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ABSTRACT 

Studies on operational lot scheduling in semiconductor manufacturing show significantly varying optimi-
zation potentials, depending on a multitude of factors relating to methods and models in simulation. We 
present experiments examining Variable Neighbourhood Search (VNS) used to improve the objectives 
queuing time and tardiness for the parallel batch machine scheduling problem. The discussed results in-
corporate the effects of specific model characteristics and constraints, namely incompatible job families, 
process dedication schemes, critical time bounds, and minimal batch size constraints among others. With 
regard to methodical factors, we examine the effect of time window decomposition on simulation results, 
and we discuss fundamental VNS settings, respectively their influence on improvements measured for 
problem instances of size relevant for industrial applications. This study intends to identify important fac-
tors in scheduling studies and evaluates their influence on optimization potentials based on extensive ex-
periments. 

1 INTRODUCTION 

Semiconductor manufacturer’s economic competitiveness relies to a not negligible extend on the shop 
floor control system. Effective material flow control policies enable companies to manage production ac-
cordingly to their goals, for example in terms of cycle times or customer delivery dates, constantly under 
pressure of cost reduction. Research and industry work intensely on scheduling topics in order to replace 
(state of the art) dispatching rule based systems by more powerful scheduling solutions, sooner or later. 
Scheduling solutions powered by optimization have been focused stronger than ever before in cause of ef-
fective search methods and constantly increasing computing power of modern computer systems. Opera-
tional scheduling promises to realize optimization potentials in production logistics unreachable for com-
mon dispatching systems. Especially (meta)heuristics seem to be practicable to tackle complex scheduling 
problems of dimensions interesting for practitioners in industry.  
 In this paper we examine the parallel batch machine problem in the furnace area. Here, a batch de-
fines a quantity of jobs grouped together to be processed on a machine as one operation. The underlying 
model incorporates various constraints, to our knowledge all important for the industry, namely: process 
dedications, incompatible job families, minimal thresholds for batch sizes, and maximal time bounds. 
 The task is to optimize schedules for given objectives, respectively to minimize total queuing time 
(TQT) or total tardiness (TT). For that purpose, we apply the Variable Neighbourhood Search (VNS)  ap-
proach, first mentioned by Hansen & Mladenović (1997). In view of NP-hard scheduling problems, Time 
Window Decomposition (TWD) is applied to disassemble scheduling problems, very similar to the rolling 
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horizon procedures presented in (Ovacik and Uzsoy 1995). We compare VNS with well known dispatch-
ing schemes; as references we consider First In First Out (FIFO) and Batched Apparent Tardiness Cost 
(BATC) discussed in (Balasubramanian et al. 2004). 
 Motivated by the observation in several studies, especially those based on real-world datasets, that 
optimization potentials in simulation vary strongly, we deem it necessary both to identify and evaluate the 
factors that have significant influence on the results. Especially our partner in industry needs reliable sim-
ulation results to asses operational scheduling for use on the shop floor; and knowledge about main fac-
tors and their influence on potentials increases confidence and trust in simulation results finally affecting 
decisions. We distinguish between influencing factors associated to the model. On one hand, a particular 
scheduling problem (instance), and on the other, those factors associated to the scheduling approach, re-
lating to the search method or to the decomposition technique(s) applied.  
 Scheduling problems are commonly categorized, considering the material flow and the machines in-
terrelationship respectively, while including the objective function and the constraints (Graham et al.  
1979). A particular scheduling problem instance is additionally defined by a set of parameters and distri-
butions, defining the solution space offering and limiting optimization potentials. Important characteris-
tics are for example the number of machines and jobs, process dedication schemes and distributions of 
process times, batch sizes, job arrivals, and due dates. In the methodical area, we know that scheduling 
methods (especially their setup) in conjunction with decomposition techniques remarkably impact the re-
sults in simulation. Consequently we are particularly interested in important system variables that signifi-
cantly influence the quality of simulation and optimization results.  
 Within the last years we implemented a simulation and optimization framework for operational lot 
scheduling, strongly oriented to the needs of semiconductor manufacturing. The framework covers an im-
plementation of VNS used to improve schedules for given objectives, operating on an object oriented 
model structure representing the semiconductor manufacturing process. In addition to functionalities cre-
ating (and validating) scheduling problem instances from real world datasets, we implemented model 
generating procedures creating independent model instances for scheduling problems with specific char-
acteristics. The time window shifting decomposition technique is applied in order to manage large scale 
problems, and to compete scheduling and dispatching strategies against each other. 
 For this paper, thousands of simulation runs were carried out, organized in six experiments. We con-
vey a feeling for scheduling problem dimensions and computational complexity, pointing to the border of 
scheduling applications in real world. We give insights into the roles of particular VNS parameters, and 
explicitly point out their effect on optimization potentials. We give an overview about favourable and un-
desirable model characteristics, stressing leverages on benefits we expect to create with operational 
scheduling.  

2 PROBLEM DESCRIPTION 

We describe the considered problems by use of the α|β|γ classification scheme (Graham et al. 1979). 
Next, we introduce the notation to describe the considered scheduling problems. 

 Rm: unrelated parallel machines (with unequal processing times), 
 Mj: machine dedications (a job is dedicated to a restricted set of machines), 
 rj: nonzero release date of a job (dynamic job arrivals), 
 p-batch: parallel batching (a number of jobs is processed simultaneously on a machine), 
 incompatible: incompatible job families (jobs of different families cannot be processed together), 
 bj: arbitrarily (maximum) batch size for a job (family) on a machine, 
 Cj: completion time of a job, 
 dj: operation due date of a job (equivalent to the initial tardiness), 
 pj: processing time of a job on a machine, 
 TT: total tardiness defined as ∑max(Cj - dj, 0), 
 TQT: total queuing time defined as ∑(Cj - rj - pj). 
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The studied (unrelated) parallel batch machine scheduling problems include constraints that experts in in-
dustry recognize as necessary to apply scheduling on the shop floor. We focus on the scheduling problem 
Rm|Mj, rj, p-batch, incompatible, bj|TT that is NP-hard by reduction to the (NP-hard) problem 1||TT (cf. 
for example Lawler 1977). We also consider the problem Rm|Mj, rj, p-batch, incompatible, bj|TQT that 
can be reduced to 1|rj|∑(Cj - rj) for which Lenstra, Rinnoy Kan and Brucker (1977) showed NP-hardness; 
when considering that TQT=∑(Cj - rj - pj) is equivalent to ∑(Cj - rj) for constant pj, then Rm|rj|TQT is 
equivalent to P|rj|∑(Cj - rj ). 
 The underlying model optionally incorporates critical constraints, investigated in a separate experi-
ment. First, we include time bounds for jobs, individually constituting maximal time spans for processing 
the jobs. Second, a minimum batch size defines a lower limit for the number of wafers in a batch, while 
lots count arbitrarily lot sizes up to 25 wafers.  

3 RELATED WORK 

The parallel batch machine problem is often studied for varying sets of constraints and objectives. Corre-
spondingly to the scope of this work, we restrict ourselves to focus on literature that deal with (unrelated) 
parallel batch machine problems and approaches optimizing on-delivery measures (tardiness, lateness, 
etc. ) and/or completion time (cycle time, flow time), incorporating at least incompatible job families and 
dynamic job arrivals.   
 Mönch et al. (2005) present a genetic algorithm (GA) combined with decomposition techniques using 
an extension of the Apparent Tardiness Cost (ATC) dispatching rule to minimize total weighted tardiness 
(TWT). Another GA approach for minimizing maximum lateness is proposed in (Malve and Uzsoy 2007). 
Li & Wu (2008) propose an approach minimizing TWT, based on the idea of Ant Colony Optimization 
(ACO). In (Klemmt, Weigert, Almeder & Mönch, 2009) a VNS approach is compared to a Mixed Integer 
Programming (MIP) solution combined with TWD (cf. Ovacik and Uzsoy, 1995), both minimizing TWT. 
Chiang et al. (2010) propose in their work a memetic algorithm to tackle the (unrelated) parallel batch 
machine problem with incompatible job families and job arrivals, while minimizing TWT. 
 We further refer to a scheduling approach based on the Next Arrival Control Heuristic (NACH) pre-
sented in (Ham and Fowler 2008); they describe a concept for scheduling wet etch and furnace operations 
using future job arrival information (look-ahead). 

4 VARIABLE NEIGHBOURHOOD SEARCH  

The concept of VNS, first described by Hansen & Mladenović (1997), thereafter adapted by several re-
searchers for a multitude of applications, proposes the definition of problem specific neighbourhood 
structures disassembling large scale problems. A neighbourhood, representing problem specific 
knowledge, defines a specific kind of modification applied to a solution. Note that not every modification 
leads to a valid schedule due to the existence of critical constraints, e.g. time bounds. Each defined neigh-
bourhood constitutes a smaller partial problem offering the possibility to find improved solutions in ade-
quate time even for large combinatorial problems. Hansen and Mladenović (2001) describe two basic 
search schemes among others, Variable Neighbourhood Descent (VND) and Variable Neighbourhood 
Search (VNS). 
 VND repeats sequentially exploring neighbourhood structures (searching for the best neighbour) of 
an incumbent solution until no improvement is obtained. If a solution thus obtained (as a result of explor-
ing a particular neighbourhood structure) outperforms the current solution, search restarts exploring 
neighbourhoods around the improved solution. Note that VND search is deterministic and always leads to 
identical results. The initial solution is obtained by FIFO or BATC, depending on the objective (see sub-
section 5.1) .  
 VNS combines a local search scheme improving the incumbent solution with the ability to escape 
from local optima by use of random movements in the solution space (shaking). Starting from an initial 
solution, the local search phase is continued until no improvement is obtained. Without knowledge about 
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the optimal solution (global optimum), we must assume that local search results always represent non-
optimal solutions (local optima). In order to escape from a local optimum, the current solution is random-
ly modified in the shaking phase tolerating deteriorations, and subsequently followed by local search 
hopefully leading to a better solution. Our implementation of VNS applies VND for local search using 
identical neighbourhood structures for exploring and shaking. We defined four neighbourhoods combin-
ing two kinds of modifications (swap and move) operating on batches or jobs, similar to the neighbour-
hood structures presented in (Klemmt et al. 2009). The neighbourhoods are listed below in the sequence 
they were sequentially visited during local search and shaking phase. So far, we choose that sequence as 
result of our experiences, not as a result of reliable studies. 

1. Swap Batch – Swaps the positions of two batches. 
2. Swap Job – Swaps two jobs out of two batches.  
3. Move Batch – Moves a batch to another place.  
4. Move Job – Moves a Job to another batch.  

  
 Mönch et al. (2005) and Klemmt et. al (2009) both apply TWD (Ovacik and Uzsoy 1995), for their 
optimization approaches (GA and MIP) in order to create or improve solutions for subproblems. Both ap-
ply TWD in an event-based manner, meaning that every time a new decision is possible (for example a 
new job arrives, machine finishes processing, etc.) a new time window with fixed size is created, respec-
tively a new subproblem. That time window (rolling horizon) frames future job arrivals that are taken into 
account when solving the subproblem; for that time span, we prefer to use the term look-ahead horizon 
throughout the rest of this paper. In contrast to that, the VNS approach in (Klemmt et al. 2009) uses full 
information about job releases without TWD, and therefore has advantage over MIP (using TWD) by an 
unlimited look-ahead horizon. Our implementation of TWD works not necessarily event-based, instead, 
we are able to define the time window shifting interval arbitrarily. As a consequence, we are able to apply 
VND/VNS with or without TWD, or with arbitrarily time window intervals. 

5 DESIGN OF EXPERIMENTS 

We defined six experiments, where each experiment varies up to three parameter in order to evaluate their 
effect on TQT or TT. The experiments were carried out on a DELL Blade Server with eight computing 
nodes, each with two Quad-Core E5450 Xeon CPUs (2,8Ghz) and 16GB memory per node, operated by 
Microsoft HPC Windows 2008 (64bit); in total we had 64 cores running in parallel most of the time. 

5.1 Overview 

Tens of thousands simulation runs, organized in six experiments, generated the results discussed in this 
paper. Decomposition techniques were often used to manage complexity of focused scheduling problems, 
e.g. time window shifting (rolling horizon). Here, were are particularly interested in the length of time 
windows and their effect on the results. Several studies showed that additional information about job arri-
vals influence optimization results, correspondingly we examine different widths for the look ahead hori-
zon. One experiment deals with model complexity respectively scheduling problem size, here defined by 
the number of machines, the number jobs and the level of utilization. A model instance is additionally 
characterized by its process dedication scheme, the number of job families, and the distribution of process 
times; we defined an experiment to examine the impact of these factors. Since we conduct research in 
close collaboration to industry, we face critical constraints as time bounds and minimal batch sizes, and so 
we investigate the effect of both constraints combined with varying distributions for lot sizes. In contrast 
to already mentioned experiments mainly examining model characteristics, we defined an experiment fo-
cused on VNS that investigates more detailed the shaking effect in conjunction with varying deadlines for 
computation time for three exemplary model sizes.  
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Table 1: Design of Experiments 

Experiment Objective 
Dispatching 

reference 
Time Window 
Decomposition 

Investigated parameters 

TWD TQT FIFO Used Time window shifting interval 

Look Ahead  TQT FIFO Used Look ahead horizon 

Model       
Complexity 

TT BATC Used 
Number of machines 
Number of jobs 
Utilization level 

Model          
Characteristics  

TT BATC Used 
Dedication scheme 
Number of job families 
Distribution of process times 

Critical         
Constraints  

TQT FIFO Used 
Threshold for time bounds 
Minimal batch size  
Distribution of lot sizes 

VNS TT BATC Not Used 
VNS method (shaking on/off) 
Computing time deadline 

5.2 Model Default Settings 

A model generator creates model instances with specific characteristics. We defined a set of important 
characteristics that describe important viewpoints of a scheduling problem instance.  
 The default model instance states the problem to schedule 1500 jobs on 30 machines at utilization 
level 0.8. We define 30 incompatible job families, that is realistically as many as available machines, tri-
angularly dedicated to the machine pool (see section 6.4). The process times are uniformly distributed be-
tween four and eight hours. The batch size varies between four and eight lots, depending on job family 
and machine. We include no critical constraints e.g. time bounds and minimal batch sizes for the default 
model, only within the experiment “Critical Constraints”. The default model contains only jobs respec-
tively lots with maximal lot size (25 wafers). Job arrivals are distributed uniformly from zero to the ex-
pected makespan. The due dates are normally distributed relatively to the arrival date with standard devia-
tion of twelve hours. 

Table 2: Basic default model settings 

Machines Jobs Utilization 
30 1500 0.8 

Table 3: Facility specific default model settings 

Dedication Job families Process times Max batch size Min batch size Time bounds
Triangular 30 U~(240,480) [min] U~(4,8) [lot] None None 

Table 4: Job specific default model settings 

Lot size Job arrivals Due dates 
Const~(25) [wafer] U~(0,makespan) N~(0,12) [hours] 

5.3 Method Default Settings 

By default we apply identical settings to parameterize the optimization method. Experiments only deviate 
from defaults in those cases in which a certain parameter (or set of parameters) is within the scope of the 
study’s investigation and therefore varied. With exception to the experiment “VNS”, we apply the TWD 
technique with an interval length of ten minutes. As default for the look ahead horizon we use 30 minutes, 
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which means that for every time window the information about job arrivals within next 30 minutes is 
available for optimization. By default we apply the VNS derivate Variable Neighbourhood Descent 
(VND) that only executes the local search phase without shaking, stopping when the first optimum is 
reached, but limited to 60 seconds as computing deadline for each time window. However, VND never 
took more than five seconds per time window on average measured for the model default settings. We use 
dispatching policies in simulation to generate initial solutions, subsequently improved by VND. For those 
experiments with an objective function minimizing TQT we use FIFO dispatching as initial solution; re-
maining experiments focused on TT start their search from solutions generated with BATC.  

Table 5: Default Method Settings 

Decomposition Technique Time window shifting using ten minutes as interval 
Look Ahead Horizon Constantly 30 minutes (1/12 average process time) 
Search Method Type Variable Neighbourhood Descent (VND) 
Computational Deadline At maximum 60 seconds per time window (never reached) 

Initial Solution 
FIFO for TQT as objective function 
BATC for TT as objective function 

5.4 Exception for Default Settings  

The experiment “VNS” is an exception with regard to the default settings for the model as well as for the 
method. In this case time window shifting was not applied and therefore significantly smaller models 
need to be focused, where each of three focused models constitutes a scheduling problem for which VNS 
and VND still lead to improved schedules in adequate time.  

5.5 Reliability and Replications 

For every model description, having a specific characteristic, we generated 20 independent instances. 
Since VNS (using shaking) relies on randomness, consequently shows stochastic effects, we repeat those 
runs ten times to reach a certain statistical reliability. Of course deterministic simulations runs (VND or 
dispatching) were only done once, since these always lead to identical results due to their deterministic 
behaviour. 

6 RESULTS OF EXPERIMENTS 

In this section we discuss the results of the experiments. We give VNS/VND improvements in relation to 
the dispatching results generated by FIFO or BATC. For the entire analysis and for all experiments, we 
discuss the average value for queuing time or tardiness calculated from the schedules generated in each 
simulation run.  

6.1 Time Window Decomposition 

Time window shifting decomposition is an essential technique used to disassemble scheduling problems 
on the timeline into smaller sub-problems, each sequentially separately solved by optimization. This way 
it is possible to evaluate scheduling methods for arbitrarily large problem instances with practical rele-
vance. This experiment examines the effect of time window decomposition, more precisely the width of a 
window, on TQT. This experiment shows that the results respectively the optimization potentials remark-
ably rely on time window size, varied from 1 to 240 minutes in this experiment (see Figure 1). 
 One might assume that the smallest time window, considered synonymous to an event based simula-
tion, would lead to best results. The experiment confirms this statement in so far as the queuing time 
tends to increase with increasing time window size. Obviously, the greater the time window interval val-
ue, the less the probability to start a certain job or batch just in the moment of its arrival. In other words, 
jobs already arrived were not scheduled to start before the next time window begins. 
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 But, we also observed the effect (for most model instances) that there exists at least one value for the 
time window size leading to considerably better results than the smallest possible time unit does. Since 
we deal with discrete events, discrete job arrivals over time, never identical for different model instances, 
it is clear that varying time window sizes lead to varying results. We state that the time window size in 
conjunction with randomly distributed job arrivals strongly effects the results, and the smallest time win-
dow does not necessarily lead to the best result with respect to the focused objective. 
 It is also remarkable that applying an optimization technique does not lead to global improvements 
for all the time window interval values tested in this experiment. We observe the phenomenon that there 
are values for the time window interval that lead to “optimized” solutions outperformed by their corre-
sponding dispatching reference, which is obtained by the identical dispatching rule used to create the ini-
tial solution. TWD disassembles the given scheduling problem and thus creates a sequence of subprob-
lems solved and optimized sequentially. Each scheduling decision taken within a time window 
(subproblem) has an effect on the next subproblem in sequence, and remains effective for all succeeding 
subproblems. The key point is that an optimized solution for a single subproblem may cause unfavourable 
situations (compared to the non-optimized dispatching solution) leading to a sequence of subproblems 
where optimization does not compensates the early scheduling decisions. “It is hard to take the best deci-
sion if you do not have all the information.” This effect is triggered by the interrelationship between job 
arrivals and interval length, pointing to the discrete nature of the entire system as well as to a structural 
weakness of scheduling approaches using TWD. The improvements realized by applying VND vary be-
tween plus/minus ten percent, although the improvement on average is positive. 
 We state that studies, meant to generate reliable statements on optimization potentials, need to frame 
a sufficiently high number of independent model instances evaluated with varying time window sizes 
when TWD is applied. Especially for industrial applications (or cost-benefit calculations via simulation) it 
is hard to gather an adequate number of real-world models from history in order to evaluate scheduling 
methods discussed to be introduced to production systems.  

 

Figure 1: Average queuing time (improvements) for an exemplary model instance 

6.2 Look Ahead  

The term “Look Ahead” in the scope of scheduling stands for additional information about job arrivals in 
the future seen from the current point of time at which a scheduling problem occurs, in simulation sys-
tems as well as in industrial applications. The look ahead horizon defines the time span to which arising 
job arrivals were taken into account when optimizing the schedule for a given objective. This study shows 
that the look ahead horizon strongly effects scheduling results, and especially the improvements gained 
by optimization. 
 The results show that information about soon arriving jobs empowers the scheduling method remark-
ably, most likely due to the fact that the examined scheduling problem incorporates the batching function-
ality. Figure 2 shows a clear trend to increasing improvements accompanied with an increasing look 
ahead horizon. Incorporating look ahead information to the scheduling system offers the opportunity to 
delay waiting batches, which could already be scheduled to start, in order to wait for jobs arriving soon. 
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Furthermore, the optimization procedure will probably schedule small batches to start immediately having 
the knowledge about no near future job arrivals.  
 The results show that the improvement gained by VND compared to FIFO dispatching tends to stead-
ily increase with increasing look ahead horizon, up to 40% in the area of 480 minutes used for the look 
ahead horizon. Remember that the process time is uniformly distributed between 240 and 480 minutes. 
 It is remarkable that the improvement shows also negative improvements down to minus ten percent 
for individual look ahead horizon values smaller than 60 minutes (observed for this particular model in-
stance). The queuing time improvement shows fluctuations for neighboured horizon values, again because 
of the discrete structure of model instance and simulation method. 
 In addition to that we observed in further studies examining greater values for the look ahead horizon 
(not presented here) that the improvement reaches a plateau for values greater than one average process 
time for the model, and holds that improvement level up to two times average process time before the im-
provement decreases again in cause of computational complexity of arising scheduling problems. 

 

Figure 2: Average queuing time (improvements) for an exemplary model instance 

6.3 Model Complexity 

A scheduling problem’s complexity is significantly defined by the number of jobs and the number of ma-
chines. If  TWD is used, the utilization level determines the number of jobs creating the scheduling prob-
lem in conjunction with available machines. The higher the utilization level, the higher the density of job 
arrivals per timeframe. This experiment evaluates 27 different model descriptions, each characterized by 
differing value combinations for the number of machines, the number of jobs and for the level of utiliza-
tion. The objective function is defined for minimizing TT of the jobs. 

Table 6: Varying Parameter for the Experiment "Model Complexity" 

Parameter Value Range 
Machines { 15, 30, 60 } 

Jobs { 300, 600, 1200 } 
Utilization { 0.7, 0.8, 0.9 } 

 
 Figure 3 shows the VND improvements for the average tardiness, visualized with blue bars. The im-
provements in average tardiness vary between 1 and 17% compared to the results generated with BATC 
dispatching. The diagrams suggest that the average tardiness improvements seem to increase with increas-
ing number of machines and decreasing utilization level. It is likely that a higher number of machines re-
sults in increased alternatives offering space for improvements. We also consider it not implausible that 
delaying batches for incoming jobs takes more effect at lower utilization levels. We also observed that the 
absolute average tardiness values, visualized with green filled circles in the diagram, increase with in-
creasing utilization level, which was expected. We like to note that the average runtimes per time window 
never reached the upper limit set to 60 seconds for none of the model instances.  
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Figure 3: Average tardiness (improvements) depending on model complexity 

6.4 Model Characteristics 

This experiment provides insights in the influence of different process dedication schemes, about the im-
pact of job families and about the effect of varying process times respectively their distribution. The pro-
cess dedication scheme represents an exemplary strategy to qualify machines for processes. "OOAK" 
(one of a kind) stands for a dedication scheme in which machines only provide a single process. Con-
versely, there exists only one machine for each process respectively job. "Uniform" represents the unre-
stricted scheme in which  all processes were dedicated to all machines without limitations. "Triangular" 
schemes define one single machine of type OOAK and one single machine of type Uniform. Imagine a 
lower/upper triangular matrix where each non-zero matrix cell represents a specific process dedicated to a 
certain machine. We e set the job families to 15, 30 or 60.  
 Restricting model characteristics in this experiment, process dedications and job families, also limit 
optimization potentials. OOAK dedication schemes show comparatively lowest improvements tending to 
zero, whereas uniform dedication schemes show the best performance values. Similar to the effect ob-
served for restricted dedication schemes we monitored improvements tending to decrease with increasing 
number of job families, while absolute tardiness values increase simultaneously. The results also suggests 
that there exists a relationship between improvements and process time distributions; the improvements 
seem to increase with increasing spread of process times. Figure 4 shows the average tardiness improve-
ments with blue bars and absolute values for average tardiness using green circles. 
 

 

Figure 4: Average tardiness (improvements) depending on model characteristics 

2057



Kohn and Rose 
 

 

6.5 Critical Constraints 

We also examine the influence of critical constraints on optimization potentials, that are time bounds and 
minimal batch size thresholds in this experiment. A job/lot is oxidizing while waiting under atmospheric 
conditions for the next process in the production cycle. A time bound defines a timeframe for a job to 
process the next step in order to prevent from violations of process quality specifications caused by oxida-
tion, which are more likely to occur when the limited waiting time is exceeded. In case of violated time 
bounds, experts have to individually evaluate the situation for the affected job, disturbing the continuous 
material flow. The minimal batch size constraint defines a lower threshold in wafers for a batch of jobs, 
depending on the process job family and the machine. 
 Both constraints may lead to critical situations, in simulation as well as in reality, in which jobs are 
unscheduled; either there exists no valid solution or the method does not find a valid schedule including 
critical jobs. This means with regard to optimizing heuristics that changes made to valid solutions during 
search do not always lead to feasible solutions. The focused experiment varies maximal limits for time 
bounds and minimal limits for batch sizes, accompanied with varying distributions for the lot size. 

Table 7: Varying Parameter for the Experiment "Critical Constraints" 

Parameter Value Range 
Time Bounds { U~(240,360), U~(360,480), None } 

Min Batch Size { None, U~(0,0.25), U~(0.25,0.5) } 
Lot Size { U~(1,25), U~(15,25), Const~(25) } 

 
 Figure 5 shows percentages of unscheduled jobs with blue bars as well as the average queuing time 
using green circles. We see that tight time bounds, here represented by uniformly distributed bounds be-
tween 360 and 720 minutes, lead to ten percent non scheduled jobs in the experiment. But the experiment 
also shows positive effects of tighter time bounds on the average queuing time. For the minimum batch 
size constraint, uniformly distributed between 0.25 and 0.5 times the maximum batch size, we observed 
up to five percent unscheduled jobs because of missing suitable batch partners in the experiment.  

 

 
Figure 5: Non-scheduled jobs and average queuing time under consideration of critical constraints 

 In cooperation with our industry partners, we made the experience that objectives and constraints are 
sometimes mixed in minds and systems, so the minimal batch size threshold is commonly considered as 
constraint. On the one hand the furnace process requires a minimum number of wafers inside the process 
chamber (boat) in order to reach specified process parameters. On the other hand there always exists the 
possibility to fill up a batch with non-productive wafers until a batch condition is satisfied. The urgent in-
tention to define minimal batch size thresholds, especially in dispatching systems, is to prevent from run-
ning too small batches that would result in a loss of throughput, and in consequence to reduced cycle 
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times. In the scope of optimization it is highly beneficial to define minimal batch size thresholds as low as 
possible, increasing the degree of freedom for scheduling decisions. Concerns regarding performance in-
dicators in production logistics are then only a question of properly defined objective functions.  

6.6 VNS 

On the basis of this particular experiment we compare VND and VNS for three model sizes. VND stops 
the search reaching a local optimum, within this scope defined by a solution where no single neighbour-
hood movement leads to an improvement. VNS performs random changes (shaking) tolerating deteriora-
tions in order to restart VND as local search, continuing shaking and local search alternately until the 
temporal deadline is met. We are particularly interested in the effect of the random changes in the VNS 
scheme, enabling local optimum escapes, and hereby we try to evaluate the gap in optimization potentials 
existing between VNS and VND. We tested three problem sizes with 5, 10 and 15 machines and each 20 
times the number of jobs (100, 200, 300) to be scheduled without time window shifting decomposition 
under varying temporal deadlines up to 30 minutes.   

Table 8: Varying Parameter for the Experiment "VNS" 

Parameter Value Range 
Method { VNS, VND } 

Deadline { 1, 2, 3, …, 30 } [min] 
Machines/Jobs { [5,100], [10,200], [15,300] } 

 
 Figure 6 shows with box plots representing the distribution of tardiness VND/VNS improvements 
(compared to BATC) gained for 20 independent model instances under varying computational deadlines, 
evaluated for 3 models differing in their size. We state that the deviations in improvements decrease with 
increasing model size. For the smallest model with five machines we observe varying improvements up to 
25%. The results also show that VNS outperforms VND whenever the initial local search phase was not 
aborted by reaching the computational deadline. For the smallest model (five machines and 100 jobs) 
VND reaches its local optimum within 60 seconds and VNS nearly performs the same for all covered 
deadlines. The midsize model shows that VNS and VND perform equally to the deadline of approximate-
ly five minutes, the time both algorithms need to finish the initial local search phase leading to the first 
local optimum; thereafter VNS passes to the shaking phase and leads to slightly better results on average. 
For the large scale model framing 15 machines, we observe no difference between VND and VNS, both 
variants do not overcome the local search phase within 30 minutes.  

Figure 6: Average tardiness improvements compared with VND and VNS 
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7 CONCLUSIONS 

Applying decomposition techniques is linked with uncertainties with regard to the optimization potential. 
Time window shifting, especially the interval width, has partly strong effects on the results. From the ex-
periments it can be seen that decreasing intervals tends to lead to better results on average, but not neces-
sarily for a single model instance. Small changes in decomposition intervals may lead to large changes in 
results.  
 Emphasizing the discrete character of focused scheduling problems we point to the fact that two inde-
pendent model instances, both following identical model descriptions used for their generation, may show 
very differing results. In order to derive trustable statements from simulation in the area of scheduling it is 
necessary to consider a sufficient number of model instances and replications 
 Incorporating future job arrivals into the decision making process (scheduling) empowers optimiza-
tion remarkably, at least for the focused parallel batch machine problem. Especially for the application in 
the furnace area with long process times of several hours, the decision when to start a batch is important 
in two respects. First, it is often beneficial to delay a batch in order to wait for one or more lots arriving 
soon. Second, it is better to start a smaller batch immediately, having the knowledge that no more lots ar-
rive soon. For optimization it is beneficial to keep the scope for decision-making as large as possible, 
meaning that any kind of restriction, non-uniform process dedications or incompatible job families, limits 
the optimization potential. 
 With regard to computational complexity, based on our experimental results, we state that real-world 
applications, that may frame 60 parallel batch machines, constitute solvable scheduling problems for 
which VND leads to significant improvements within few seconds on average. VNS significantly per-
forms better than VND, showing the effectiveness of implemented functionalities that enable the search to 
successfully escape from local optima.      
 Time bounds as a critical constraint cause invalid solutions along the heuristic optimization process. 
In order to reduce the number of unscheduled jobs we propose to apply time bound oriented dispatching 
rule prioritizing jobs near to the given time limit, instead of FIFO as we did in the experiment. Minimal 
batch size thresholds, considered as constraints rather than objectives, should be defined as low as possi-
ble, also increasing the degree of freedom for scheduling decisions.    
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