figure 2 right). Then, the places recalculate 
their markings based on this new information. 

4.2 Connection to VANESA for modeling and visualization 

VANESA is a biology-oriented software application with which biological scientists can intuitively mod-
el and simulate complex dynamic interactions and processes (www.vanesa.sf.net). Therefore, it combines 
different fields of studies, such as life science, database consulting, modeling and visualization for a semi-
automatic and lab-validated reconstruction of biological networks. Using VANESA scientists are provid-
ed with theoretical supports, technologies, and tools to reconstruct and simulate biological phenomena in 
silico. Primarily, it is intended for biological scientists working at the bench. 

For the modeling and simulation of biological processes, VANESA makes use of the xHPN formal-
ism realized in the Modelica library PNlib. Therefore, it provides a biologically sophisticated GUI in 
which biological models can be modeled and simulated based on project experimental data, information 
derived from integrated databases, or knowledge drawn by hand. Thus, any kind of biological model and 
network can be reconstructed and automatically converted into the language of Petri nets within 
VANESA in order to check behavioral and structural properties. Furthermore, it is possible to move be-
tween the different classes of modeling and simulation concepts, since the graphical user interface adapts 
automatically to the net class in the active window. 

Sophisticated simulations can be performed using qualitative, stochastic, continuous, hybrid and func-
tional modeling features of the xHPN formalism. Simulation results are available as tables and also visu-
alized in diagrams within the graphical user interface of VANESA, showing the evolution over time of 
the token numbers on selected places. Thus, VANESA and the PNlib provide a well-defined ground to 
investigate dynamic models in various complementary ways. The animation can be triggered manually or 
within the active window. 

Due to VANESAs generic design and strict separation of internal data structure and graphical repre-
sentation, it is possible to easily convert the integrated ontology for network representation into the xHPN 
formalism that can be further simulated within the PNlib. Furthermore, it is easy to extend VANESA and 
the PNlib by new graph classes applying reuse and specialization of existing elements. 

 
Figure 3: A pictogram of the simulation/communication bridge between VANESA and the PNlib in 
Modelica (Dymola) 

In general, the communication between VANESA and the PNlib in Modelica is realized by a digital 
communication bridge running in the background as depicted in Figure 3. In order to perform a simula-
tion users only need to provide their reconstructed biological systems with Petri net parameters, such as 
initial markings, and arc weights. Using the simulation functionality of VANESA, a script automatically 
translates the ready Petri net model into the appropriate .mo data exchange format and starts Modelica 
(Dymola) and the corresponding PNlib in the background for simulation processing. As soon as simula-
tion results are available, simulation outcomes are automatically loaded in VANESA. The data and simu-
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lation exchange is realized by a .csv data exchange, which lists progress steps and information in detail. 
Finally, results are matched on the network and made visible to users. 

4.3 Connection to Matlab/Simulink for post-processing simulation results 

Model construction based on such strong formalism as the xHPN formalism alone is not enough for a 
good working model. Usually, the constructed model comprises several parameters, which have to be es-
timated. This is particularly the case in the biological application field. Several biological databases are 
available, which summarize specific parameters, such as the biological database BRENDA that provides a 
collection of enzyme functional data. However, if the required parameters are not listed in databases or 
publications, they have to be estimated by experiments. But sometimes these experiments are too expen-
sive, too imprecise, or not even feasible. In these cases, specific mathematical optimization methods can 
provide a means to adapt the model behavior as well as possible for the given experimental data. This 
procedure is called parameter estimation. Parameter estimation engenders an optimization problem: 
Minimize an objective function which represents the goodness of a parameter set. This objective func-
tion can be formulated mathematically by a non-linear programming problem constrained by the hybrid 
DAEs of the Modelica model and upper and lower bounds for every parameter. These objective functions 
in combination with an xHPN model are not only non-linear but also usually discontinuous and not-
differentiable due to the discrete changes of hybrid Petri nets. Due to the non-differentiability, the usage 
of methods which determine decent directions from derivatives of the objective function is not possible.  

 
Figure 4: Parameter estimation of Modelica models 

However, derivative-free methods do not require derivatives to minimize the objective function and, 
hence, these methods are applicable. It has to be distinguished between local and global methods. Local 
methods try to find the minimum starting from a given point. Thereby, only local information about the 
objective function from the neighborhood of the current approximation is used to update the approxima-
tion; hence, the global structure of an objective function is unknown to a local method. Additionally, it is 
usually expected that such methods converge to the local minimum, which is nearest to the starting point. 
However, the objective of global methods is to find the global minimum of the optimization problem 
usually in the presence of multiple local minima by seeking the whole search space. Global methods can 
be further divided into deterministic and stochastic methods. Deterministic methods always achieve the 
same result starting from the same setting while stochastic methods involve random mechanisms. Local 
and global methods can also be combined to hybrid methods, which should avoid the high computation-
al costs of global methods due to their slow convergence near the minimum. Additionally, the entrapment 
in a local minimum should be prevented, which is often the drawback of local methods. The best results 
have been found by combing the global Evolution Strategy with the local Hooke-Jeeves method. After 
one of a set of specific switching criteria are fulfilled, the algorithm switches from the global search to the 
local one (cp. Proß 2012). 
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Directly linked to parameter estimation is the sensitivity analysis of model parameters that aims to 
identify, optimize, reduce, and verify the model. Furthermore, particular mathematical optimization 
methods enable the optimization of biological processes, called process optimization. This plays an im-
portant role in industrial biotechnology. Based on a model, it is possible to control biological processes in 
the best possible way and to gain such maximum product yields from the cultivated organisms. To realize 
the analysis of Modelica models by mathematical methods, they have to be simulated several times with 
different parameter settings. Then, the arising simulation results are post-processed by algorithmic proce-
dures in Matlab. Therefore, the Modelica models in Dymola are connected to Matlab/Simulink, which is 
accomplished with the aid of a Dymola interface in Simulink and a set of Matlab m-files utilities (see 
Dynasim AB 2010 for a detailed description). An established Matlab-tool, called AMMod (Analysis of 
Modelica Models), already provides several mathematical methods for data preprocessing, relationship 
analysis, parameter estimation, sensitivity analysis, deterministic and stochastic hybrid simulation, and 
process optimization (cp. Proß 2012). 

5 APPLICATION CASE 1 – MODELING A SENSEO COFFEE MACHINE 

The main feature of a Senseo coffee machine is that the coffee is placed in the machine in a pre-portioned 
form by so-called coffee pads. One pad is generally used to make one cup of coffee (125°ml) and two 
pads sufficient for two 125 ml cups or one large 250 ml cup. After a warm-up time of about 60 seconds 
and the insertion of a coffee pad, the coffee can be made. In this warm-up phase, the water is heated to 
90°C and then pressed with a pressure of about 1.4 bar within 40 seconds through the pad. In contrast to a 
normal coffee machine that boils the water continuously and transports it by its own buoyancy (hot bub-
bles) up into the filter, the Senseo machine heats a portion of water completely in a heating chamber and 
then pumps it through the pad. To ensure that the heating chamber in the machine is always filled with 
water, a float is placed in the removable water tank, which allows measuring the minimal capacity. If the 
minimum level is exceeded, the heater is turned off. If there is a sufficient water level, the next portion of 
water is heated directly after the boiling and filling. Summarized, a part of the aforementioned described 
functional principles and the corresponding xHPN definitions are listed in Table 1. 

 
 

Figure 5: Wrapping technique: sub-models of the Senseo coffee machine model and simulation results 

The xHPN model of the Senseo coffee machine has been implemented in a hierarchical structure with 
the aid of the PNlib and the Modelica tool Dymola.  
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Figure 5 (middle) shows the model at the top level. An animation of this model displays the amount 
of produced coffees as well as the current filling level of the coffee cup and the water tank. Additionally, 
the head of the stickman is green when the machine is on and red when it is off. When a pad is inserted 
the respective rectangle is brown and, similarly, when water is refilled the respective rectangle is blue. 

Table 1: Part of the representation of a Senseo coffee machine by an xHPN model (first 4 steps) 

Step Functional Principle xHPN model 
1 The machine is off. One token is placed in place start. 
2 The time between turning the machine on 

and off again takes an average of 1200s. 
The stochastic transition starting has a hazard 
function of 1/1200. 

3 If the machine is started and the water in 
the tank is less than 0.35 l, the tank has to 
be refilled. The tank is always filled com-
pletely and this procedure takes 30s. The 
water tank has a maximum capacity of 
0.7 l. 

The place water_tank is connected to the transi-
tion refilling1 by an inhibitor arc with a weight of 
0.35. The transition refilling2 has a delay of 30 
and the weight of the arc from this transition back 
to the place water_tank is (0.7-water_tank), where 
water_tank is the current marking of place wa-
ter_tank. The place water_tank has a maximum 
capacity of 0.7. 

4 If there is enough water in the tank, the wa-
ter in the heating camber is heated. The 
heating speed  depends on the power 
of the Senseo machine , the spe-
cific heat capacity of water (c), and the 
amount of water to be heated in the heating 
camber : 

 

The maximum temperature of the water is 
90°C. 

The place water_tank is connected to the transi-
tion heating by a test arc with the weight 0.35. 
The continuous transitions heating has a maxi-
mum speed of Psenso/(c*waterHC), where wa-
terHC is the current marking of the place wa-
terHC. The maximum capacity of place TW is set 
to 90. 

6 APPLICATION CASE 2 – MODELING GENETIC PATHWAYS 

In order to demonstrate the functionality and features of the PNlib in VANESA, a genetic regulatory 
mechanism example is presented that shows how a basic transcription-regulation in prokaryotes can be 
modeled and simulated. In general, gene expression in prokaryotes is often responsive to signal molecules 
of the nutritional or environmental conditions affecting the cell.  

 
Figure 6: Petri Net model for the simulation of the transcription-regulated lac-operon system of the bacte-
rium Escherichia coli. 
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Interested in these processes, we present one part of the signaling network of the transcription-
regulated lac-operon system of the bacterium Escherichia coli. The focus of this modeling and simulation 
example is the gene induction. Processes termed induction describe increased synthesis of enzymes in re-
sponse to the presence of a particular substrate. Therefore, the presented example (see Figure 6) simulates 
the cell behavior of the bacterium Escherichia coli in response to decreasing glucose and increasing lac-
tose in the cell environment. 

The lac-operon is responsible for the transport and metabolism of lactose in Escherichia coli. The 
bacterium can use lactose as both a carbon and energy source. If glucose is absent and lactose available 
the synthesis of β-galactosidase is induced by activating the lac-operon. If two energy sources are availa-
ble such as glucose and lactose, the more readily-available energy source, in this case glucose, is used. 

The lac-operon consists of three adjacent structural genes, lacZ, lacY, and lacA. Of particular interest 
is the lacZ gene, a structural gene for β-galactosidase, which is fully synthesized when lactose is present. 
If lactose is not available, the lacI gene inhibits the operon by blocking the promoter. Thus, the RNA-
Polymerase is not able to bind to the promoter. Furthermore, if both glucose and lactose are available the 
CAP protein (catabolite activator protein) is inhibited, which increases the binding affinity of the RNA-
Polymerase to the lac-operon. 

The simulation results presented in Figure 7, clearly show how the lacZ transcription increases with 
absence of glucose and availability of lactose. Therefore, the CAP protein is  no longer inhibited and the 
lacI gene effect decreases. The promoter becomes active and lactose consumption begins.  

Petri Net parameters, such as initial markings, and arc weights are based on Hill functions for activa-
tor and repressors, and typical parameter values for Escherichia coli, such as transitions between protein 
states, timescales for the equilibrium binding of small molecules to proteins, and timescales of transcrip-
tion factor binding to DNA, among others. 

 
 

Figure 7: Simulation results of the transcription-regulated lac-operon system of the bacterium Escherichia 
coli within VANESA. 
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7 CONCLUSIONS 

A powerful Petri net environment has been developed for graphical hierarchical modeling and hybrid 
simulation as well as animation of processes from most different application fields. Thereby, the mathe-
matical modeling concept xHPN serves as specification for performing hybrid simulations. The xHPN el-
ements are modeled object-oriented by discrete, differential, and algebraic equations in the Modelica lan-
guage. This is an easy way to maintain, extend, and modify the components. The hybrid simulation is 
performed with an appropriate Modelica-tool, which has several possibilities to adapt solver settings in 
order to achieve reliable simulation results. 

The connection to VANESA enables the modeling, editing, visualization, and animation of xHPN-
models with an easy-to-use interface. Thus, users are able to intuitively model and simulate complex dy-
namic interactions and processes within a biology-oriented software application. Therefore, users are pro-
vided with different fields of studies, such as life science, database consulting, modeling and visualization 
for a semi-automatic and lab-validated reconstruction of biological networks. 

Moreover, the connection to Matlab/Simulink offers the whole Matlab power for the post-processing 
of the simulation results of Modelica models. The Matlab-based tool AMMod (Analysis of Modelica 
Models) provides several mathematical methods for data preprocessing, relationship analysis, parameter 
estimation, sensitivity analysis, deterministic and stochastic hybrid simulation, and process optimization. 

The application of the new Petri net simulation environment was demonstrated with a model of a 
Senseo coffee machine in order to show the applicability of the xHPN formalism as well as the graphical 
hierarchical modeling and hybrid simulation with the PNlib. Moreover, the example of one genetic regu-
latory mechanism from the biological application field presented the connection to VANESA and possi-
bilities to model and simulate biological networks in one software application. 

A future goal is to provide an open source Petri-net simulation tool. This demands further develop-
ment of the open source Modelica-tool OpenModelica to get the PNlib to work with it as some Modelica 
features are not supported. Moreover, the xHPN formalism as well as the PNlib will be extended by fuzzy 
logic and the color concept to further enhance the range of application fields. 
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