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ABSTRACT 

An important, but often neglected, part of any sound simulation study is that of modeling each source of 
system randomness by an appropriate probability distribution. We first give some examples of data sets 
from real-world simulation studies, which is followed by a discussion of two critical pitfalls in simulation 
input modeling. The two major methods for modeling a source of randomness when corresponding data 
are available are delineated, namely, fitting a theoretical probability distribution to the data and the use of 
an empirical distribution. We then give a three-activity approach for choosing the theoretical distribution 
that best represents a set of observed data. This is followed by a discussion of how to model a source of 
system randomness when no data exist. 

1. INTRODUCTION 

To carry out a simulation using random inputs, we have to specify their probability distributions. For ex-
ample, in the simulation of a single-server queueing system, we must give probability distributions for the 
interarrival times of customers and for the service times of customers at the server. Then, given that the 
input random variables to a simulation model follow particular distributions, the simulation proceeds 
through time by generating random values from these distributions. Our concern in this tutorial is how the 
analyst might go about specifying these input probability distributions. 
 Almost all real-world systems contain one or more sources of randomness. In Figures 1 through 3 we 
show histograms of three data sets taken from actual simulation projects. Figure 1 corresponds to 910 ma-
chine processing times (in minutes) for an automotive manufacturer. It can be seen than the histogram has 
a longer right tail (positive skewness) and that the minimum time is approximately 15 minutes. In Figure 
2 we show a histogram for 122 repair times (in hours) for a component of a U.S. Navy weapons system, 
which is once again skewed to the right. Finally, in Figure 3 we display a histogram of 219 interarrival 
times (in minutes) to a drive-up bank.  We will use this data set in our examples of Section 4. Looking at 
the three histograms, we see that none of them look like the density function of a normal distribution, 
which is symmetric about its mean.  As a matter of fact, it might be said with some truth that, “The great-
est application of the normal distribution is writing statistics books.” 

 The remainder of this tutorial is organized as follows. Section 2 discusses two critical pitfalls in simu-
lation input modeling. In Section 3 the two major methods are delineated for modeling a source of ran-
domness when corresponding data are available, namely, fitting a theoretical probability distribution to 
the data and the use of an empirical distribution. Then in Section 4 we give a three-activity approach for 
choosing the standard theoretical distribution that best represents a set of observed data. This is followed  
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Figure 1: Histogram of 910 processing times for an automotive manufacturer 
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Figure 2: Histogram of 122 repair times for a U.S. Navy weapons system 
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Figure 3: Histogram of 219 interarrival times to a drive-up bank 

in Section 5 by a discussion of how to model a source of system randomness when no data exist. Section 
6 is a summary of this paper. 
 Portions of this paper are based on chapter 6 of Law (2007). Other references on simulation input 
modeling are Banks et al. (2010), Biller and Gunes (2010), and Kuhl et al. (2009). The graphical plots and  
goodness-of-fit tests presented in this paper were developed using the ExpertFit distribution-fitting soft-
ware [see Averill (2012)]. 

2. TWO FUNDAMENTAL PITFALLS IN SIMULATION INPUT MODELING  

We have identified a number of pitfalls that can undermine the success of a simulation study [see section 
1.9 in Law (2007)]. Two of these pitfalls that directly relate  to simulation input modeling are discussed in 
the following sections. 

2.1   Pitfall Number 1:  Replacing a Distribution by its Mean 

Simulation analysts have sometimes replaced an input probability distribution by the perceived value of 
its mean in their simulation models. This practice may be caused by a lack of understanding of this issue 
on the part of the analyst or by lack of information on the actual form of the distribution (e.g., only an es-
timate of the mean of the distribution is available). Such a practice may produce completely erroneous 
simulation results, as is shown by the following example. 
 Consider a single-server queueing system (e.g., a manufacturing system consisting of a single ma-
chine tool) at which jobs arrive to be processed. Suppose that the mean interarrival time of jobs is 1 mi-
nute and that the mean service time is 0.99 minute. Suppose further that the interarrival times and service 
times each have an exponential distribution. Then it can be shown that the long-run mean delay in the 
queue is approximately 98. On the other hand, suppose we were to follow the dangerous practice of re-
placing each source of randomness with a constant value. If we assume that each interarrival time is ex-
actly 1 minute and each service time is exactly 0.99 minute, then each job is finished before the next ar-
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rives and no job ever waits in the queue! The variability of the probability distributions, rather than just 
their means, has a significant effect on the congestion level in most queueing-type (e.g., manufacturing, 
service, and transportation) systems.  

2.2 Pitfall Number 2:  Using the Wrong Distribution 

We have seen the importance of using a distribution to represent a source of randomness. However, as we 
will now see, the actual distribution used is also critical. It should be noted that many simulation practi-
tioners and simulation books widely use normal input distributions, even though in our experience this 
distribution will rarely be appropriate to model a source of randomness such as service times (see Figures 
1 through 3). 
 Suppose for the queueing system in Section 2.1 that jobs have exponential interarrival times with a 
mean of 1 minute. We have 98 service times that have been collected from the system, but their underly-
ing probability distribution is unknown. We fit the best Weibull distribution and the best normal distribu-
tion (and others) to the observed service-time data. However, as shown by the analysis in section 6.7 of 
Law (2007), the Weibull distribution actually provides the best overall model for the data. 
 We then made 100 independent simulation runs of length 10,000 delays of the system using each of 
the fitted distributions. The overall average delay in the queue (i.e., based on 1,000,000 delays) for the 
Weibull distribution was 2.69 minutes, which should be close to the average delay in queue for the actual 
system.  On the other hand, the average delay in queue for the normal distribution was 3.31 minutes, cor-
responding to a model output error of 23 percent. It is interesting to see how poorly the normal distribu-
tion works, given that it is the most well-known distribution. 

3. METHODS OF REPRESENTING RANDOMNESS GIVEN THAT SYSTEM DATA ARE 
AVAILABLE 

Suppose that independent, identically distributed (IID) data 1 2 … nX ,X , ,X  are available from a continuous 
distribution (e.g., service times) with distribution function F(x). [Discrete distributions are discussed in 
Law (2007).] Our goal is to find a distribution that provides a sufficiently accurate approximation to F(x) 
so that “valid” results are obtained from our simulation study. [We will probably never know F(x) exact-
ly.] There are two major approaches for trying to find a good approximation to F(x), which are discussed 
in the following sections. 

3.1 Fitting Standard Theoretical Distributions to the Data 

With this approach we “fit” various standard theoretical distributions (e.g., exponential, lognormal, or 
Weibull) to our data with the goal of finding one that provides a good approximation to F(x). What it 
means to fit a distribution to data and how we determine the quality of the representation are discussed in 
Section 4. The major drawback of this approach is that for some data sets we simply cannot find a theoret-
ical distribution that provides a good representation for our data. Two possible reasons for this are that our 
data are actually from two or more heterogeneous populations or that the data have been significantly 
rounded (e.g., service times that have been rounded to the nearest hour), effectively discretizing the data 
in the latter case. 

3.2   Using an Empirical Distribution Constructed from the Data 

With this approach we construct an empirical distribution ( )F x from our data, which is used as an ap-

proximation to F(x). Let ( )iX  denote the ith smallest of the Xj’s , so that (1) (2) ( )nX X X .                             

Then we define ( )F x  as follows: 

1870



Law 

 

(1)

( )
( ) ( 1)

( 1) ( )

0                                                     if   

 1
( )              if  for 1,2, , 1

1 ( 1)( )

1                                                   

i
i i

i i

x X

x Xi
F x X x X i n

n n X X 





     

  
 

( )   if nX x






 

 

 

An illustration for n = 5 is given in Figure 4. 
 
                         ( )F x  
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Continuous, piecewise-linear empirical distribution function 

 The major disadvantage of using the  empirical distribution function ( )F x  is that values outside of 

the range of the observed data, namely, (1) ( )[ , ]nX X  cannot be generated in the simulation, which is a prob-

lem if n is “small.” Another problem with using an empirical distribution is that 2n values (i.e., the n 

( )'siX  and their corresponding cumulative probabilities) have to be entered into the simulation model, 

which may be problematic for “large” n. 

3.3    Deciding which Approach to Use 

If a standard theoretical distribution can be found that provides a good representation of our data (see Sec-
tion 4.3), then we believe that this approach is preferable over the use of an empirical distribution, be-
cause of its shortcomings of the latter approach noted above. Also, a theoretical distribution provides a 
compact representation of our data that smoothes out any “irregularities.” If a good theoretical distribu-
tion cannot be found, then an empirical distribution should be used. As the sample size n get gets larger, 

( )F x  will converge to F(x), but there is still the problem of entering the 2n values into the simulation 
model. 

4. FINDING THE THEORETICAL PROBABILITY DISTRIBUTION THAT BEST 
REPRESENTS A DATA SET 

In this section we discuss the three basic activities in specifying a theoretical distribution on the basis of 
the observed data 1 2, ,…, nX X X . 
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4.1   Activity I: Hypothesizing Families of Distributions 

The first step in selecting a particular input distribution is to decide what general families (e.g., exponen-
tial, gamma, Weibull, normal, or lognormal) appear to be appropriate on the basis of their shapes, without 
worrying (yet) about the specific parameter values for these families.   
 Some distributions are characterized at least partially by functions of their true parameters. In Table 1 
we give a number of these functions, formulas to estimate these functions from IID data (these estimates 
are called summary or descriptive statistics), and comments about their interpretation or use. These func-
tions might be used in some cases to suggest an appropriate distribution family. For a symmetric continu-
ous distribution (e.g., normal), the mean  is equal to the median x0.5. Thus, if the estimates 0 5( ) and .ˆX n x  
are almost “equal,” then this is some indication that the underlying distribution may be symmetric. If 

0 5( ) > .
ˆX n x , then it is often (but not always) true that the underling density function has a longer right tail 

than left tail, and vice versa. 

Table 1. Useful Summary Statistics 

Function Sample estimate (summary statistic) Comments 

Mean   ( )X n  Measure of central 
tendency 

Median x0.5 
(( 1) 2)

0 5
( 2) (( 2) 1)

                         if  is odd
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




  


 Measure of symmetry 

  
 The coefficient of variation cv can sometimes provide useful information about the form of a continu-
ous distribution. In particular, cv = 1 for the exponential distribution. The skewness  is a measure of the 
symmetry of a distribution. For symmetric distributions like the normal,  = 0. If  > 0, the distribution is 
skewed to the right (i.e., the density has a longer right tail than left tail); if   < 0, the distribution is 
skewed to the left. Thus, the estimated skewness ( )ν̂ n  can be used to ascertain the shape of the underlying 
density function. 
 A histogram of the data is one of the most useful tools for determining the shape of the underlying 
density function, since it is essentially a graphical estimate of the density. However, a fundamental prob-
lem with making a histogram is in choosing the interval width w, and we recommend selecting the small-
est interval width w that gives us a reasonably “smooth” histogram. 

 Example 1. Consider the 219 interarrival times of cars to a drive-up bank in Figure 3. The summary 
 statistics for these data are given in Table 2. Since 0 5(219) 0 399 0 270 (219).

ˆX . . x   and 

 (219 1 458,ν̂ ) .   this suggests   that  the  underlying  distribution  is   skewed  to  the right, rather than   
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 symmetric. Furthermore, �cv(219) 0 953,. which is  close to the  theoretical value of 1 for the expo-
 nential distribution. A smooth histogram of the data with w = 0.1 was given in Figure 3. In Figure 5   

Table 2: Summary Statistics for the Interarrival Time Data 

Summary statistic Value 

Mean 0.399 

Median 0.270 

Variance 0.144 

Coefficient of variation 0.953 

Skewness 1.458 
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Figure 5: Histogram of 219 interarrival times to a drive-up bank with an interval  

    width of 0.05 

 we give a  histogram of the data when  the interval width is  w = 0.05,  and  we see that this histogram 
 is fairly “jagged.” (A histogram with an interval width of 0.15 is also smooth.) Thus, the smooth his-
 togram with the  smallest  interval width corresponds to w = 0.1 and its shape resembles that of an 
 exponential density. 

4.2   Activity II: Estimation of Parameters 

After one or more candidate families of distributions have been hypothesized in Activity I, we must 
somehow specify the values of their parameters in order to have completely specified distributions for 
possible use in our simulation model. (For example, the exponential distribution has one parameter β that 
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is its mean.) Our IID data 1 2, ,…, nX X X  were used to help us hypothesize distributions, and these same 
data can also be used to estimate their parameters. When data are used directly in this way to specify a 
numerical value for an unknown parameter, we say that we are estimating that parameter from the data.  
 An estimator is a numerical function of the data. There are many ways to specify the form of an esti-
mator for a particular parameter of a given distribution, and many ways to evaluate the quality of an esti-
mator. We shall consider only one type, maximum-likelihood estimators (MLEs), for three reasons: (1) 
MLEs have several desirable properties often not enjoyed by alternative methods of estimation, (2) the 
use of MLEs turns out to be important in justifying the chi-square and Kolmogorov-Smirnov goodness-
of-fit tests,  and the central idea of maximum-likelihood estimation has a strong intuitive appeal. 
 Suppose that we have hypothesized a continuous distribution for our data that has one unknown pa-
rameter . Let ( )θf x  denote the probability density function for this distribution, so that the parameter  

is part of the notation. Given that we have already observed the IID data 1 2, ,…, nX X X , we define the 

likelihood function ( )L θ  as follows: 
 

1 2( ) ( ) ( ) ( )θ θ θ nL θ f X f X f X   
 

( )L θ , which is just the joint probability density function since the data are independent, can be thought of 

as giving the probability (likelihood) of obtaining our observed data if  is the value of the unknown pa-
rameter [see problem 6.26 in Law (2007) for a justification]. Then the MLE of the unknown value of , 

which we denote by ,θ̂  is defined to be that value of  that maximizes ( )L θ ; that is, ( ) ( )ˆL θ L θ for all 

possible values of . Thus, θ̂  “best explains” the data that we have collected. 

 Example 2. For the exponential distribution that appeared to be good candidate distribution in Ex-
 ample 1,  = β (β > 0) and  

 

1
( )  for 0x / β

βf x e x
β

   

 
 The likelihood function is  
 

1 2

1

1 1 1 1
( ) exp      n

n
X / βX / β X / β n

i
i

L β e e e β - X
β β β β

  



      
       
      

  

 
 and we seek the value of β that maximizes ( ) over all 0.L β β   The task is more easily accomplished 

 if, instead of working directly with ( ),L β  we work with its logarithm. Thus, we define the log-like-

 lihood function ( )l β  as 
 

1

1
( ) ln ( ) ln

n

i
i

l β L β n β X
β 

      

 Since the logarithm is strictly increasing, maximizing ( )L β  is equivalent to maximizing ( ),l β  which 

 is much easier. Standard differential calculus can be used to maximize ( )l β by setting its derivative to 
 zero and solving for β. That is, 
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 which equals zero if and only if  
 

1

( )
n

i
i

β X / n X n

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 To make sure that that ( )β X n  is a maximizer of ( )l β  (as opposed to a minimizer or an inflection 

 point), a sufficient (but not necessary) condition is that 
2

2
, evaluated at ( ), 

d l
β X n

dβ
  be negative, 

 which is the case here. Notice that the MLE is quite natural here, since β is the mean of the hypothe-
 sized distribution and the MLE is the sample mean, which is an unbiased estimator of β . For the data 

 of Example 1, (219) 0 399β̂ X . .   

4.3   Activity III: Determining How Representative the Fitted Distributions Are 

After determining one or more probability distributions that might fit our observed data in Activities I and 
II, we must now closely examine these distributions to see how well they represent the true underlying 
distribution for our data. If several of these distributions are “representative,” we must determine which 
distribution provides the best fit. Remember that in general, none of our fitted distributions will probably 
be exactly correct. What we are really trying to do is to determine a distribution that is accurate enough 
for the intended purposes of the model. 
 In this section we discuss both graphical procedures and goodness-of-fit hypothesis tests for deter-
mining the “quality” of our fitted distributions. 

4.3.1   Graphical Procedures 

We discuss two heuristic graphical procedures for comparing fitted distributions with the true underling 
distribution. 

 Density-Histogram Plots 

 For continuous data, a density-histogram plot can be made by plotting ( )ˆw f x over the histogram and 

looking for similarities, where ( )f̂ x  is the density function of a fitted distribution.  (Note that the area 
under a histogram is w, while the area under a density is 1.) 

 Example 3. For the interarrival-time data of Example 1, we hypothesized an exponential distribution 

 and obtained the MLE 0 399β̂ . in Example 2. Thus, the density function of the fitted distribution is 
 

0 3992 506    if 0
( )

0                     otherwise

x / .. e x
f̂ x

 
 


 

 For the histogram in Figure 3, we give a density-histogram plot in Figure 6. 
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Figure 6: Density-histogram plot for the fitted exponential distribution and the 
                     interarrival-time data 
 
 Distribution-Function-Differences Plots 
 The density-histogram plot can be thought of as a comparison of the individual probabilities of the fit-
ted distribution and of the individual probabilities of the true underlying distribution. We can also make a 
graphical comparison of cumulative probabilities (distribution functions). Define a sample distribution 
function ( )nF x  as follows: 
 

number of '
( ) i

n

X s x
F x

n


  

 

which is the proportion of observations that are less than or equal to x.  Let ( )F̂ x  be the distribution func-
tion of  the fitted  distribution. A distribution-function-differences plot is a plot of the differences between 

( )F̂ x  and ( )nF x , over the range of the data. If the fitted distribution is a perfect fit and the sample size is 
infinite, then this plot will be a horizontal line at height 0. Thus, the greater the vertical deviations from 
this line, the worse the quality of fit. 

 Example 4. A distribution-function-differences plot for the interarrival-time data of Example 1 and 
 the fitted exponential distribution is given in Figure 7. This  plot indicates a good fit except possibly 
 at the lower end of the range of the observed data. 
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Figure 7: Distribution-function-differences plot for the fitted exponential distribution  
     and the interarrival-time data 

4.3.2.   Goodness-of-Fit Tests 

A goodness-of fit test is a statistical hypothesis test [see, for example, Devore (2011)] that is used to as-
sess formally whether the observations 1 2, ,…, nX X X  are an independent sample from a particular distri-

bution with distribution function .F̂  That is, a goodness-of fit test can be used to test the following null 
hypothesis: 

 

0H : The 's are IID random variables with distribution function i
ˆX F  

 
 We begin our discussion with the chi-square test, which can be considered a more formal comparison 
of a histogram with the fitted density function. To compute the chi-square test statistic, we must first di-
vide the entire range of the fitted distribution into k adjacent intervals 0 1 1 2 1[ , ), [ , ), , [ , )k ka a a a a a . (For 

Example 5 below, 0 0 and ka a .   ) Then we tally  
 

1number of 's in the th interval [ , )j i j jN X j a a  

 

for 1,2, ,j k.   (Note that 
1

k

j
j

N n.


 ) Next, we compute the expected proportion  of the 'sj ip X  that 

would fall in the jth interval if we were sampling from the fitted distribution, which is 
 

1

( )
j

j

a

j

a

ˆp f x dx


   

Finally, we compute the test statistic 
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2
2

1

( )k
j j

j j

N np
χ

np


  

 
Since jnp  is the expected number of the n 'siX  that would fall in the jth interval if H0  were true, we 

would expect 2χ  to be small if the fit were good. Therefore, we reject H0 if 
2χ  is too large. 

 Suppose that we would like to perform a test at level ,α  where α  is typically 0.05 or 0.10. Let 
2

1,1k αχ    be the upper 1 α  critical point for a chi-square distribution with 1k   degrees of freedom [see, 

for example, Table T2 on page 717 in Law (2007)]. Then we reject the null hypothesis H0 at level α  if 
2 2

1,1k αχ χ   , and we fail to reject H0 otherwise. 

 The most troublesome aspect of carrying out the chi-square test is choosing the number and size of 
the intervals. This is a difficult problem, and no definitive prescription can be given that is guaranteed to 
produce good results in terms of validity (actual level of the test close to the desired level α ) and high 

power (ability to discriminate between F̂  and the distribution that is really true) for all hypothesized dis-
tributions and all sample sizes. There are, however, a few guidelines that are often followed. First, some 
of the ambiguity in interval selection  is  eliminated  if  the  intervals are chosen so that 1 2 ,kp p p                   
which is called the equiprobable approach. (Thus, under this approach, equal-sized histogram intervals 
would not be used.) For the equiprobable approach, it is also recommended that 3k   and 

5 for all .jnp j  However, these recommendations are not completely definitive.  For example, in the 

case of the n = 219 interarrival times of Example 1, these rules would say that k should be between 3 and 
44, which is a large range of values. The lack of clear prescription for interval selection is the major 
drawback of the chi-square test. In some situations entirely different conclusions can be reached from the 
same data set depending on how the intervals are specified. The chi-square test nevertheless remains in 
wide use, since it can be applied to any hypothesized distribution. 

 Example 5. We now use the chi-square test with level 0 05α .  to compare the n = 219 interarrival 
 times of Example 1  with the fitted exponential distribution having distribution function 

 0 399( ) 1 x / .F̂ x e   for 0x .  If we form, say, k = 20 intervals with 1 0 05jp / k .   for 1 2 20,j , , ,   

 then (219)(0.05) 10.95,jnp     so this satisfies the guidelines that the intervals be chosen with equal 

 's and 5j jp np .  The computations  for the test are given in section 6.6.2 of Law (2007) and the val-

 ue of the test statistic turns out to be  2 22 188χ . .  Referring to Table T2 in Law (2007), we see 

that  2
19,0 95 30 144,.χ . which is not exceeded by 2 ,χ  so we do not reject H0 at level 0 05α . . Thus, 

this  test gives us no reason to conclude that our data are poorly fitted by an exponential distribution 
with  
 0 399β . .  
 

 We now consider the Kolmogorov-Smirnov (K-S) test, which does not have the troublesome interval 
specification of the chi-square test. However, it does have its own drawbacks as we will see below. To de-

fine the K-S statistic, recall the sample distribution function ( )nF x  from Section 4.3.1. If ˆ ( )F x  is the fit-
ted distribution function, a natural assessment of goodness of fit is some kind of measure of the closeness 

of the functions nF  and ˆ.F  The K-S test statistic nD  is simply the largest (vertical) distance between 

( )nF x  and ˆ ( )F x  for all values of x, and it can be computed from the following formulas:    
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1 1

1 1ˆ ˆmax ( ) ,      max ( )      n i n i
i n i n

i
D F X D F X

n n
 

   

         
   

 

and 

  max ,n n nD D D   

 Clearly, a large value of nD  indicates a poor fit, so that the form of the test is to reject the null hy-

pothesis 0H  if nD  exceeds some constant ,1nd  , where  is the specified level of the test.  The problem 

is that values of ,1nd   are available for only certain continuous distributions and the values are different 

for each applicable distribution. In particular, values of ,1nd   are available for five cases: (1) all parame-

ters of F̂  are known [i.e., none of the parameters of F̂  are estimated in any way from the data, which in-
cludes the U(0,1) distribution], (2) normal (lognormal) distribution, (3) exponential distribution, (4) 
Weibull distribution, and (5) logistic (log-logistic) distribution. Moreover, in the latter three cases pa-
rameters of the fitted distributions have to be estimated by the method of maximum likelihood. Unfortu-
nately, these limitations of the K-S test are not at all well known, and people routinely apply the K-S test 
to all continuous and discrete distributions using the values of ,1nd   that are only applicable to the all-

parameters-known case. This results in a precipitous drop in the power (discriminating ability) of the K-S 
test. More details about the K-S test can be found in Law (2007). 
 Example 6. We now perform the K-S test at level 0 05α .  to determine whether the n = 219  in-
terarrival  times are well fit  by  the  exponential  distribution  having  distribution  function 

 0 399( ) 1 x / .F̂ x e    for  0x .  Using the above formulas we got a test statistic of 219 0.047.D   From 

 Table 6.15 in Law (2007) we computed that 219,0.95 0.073,d  which is not exceeded by the test-statis-

 tic value of 0.047.  Therefore, the K-S test  gives us no reason to reject the fitted exponential distri-
 bution at level 0.05.   

 We conclude this section with some  general comments about the efficacy of goodness-of-fit tests.  In 
particular, the following are some drawbacks of these tests: 

  The null hypothesis 0H  is often false. 

  The power of these tests is low for small to moderate sample sizes. 

  The power of these tests approaches 1 as the sample size gets large, causing the null hypothesis      
 to be rejected unless the fitted distribution is exactly correct. 

5. SELECTING A DISTRIBUTION IN THE ABSENCE OF DATA 

In some simulation studies it may not be possible to collect data on the random variables of interest, so 
the techniques of Section 4 are not applicable to the problem of selecting corresponding probability dis-
tributions. For example, if the system being studied does not currently exist in some form, then collecting 
data from the system is obviously not possible. This difficulty can also arise for existing systems, if the 
number of required probability distributions is large and the time available for the simulation study pro-
hibits the necessary data collection and analysis. 
 Let us assume that the random quantity of interest is a continuous random variable X. It will also be 
useful to think of this random variable as being the time to perform some task, e.g., the time required to 
repair a piece of equipment when it fails. The first step in using the triangular distribution approach is to 
identify an interval [ ]a,b  (where a and b are real numbers such that a < b) in which it is felt that X will lie 

with probability close to 1; that is, ( ) 1P a X b .    To obtain subjective estimates of a and b, subject-
matter experts (SMEs) are asked for their most optimistic and pessimistic estimates, respectively, of the 
time to perform the task. We next ask the SMEs for their subjective estimate of the most-likely time to 

1879



Law 

 
perform the task, m, which is the mode of the distribution of X. Given a, b, and, m, the random variable X 
is then considered to have a triangular distribution on the interval [ ]a,b  with mode m, as shown in Figure 
8. The height of the triangle above m is chosen to make the area under the density function equal to 1. 

 

 

 

 

 

 

 

 

 

 

Figure 8: Triangular density function on the interval [ ]a,b  with mode m  

6. SUMMARY 

We have seen in Section 2 the danger of replacing a probability distribution by its perceived mean value 
or of using an inappropriate distribution. For the case where data are available, we discussed the two main 
approaches for representing a source of system randomness, namely, fitting standard theoretical distribu-
tions and the use of empirical distributions, and we gave recommendations for when to use each ap-
proach. Finally, we showed how the triangular distribution can be used to  model a source of randomness 
such as a task time in the absence of data. 
 There is an extensive amount of material available on selecting simulation input probability distribu-
tions, and further details on all of the topics covered in this tutorial can be found in Law (2007). 
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