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ABSTRACT

Bayesian statistics comprises a powerful set of methods for analyzing simulated systems. Combined with
dynamic programming and other methods for sequential decision making under uncertainty, Bayesian
methods have been used to design algorithms for finding the best of several simulated systems. When
the dynamic program can be solved exactly, these algorithms have optimal average-case performance. In
other situations, this dynamic programming analysis supports the development of approximate methods
with sub-optimal but nevertheless good average-case performance. These methods with good average-case
performance are particularly useful when the cost of simulation prevents the use of procedures with worst-
case statistical performance guarantees. We provide an overview of Bayesian methods used for selecting
the best, providing an in-depth treatment of the simpler case of ranking and selection with independent
priors appropriate for smaller-scale problems, and then discussing how these same ideas can be applied to
correlated priors appropriate for large-scale problems.

1 INTRODUCTION

Optimization via simulation (OvS) is the act of solving an optimization problem whose objective function
cannot be calculated analytically, and must instead be estimated with stochastic simulation. Such problems
are often quite difficult to solve in a computationally tractable manner. This tutorial discusses how fast
algorithms for OvS can be designed in a principled way using Bayesian statistics and dynamic programming.

In particular, this tutorial shows a conceptual approach to creating algorithms with optimal average-case
performance. Here, average-case optimal means that when the performance of such an algorithm is averaged
over a large number of typical problem instances, its average performance is the best possible among all
algorithms. While the worst-case performance of such an algorithm might not be particularly good, and
so there may be problem instances on which the algorithm is very slow or has poor accuracy, an algorithm
that works very well most of the time can be of great value in many situations.

In practice, the conceptual method this tutorial describes for creating an average-case optimal algorithm
is often not computationally feasible, because it requires solving a large dynamic program. However,
approximations to the solution to the dynamic program often provide practical algorithms that work very
well in the average-case, even though they are sub-optimal.

Several other tutorials and surveys cover the use of Bayesian methods within simulation more broadly
(Chick 2000; Chick 2005; Chick 2006; Merrick 2009), and these have some treatment of OvS, although
dynamic programming is not discussed. The survey article Frazier (2010) covers several of the topics
here, including the use of dynamic programming, but moves at a faster pace. The tutorial chapter Powell
and Frazier (2008) and the recent textbook Powell and Ryzhov (2012), both written at the advanced
undergraduate level, cover the same problems within OvS, and include treatment of dynamic programming.

A number of textbooks cover dynamic programming or Bayesian statistics separately. Dynamic
programming textbooks include Powell (2007), Dynkin and Yushkevich (1979), Bertsekas (2005), Bertsekas
(2007) and Ross (1983). Bayesian statistics textbooks include Gelman et al. (2004) at the advanced
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undergraduate or introductory graduate level, and Berger (1985) at the advanced graduate level. The
combination of Bayesian statistics and dynamic programming that we consider was pioneered within
Bayesian sequential experimental design (see the monographs Berry and Fristedt (1985), Wetherill and
Brown (1991)) and the one-stage analysis that we perform in Section 5 is a value of information calculation,
pioneered by Howard (1966).

In this tutorial, we first focus on the problem of OvS with a small number of alternatives and no special
structure. This problem is also called ranking and selection (R&S). After providing overviews of OvS and
R&S (Section 2) and Bayesian statistics (Section 3), we consider Bayesian inference for R&S in Section 4,
and then decision-making for the one-stage version of R&S in Section 5 and the fully sequential version
in Section 6. In Section 7, we consider large-scale OvS problems.

The specific algorithms that we discuss are the (R1,. . . ,R1) algorithm (Gupta and Miescke 1996),
analyzed later under the name knowledge-gradient (KG) policy for independent beliefs (Frazier, Powell,
and Dayanik 2008); a known-variance version of the LL(B) policy (Chick and Inoue 2001); and the KG
policy for correlated beliefs (Frazier, Powell, and Dayanik 2009).

2 OPTIMIZATION VIA SIMULATION AND RANKING AND SELECTION

In this tutorial, we apply Bayesian methods to two problems: ranking and selection (R&S); and optimization
via simulation (OvS). In both problems, we have a collection of alternative systems, and our goal is to
determine which of them is the best. Typical applications include choosing the inventory policy with
minimum expected cost or choosing the staffing levels in a call center that minimize the probability that a
customer waits longer than a threshold. We indicate an alternative system with the notation x, and the set
of all alternatives with X .

There is a large body of research on R&S, beginning with Bechhofer (1954). Much of the work is
discussed in the monograph Bechhofer, Santner, and Goldsman (1995), with other more recent surveys and
tutorials including Swisher, Jacobson, and Yücesan (2003), Kim and Nelson (2006) and Kim and Nelson
(2007). Tutorials and surveys that discuss OvS more broadly include Fu (1994), Andradóttir (1998), Fu
(2002), Swisher, Hyden, Jacobson, Schruben, Hosp, and Fredericksburg (2000).

In R&S, the alternative systems are unordered, and it is unclear whether learning about the quality one
alternative teaches us anything about other alternatives. For example, we might be comparing different
configurations of an assembly line to find which one maximizes throughput, or comparing different
queueing disciplines in a call center. In this situation, we refer to the alternatives with arbitrary integers,
so X = {1,2, . . . ,k}. Typically, the number of alternatives k is small (k ≤ 1000).

In OvS, the alternatives have well-defined relationships with each other, or are ordered in a meaningful
way, and observing one system teaches us about other systems. For example, we might be optimizing over
the numbers of doctors and nurses within a hospital ward, where the average patient waiting times at similar
staffing levels are likely to be similar. We will assume that the set of alternatives X is a finite subset of
Zd , which is a common situation in OvS. Typical OvS problems have many more alternatives (thousands,
tens of thousands, or even millions) than R&S problems, and methods for solving OvS problems explicitly
use the relationships between the alternatives.

While the author believes that the above distinctions between R&S and OvS is commonly understood
within the simulation community, this distinction is not observed uniformly within the literature. For
example, Frazier, Powell, and Dayanik (2009) uses the term R&S to refer to problems with millions of
alternatives with well-defined relationships to each other.

From a Bayesian viewpoint, the critical difference between R&S and OvS is in the prior distribution.
In a R&S problem, we use an independent prior distribution (Section 4), in which information about one
alternative does not affect our belief about other alternatives. In an OvS problem, we use a correlated
prior distribution (Section 7), which incorporates the relationship between the alternatives, and allows
information about one alternative to alter our beliefs about closely related alternatives. Algorithms that use
such correlated prior information can learn more with fewer samples.
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In this tutorial, we consider a single output measure, and assume that the distribution of a sample of this
output measure is normal. We refer to the mean and variance of the sampling distribution as the sampling
mean and sampling variance and write them as θ(x) and λ (x) respectively to indicate that they depend
on the input x. We use the prefix “sampling” in these two terms to distinguish them from the means and
variances of the Bayesian prior and posterior distributions, which will be discussed below. Thus, we can
write the distribution of a sample y(x) obtained from alternative x as

y(x)∼N (θ(x),λ (x)) .

Our goal in both R&S and OvS is to find the alternative x with the largest θ(x), i.e., to find

x∗ ∈ argmax
x

θ(x).

Although estimation of x∗ from observed simulation replications can be non-trivial in the OvS setting, the
main question with which methods for R&S and OvS grapple is how to allocate sampling effort across the
alternatives to best support this final determination. It is on this question that we will ultimately focus in
this tutorial, but first we must describe the basics of Bayesian inference.

3 BAYESIAN INFERENCE: OVERVIEW

The central idea in Bayesian statistics is that any quantity whose value is unknown (for us, the sampling
mean θ(x)) can be treated by placing a probability distribution over the range of values that this unknown
quantity can take. This probability distribution should correspond, as well as possible, to the simulation
analyst’s initial belief about the likelihoods of various values. This probability distribution is called the
Bayesian prior probability distribution.

For example, if we are interested in the long-run average patient waiting time as could be simulated
for a hospital ward, these probabilities would arise in the same spirit as statements like “I think it is likely
that the average waiting time is less than 2 hours,” and “I think it is unlikely that the average waiting time
is less than 15 minutes.” The prior probability distribution quantifies such statements.

After observing data, which in our case will be the output of our simulation, we calculate the conditional
distribution of the unknown quantity of interest given the data, using Bayes rule. This conditional distribution
is called the posterior probability distribution, or simply the posterior, and it quantifies our new belief
about the unknown quantity given the newly observed data. If we then observe more data, we condition
on this additional data, again using Bayes rule, to obtain an updated posterior distribution. As we observe
more and more data, the posterior distribution concentrates at the true value of θ(x).

When faced with a decision (in our problem, we must decide how to allocate simulation effort, and on
our final estimate of x∗), the Bayesian approach is to construct a utility function giving the utility of each
possible decision under each possible state of the world, to compute the expected utility of each possible
decision under the posterior distribution, and to choose the decision with the largest expected utility.

Many authors have argued for or against the Bayesian approach. The main objection to Bayesian
methodology is that it is subjective, in the sense that the answers and decisions one gets from a Bayesian
method depend on the prior distribution used. Responding to this objection are results on consistency
of Bayesian estimates (see, e.g., Ghosh and Ramamoorthi (2003)) showing that as we obtain more data,
Bayesian estimates depend less and less on the prior, and (under weak technical conditions) converge to
the correct values. Also in response are analyses showing that, if a decision-maker’s decisions satisfy
certain apparently reasonable axioms, then those decisions must be consistent with a Bayesian analysis
(see Chapter 4.1.IV of Berger (1985)). While a detailed review of the arguments for and against Bayesian
methods is outside the scope of this article, we refer the interested reader to Chick (2005) and Berger
(1985).

An important practical question is how one should choose the prior distribution. One approach is to find
a functional form for the prior distribution that makes analysis convenient (in the case discussed below, this
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functional form is the normal distribution), and then to choose the free parameters in this functional form
based on one’s best judgment and discussions with those familiar with the simulation and the real system
it simulates. A second approach is to specify a non-informative prior distribution, which corresponds to
specifying as little information in the prior as possible. Both approaches are discussed below in the context
of the particular statistical model that we consider in detail.

4 BAYESIAN INFERENCE: KNOWN VARIANCE AND INDEPENDENT PRIOR

We now proceed to our detailed discussion of inferring the values of θ(x) using Bayesian statistics. We use
a prior distribution appropriate for R&S problems. Because of its simplicity, we focus on the case where
the sampling variances λ (x) are known, and discuss the case with unknown sampling variance briefly at
the end of the section. The material in this section is discussed in most textbooks on Bayesian statistics,
e.g., Gelman et al. (2004) and DeGroot (1970).

Because the alternatives are modeled as unrelated in R&S (see Section 2), our prior distribution on
each θ(x) is independent across x. Thus, if we later learn something about θ(x), this will not affect our
posterior distribution on θ(x′), where x′ 6= x. For computational tractability, we further assume that the
functional form of our prior distribution on each θ(x) is normal. This prior distribution can be written,

θ(x)∼N (µ0(x),σ2
0 (x)),x = 1,2, . . . ,k,

with independence across x, for some µ0(x) ∈ R and σ2
0 (x) ∈ [0,∞]. The special case of σ2

0 (x) = 0
corresponds to knowing perfectly that θ(x) = µ0(x), and σ2

0 (x) = ∞ corresponds to a non-informative prior,
which can be understood as corresponding to our knowing nothing about θ(x).

Suppose we take nx samples from alternative x, and let y(x) be the average of these samples, so
y(x)∼N (θ(x),λ (x)/nx). Using Bayes rule, we can calculate the density of the conditional distribution
of θ(x) given y(x),

P(θ(x) = u|y(x)) = P(y(x)|θ(x) = u)P(θ(x) = u)∫
R P(y(x)|θ(x) = v)P(θ(x) = v)dv

.

Through brute-force computation (see, e.g, Gelman et al. (2004)), the right-hand side can be shown to
be equal to the density of another normal random variable, which has a different mean and variance.
Specifically, the conditional distribution of θ(x) given the data y(x) is

θ(x)| y(x),nx ∼N (µ1(x),σ2
1 (x)),

µ1(x) =
σ
−2
0 (x)µ0(x)+nxλ−1(x)y(x)

σ
−2
0 (x)+nxλ−1(x)

σ
2
1 (x) =

[
σ
−2
0 (x)+nxλ

−1(x)
]−1

.

(1)

This conditional distribution on θ(x) is called the posterior distribution on θ(x).
The mean of the posterior distribution (called the posterior mean) on θ(x) is a weighted average

between the prior mean µ0(x) and the data y(x). The weight on the prior mean is proportional to 1/σ2
0 (x),

and the weight on the data is proportional to nx/λ (x). If our prior has a big variance, then this says that
we have a relatively weak prior belief and we put much more weight on the data. If the prior has a small
variance, then we have a strong prior belief and we put more weight on the prior. If nx is bigger, or if
the sampling variance λ (x) is smaller, then we put more weight on the observation y(x), and decrease the
posterior variance. As nx increases, the posterior mean converges to the sample average y(x). This is an
example of the broad statement made above that Bayesian methods put more weight on the data and less
weight on the prior as we obtain more data.

If our prior distribution was non-informative, so σ2
0 (x)=∞ and σ

−2
0 (x)= 0, then (1) provides µ1(x)= y(x)

and σ2
1 (x) = λ (x)/nx. With this choice for the prior, the prior mean does not affect the posterior distribution.
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The posterior distribution can also be computed recursively, by adding one sample at a time to the set
of random variables upon which we condition. This recursive computation is quite useful later in Section 6
when analyzing sequential algorithms.

Let x1,x2, . . . ,xN be a sequence of alternatives that were sampled, so ∑
N
n=1 1{xn=x} = nx for each x,

and let y1(x1),y2(x2), . . . ,y(xN) be the sequence of corresponding observed values. Then, one can use
induction and a computation similar to the one used to obtain (1) to show that the posterior distribution
given x1, . . . ,xn and y1(x1), . . . ,yn(xn) is

θ(x)|x1,x2, . . . ,xn,y1(x1),y2(x2), . . . ,yn(xn)∼N (µn(x),σ2
n (x)),

µn(x) =


σ
−2
n−1(x)µn−1(x)+λ−1(x)yn(xn)

σ
−2
0 (x)+λ−1(x)

if xn = x,

µn−1(x) if xn 6= x,

σ
2
n (x) =

{[
σ
−2
n−1(x)+λ−1(x)

]−1
if xn = x,

σ2
n−1(x) if xn 6= x.

(2)

This preceding analysis assumed that the sampling variance λ (x) was known, while in practice this is
never the case. One comman approach is to maintain an adaptively updated point estimate λ̂n(x) based on
the available data (x1, . . . ,xn,y1(x1), . . . ,yn(xn)). The posterior can then be computed from the prior using
(1) under the assumption that the current point estimate is correct. Although we describe this approximate
approach here, it does not adhere to the Bayesian philosophy, and gives only approximations to a posterior
distribution derived in a more principled way.

In some cases this approximate approach works well and is desirable for its expediency. In other cases,
however, this approach produces misleading results because it ignores the uncertainty in our estimate of
the variance. It is possible to include this uncertainty into our analysis by placing a prior on both the
sampling mean and the sampling variance. The prior on the sampling variance is often an inverse-gamma
distribution for tractability. Bayesian inference in such settings is described in DeGroot (1970), and many
other Bayesian references. For the use of this approach in R&S, see Chick and Inoue (2001), Chick,
Branke, and Schmidt (2010) and Frazier and Powell (2008).

5 ONE-STAGE METHODS

We now apply Bayesian inference to the R&S problem. We first consider a so-called one-stage or batch
situation in which we make a decision at a single point in time about which simulation replications to
obtain. These simulation replications will then be used to update our prior distribution to obtain a posterior,
which we will then use to estimate the best alternative. We determine the optimal set of replications to
make at this single point in time.

We use the independent normal prior on the sampling means and known sampling variance from
Section 4, and independent samples, and assume a sampling budget of N samples. This setting is:

Time 0: Begin with the prior distribution on the sampling means θ(x), x = 1, . . . ,k,

θ(x)∼N (µ0(x),σ2
0 (x))

Time 1:

(a) Choose a number of samples nx to take from each alternative x, such that ∑x nx ≤ N. This is
called the allocation decision.

(b) For each alternative x, observe y(x), which is the average of nx independent replications of
N (θ(x),λ (x)).
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(c) Calculate the posterior distribution on each θ(x), x = 1, . . . ,k, as

θ(x) | y(x),nx ∼ N (µ1(x),σ2
1 (x)), (3)

where µ1(x) and σ2
1 (x) are given by (2).

Time 2: Choose an alternative x̂∗ as our estimate of which alternative is the best, argmaxx θ(x). This is
called the implementation decision. Earn a reward R = θ(x̂∗) equal to the true value of the chosen
alternative.

The prior distribution used at time 0 might be obtained as a true prior distribution based on the analyst’s
belief. However, the more typical case is that the practitioner decides on the prior distribution by taking an
initial stage of measurements before time 0, say n0 from each alternative (a common choice for n0 is 10),
sets the prior mean µ0(x) to the sample average of the samples from alternative x, and sets σ2

0 (x) = λ (x)/n0.
This corresponds to beginning with a non-informative belief before time 0, and then setting the prior mean
and variance µ0,σ

2
0 to the mean and variance that would result from combining this non-informative belief

with the n0 samples from each alternative. This computation is as discussed in Section 4. When the prior is
computed in this way using an initial stage of samples, the resulting procedure would be called a two-stage
procedure.

Our goal in this section is to choose the allocation decision (made at time 1), and the implementation
decision (made at time 2), to maximize in expectation the reward that we obtain at time 2. Although the
reward is a function of only the implementation decision and θ , perhaps suggesting that the allocation
decision does not matter, the information upon which the implementation decision is based depends upon
the allocation decision.

5.1 Implementation Decision

In our analysis, we first track how the conditional distribution of θ(x) varies from time 0 to time 1, and show
how this determines the optimal implementation decision at time 2. At time 0, in our Bayesian model, each
θ(x) is drawn at random from the prior distribution. Once drawn, each θ(x) remains fixed throughout the
rest of the steps. At time 0, because we have no information about θ(x) other than that it was drawn from
the prior, our probability distribution over its values, given what we have observed (nothing), is simply
the prior. At time 1, we have some additional information about θ(x) through observation of y(x), and
our probability distribution over the values of θ(x) is now the conditional distribution given y(x) in (3),
also called the posterior distribution. It is important to emphasize that, while the conditional distribution
of θ(x) changes, θ(x) itself remains fixed. What changes is the information that we have about θ(x).

With this understanding of the dynamics of our conditional distribution on θ(x), we can now analyze
how the implementation decision at time 2 should be made. Suppose we choose x̂∗ = x for some alternative
x. Then, the expected value of the reward that we will earn, given what we know at the time we make the
decision, is

E[θ(x)|y(1),n1, . . . ,y(k),nk]. (4)

The choice for x̂∗ that maximizes the expected reward that we will receive in time 2 (given what we know
at the time we actually make this choice) is thus the alternative with the largest such conditional expected
value, x̂∗ ∈ argmaxx=1,2,...,k E[θ(x)|y(1),n1, . . . ,y(k),nk]. We can write this decision more simply using the
fact that E[θ(x)|y(1),n1, . . . ,y(k),nk] is the posterior mean of θ(x), for which we have the notation µ1(x).
Thus, our optimal implementation decision is

x̂∗ ∈ argmax
x=1,2,...,k

µ1(x). (5)

This recovers the well-known result (see, e.g., Berger (1985)) from Bayesian decision-theory that the
optimal action to take is the one with the largest expected utility under the posterior distributions.
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5.2 Allocation Decisions

We would now like to find the choice for n1, . . . ,nk made in time 1 that will maximize the expected reward
that we receive, E[θ(x̂∗)|n1, . . . ,nk]. We have two options available to us for solving this problem.

The first way would be to build a Monte Carlo simulation that can evaluate the quality of a particular
choice of n1, . . . ,nk. In each replication, this simulation would choose θ(1), . . . ,θ(k) at random from the
prior distribution, then simulate each y(x) based on nx and the previously simulated value of θ(x), then
choose x̂∗ according to (5), and would then provide the reward θ(x̂∗). Running many replications would
then provide an estimate of the expected reward provided by that n1, . . . ,nk, where we average over both
the simulation noise in y(x) and the different problem instances corresponding to different θ drawn from
the prior. The best n1, . . . ,nk could then be selected using an existing method for R&S, either frequentist
or Bayesian (we would be using R&S to design a R&S algorithm!).

There is a second method for solving this problem that is more difficult to understand, but more efficient.
This second method can be understood as marginalizing over the random variables θ(x) analytically, to
estimate the expected reward E[θ(x̂∗)|n1, . . . ,nk] more precisely. This second method is also a stepping
stone to analysis of sequential algorithms, considered in Section 6. We now consider this method in detail.

The first step is to write the conditional expectation of our final reward given what we know when we
make the decision x̂∗ in time 2. This conditional expected value is the value (4) of the x̂∗ = x. Call this
value V1. Since x̂∗ is the x with the largest value of µ1(x), V1 can be written

V1 = max
x=1,...,k

µ1(x).

We think of V1 as the expected value of the best final decision rule, given what we know at time 1.
Now, at time 0, before the samples are observed, V1 is random because it depends on the µ1(x), which

are themselves random. This randomness includes simulation noise, but also the randomness introduced by
our lack of knowledge about the θ(x). We must determine the distribution of the µ1(x), and the dependence
of this distribution on n1, . . . ,nk. The distribution of µ1(x) at time 0 is called the pre-posterior distribution in
Bayesian statistics (DeGroot 1970; Raiffa and Schlaifer 1968), because it is the distribution of a parameter
of the posterior, conditioning only on what is known before we observe the data upon which the posterior
is based. Once we determine the distribution of µ1(x), and from it the distribution of V1, the optimal choice
of n1, . . . ,nk will be the one that maximizes the expected value of V1.

Pick any x. It turns out that the distribution of µ1(x) depends only on µ0(x),σ2(x),nx, and not on the
values for other x′ 6= x. To determine the distribution of µ1(x), we have that

θ(x)∼N (µ0(x),σ2
0 (x))

y(x)|θ(x)∼N (θ(x),λ (x)/nx),

so if we let ε(x) = y(x)−θ(x), then ε(x) is independent of θ(x) and is normal with mean 0 and variance
λ (x)/nx. Thus, y(x) = θ + ε(x) is the sum of two independent normal random variables, and is itself
normal with a mean equal to the sum of the means, µ0(x)+0, and a variance equal to the sum of the two
variances, σ2

0 (x)+λ (x)/nx. From (2), µ1(x) is a linear function of y(x), and so must itself be normally
distributed as a linear function of a normal random variable is also normal. We can compute the mean and
variance of µ1(x) by direct computation from (2). This provides the sought-after distribution of µ1(x),

µ1(x)∼N
(
µ0(x),σ2

0 (x)−σ
2
1 (x)

)
, (6)

where σ2
1 (x) is given by (2). Note that σ2

1 (x) does not depend on the sampled value y(x) and can be
computed without observing this sampled value.

The mean and variance of the distribution of µ1(x) can be derived in a much more general way.
First, the mean can be computed using the tower property of conditional expectation as E[µ1(x)] =
E[E[θ(x)|nx,y(x)]] = E[θ(x)] = µ0(x). Second, the variance can be computed using the conditional variance
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formula as Var[µ1(x)] = Var[E[θ(x)|nx,y(x)]] = Var[θ(x)]− E[Var[θ(x)|nx,y(x)]] = σ2
0 (x)− E[σ2

1 (x)] =
σ2

0 (x)−σ2
1 (x), where we have used that σ2

1 (x) = Var[θ(x)|nx,y(x)] is actually not random at time 0, as it
does not depend on y(x).

With the distribution of µ1(x) in hand, we can now write the expected reward that we will receive
from a given choice of n1, . . . ,nk as the expected value of maxx µ1(x) under this distribution, which can be
written explicitly as an integral,

E
[
max

x
µ1(x)|n1, . . . ,nk

]
=
∫
Rk

[
max

x=1,...,k
µ1(x)

][ k

∏
x=1

ϕ(µ1(x); µ0(x),σ2
0 (x)−σ

2
1 (x))

]
dµ1(1) · · ·dµ1(k)

where ϕ(z; µ,σ2) is the density at z of a normal random variable with mean µ and variance σ2.
The optimal choice for n1, . . . ,nk is then the one that gives the largest expected reward,

argmax
(n1,...,nk)∈Zk

+:∑x nk≤N
E
[
max

x
µ1(x)|n1, . . . ,nk

]
In general, this is a difficult optimization problem to solve, as evaluating the objective requires either

performing a high-dimensional integral or using simulation, the objective is non-concave (Frazier and Powell
2010), and we have integrality constraints. Chick and Inoue (2001) performs a more general analysis for a
version of this problem with unknown sampling variance, and computes an approximate analytic solution,
which is called the LL(B) policy.

In the special case that N = 1, so only 1 sample is being allocated, the integral defining h(n1, . . . ,nk)
can be evaluated analytically (Gupta and Miescke 1996). Let x be the single alternative to which a sample
is being allocated. Then, the integral becomes

E
[
max

x
µ1(x)|nx = 1,nx′ = 0 ∀x′ 6= x

]
=

[
max

x′
µ0(x′)

]
+ σ̃(x) f

(
−|∆(x)|

σ̃(x)

)
, (7)

where

σ̃(x) =
√

σ2
0 (x)−σ2

1 (x) =
√

σ2
0 (x)−

[
σ
−2
0 (x)+λ−1(x)

]−1

is the standard deviation of the distribution of µ1(x), ∆(x) = µ0(x)−maxx′ 6=x µ0(x′) is the difference in
expected value between alternative x and the best of the remaining alternatives, and f (z) = zΦ(z)+ϕ(z).
Φ is the standard normal cdf and ϕ is the standard normal pdf. Although it is rare that we encounter a
R&S problem in which only one sample is to be allocated overall, this expression is very useful in a fully
sequential method discussed below.

6 SEQUENTIAL METHODS

In the previous section, we considered how a collection of simulation replications should be allocated in a
R&S problem, if they are to be allocated all at once. In many applications, however, we can allocate our
simulation budget a little bit at a time, in a fully sequential algorithm. In such algorithms, we allocate one
sample, observe the response, then based on this response allocate another sample. This process is:

Time 0: Let n = 0. We begin with our prior distribution on all of the sampling means θ(x), x = 1, . . . ,k,

θ(x)∼N (µ0(x),σ2
0 (x))

Increment n.
Time n: While n≤ N,

(a) Based on the available data, summarized by the parameters µn−1,σn−1 of the most recent
posterior distribution, choose the alternative xn to sample next.
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(b) Observe a sample from the sampling distribution of alternative xn,

yn|xn,θ(xn)∼N (θ(xn),λ (xn))

(c) Calculate the posterior distribution based on all of the available data

θ(x) | x1, . . . ,xn,y1, . . . ,yn ∼ N (µn(x),σ2
n (x)), (8)

The parameters µn(x),σ2
n (x) can be computed recursively from µn−1,σ

2
n−1,yn using (2).

(d) Increment n.
Time N+1: Choose an alternative x̂∗ as our estimate of which alternative is the best, x∗ ∈ argmaxx θ(x).

The optimal choice is
x̂∗ ∈ argmax

x
µN(x)

We earn a reward R = θ(x̂∗).

Of course, when we have the opportunity to behave fully sequentially, we can decide up front how
to allocate all of our samples, behaving in a one-step manner and ignoring the opportunity to behave
sequentially. However, we may be giving up quite a bit of performance when choosing not to act in a
fully sequential way. By allowing our allocation decisions to adapt to the most recent data, we have the
opportunity to make allocations that more efficiently gather the information we need. Thus, while analysis
of the optimal fully sequential algorithm is more difficult than for one-step algorithms, the performance
boost that we receive makes this analysis worthwhile.

6.1 One-Step Approximate Methods

One approach to acting in sequential problems is to pretend, each time we take a sample xn in Step a, that
N = n+1 and we only have one sample remaining. Under this supposition, we can compute the optimal
measurement to make using the one-step analysis from Section 5. Taking the same analysis that provided
(7), but replacing µ0(x) and µ1(x) with µn(x) and µn+1(x), we find that the one-step value of choosing
alternative x is [

max
x′

µn(x′)
]
+ σ̃n(x) f

(
−|∆n(x)|

σ̃n(x)

)
,

where

σ̃n(x) =
√

σ2
n (x)−

[
σ
−2
n (x)+λ (x)

]−1

∆n(x) = µn(x)−max
x′ 6=x

µn(x′)

and f (z) = zΦ(z)+ϕ(z) is defined as before.
Since [maxx′ µn(x′)] does not depend on the choice x of which alternative to sample, the resulting

decision can be written as

xn ∈ argmax
x=1,...,k

σ̃n(x) f
(
−|∆n(x)|

σ̃n(x)

)
.

This policy was introduced as the (R1,. . . ,R1) policy by Gupta and Miescke (1996), and then analyzed
within a dynamic programming framework under the name knowledge-gradient policy by Frazier, Powell,
and Dayanik (2008).

Although the policy is not optimal in general, it turns out to be optimal in some special cases (Frazier,
Powell, and Dayanik 2008), including the case when k = 2, where it corresponds to sampling the alternative
with the largest posterior variance. It also works extremely well in the average-case, when compared
with a number of other allocation algorithms (Frazier, Powell, and Dayanik 2008). This policy has been
generalized to allow for a prior distribution on unknown sampling variance in Chick, Branke, and Schmidt
(2010). The resulting policy is called the LL1 policy.
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6.2 Optimal Methods

To find the optimal allocation policy in fully sequential settings, we must use dynamic programming. In
this analysis, we calculate a sequence of functions, called value functions, that depend on the current point
in time, and on the parameters of the current posterior distribution. The value function gives the expected
value of pursuing the optimal policy, beginning from that point in time and that posterior distribution.

We actually did a simplified version of this in Section 5, where V1 gave the conditional expectation
of pursuing the optimal policy (which in this case was simply choosing x̂∗ optimally) forward from
time 1, starting from the current posterior distribution. In that analysis, V1 was implicitly a function of
µ1(1),σ1(1), . . . ,µ1(k),σ1(k).

We begin as we did in Section 5, where we note that the conditional expected reward of choosing
implementation decision x is E[θ(x)|x1,y1, . . . ,xN ,yN ] = µN(x), and so the optimal implementation decision
is x̂∗ ∈ argmaxx=1,...,k µN(x), and the conditional expectation of the reward that we will receive from this
implementation decision is maxx=1,...,k µN(x). We define a function equal to this conditional expected
reward,

VN(~µN ,~βN) = max
x=1,...,k

µN(x),

where ~µn = (µn(1), . . . ,µn(k)) is the vector of posterior means and ~βn = (σ−2
n (1), . . . ,σ−2

n (k)) is the vector
of posterior precisions (the precision is the inverse of the variance). The function VN is called the value
function at time N.

We will use this value function to decide which alternative to sample at time N, i.e., how to best choose
xN , but before doing so we adapt the pre-posterior analysis used to derive (6) to the setting where we take
one measurement at time. By the same analysis used to derive (6) we have, for any n = 1, . . . ,N,

σ
2
n (x) = σ

2
n−1(x), if xn 6= x,

µn(x) = µn−1(x), if xn 6= x,

σ
2
n (x) =

[
σ
−2
n−1(x)+λ

−1(x)
]−1

, if xn = x,

µn(x)∼N (µn−1(x),σ2
n−1(x)−σ

2
n (x)) if xn = x.

Letting ~ex be the vector of all 0s, with a single 1 for entry x, and letting Zn be an independent standard
normal random variable, then we can write this previous set of equations more compactly as,

~βn = ~βn−1 + exnλ
−1(xn),

~µn =~µn−1 + exn σ̃(~βn−1,xn)Zn,

σ̃(~βn−1,xn) =
√

σ2
n−1(xn)−σ2

n (xn) =

√
σ2

n−1(x)−
[
σ
−2
n−1(x)+λ−1(x)

]−1
.

(9)

This set of equations tells us how the posterior distribution will change as a consequence of the decision
xn, for general n. In the dynamic program to follow (9) plays the role of the state transition equations.

We now return to the question of how to best choose xN . From the pair of equations (9), we have the
distribution of ~µN ,~βN in terms of information available to us when we choose xN (in terms of ~µN−1,~βN−1,

and xN). We also have the conditional expectation of our overall reward in terms of ~µN ,~βN . Thus, to
compute the conditional expectation of our overall reward in terms of information available to us when we
choose xN , we take the expectation as in

VN−1(~µN−1,~βN−1,xN) =
∫
R

VN

(
~µN−1 + exN σ̃(~βN−1,xN)z,~βN−1 + exN λ

−1(xN)
)

ϕ(z)dz,

where we have defined a new function VN−1(~µN−1,~βN−1,xN) to be equal to this expectation (expressed as
an integral). This new function is called the post-decision-state value function (Powell 2007), because it
gives us the value after we have made the decision.
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Now, since VN−1(~µN−1,~βN−1,x) gives us the expected value that results from choosing xN = x, the
optimal choice for xN is simply

xN ∈ argmax
x=1,...,k

VN−1(~µN−1,~βN−1,x).

and the value that is obtained from this choice is

VN−1(~µN−1,~βN−1) = max
x=1,...,k

VN−1(~µN−1,~βN−1,x),

where we have defined a new function VN−1, which is the value function at time N−1, and which gives
us the conditional expected value of our final reward, given our posterior distribution ~µN−1,~βN−1.

We can repeat this process recursively, moving backward from n = N to n = 1, as in

Vn(~µn,~βn,xn+1) =
∫
R

Vn+1( ~µn + exn+1 σ̃(~βn,xn+1)z,~βn + exn+1λ
−1(x))ϕ(z)dz

xn+1 ∈ argmax
x=1,...,k

Vn(~µn,~βn,x),

Vn(~µn,~βn) = max
x=1,...,k

Vn(~µn,~βn,x),

(10)

This provides the optimal allocation decision at each point in time n, as a function of the posterior distribution.
The equations (10), which are Bellman’s optimality equations for our problem, specify the value

functions at time n in terms of the value functions at time n+ 1, and so in principle offer an explicit
algorithm for computing the value functions and with them the optimal allocation decisions. However,
in problems with large values of k, this is computationally challenging because of the so-called curse of
dimensionality: the value functions must be computed for every possible pair of values for the vectors
~µn,~βn, as well as at every time n, and the computational cost of doing so scales exponentially in the
dimension of these vectors.

Dynamic programming has been used computationally to completely solve versions of the R&S problem
with smaller values of k: Chick and Frazier (2012) and Chick and Gans (2009) solve slightly modified
versions of the problem we have presented (they use a cost per sample and/or discounting in time of the
final reward, rather than a fixed sampling budget) with one unknown alternative, and another alternative of
fixed value. In some cases the dynamic program can be solved analytically, as done by Frazier, Powell, and
Dayanik (2008) for certain special cases. For example, this dynamic programming analysis can be used to
show that the average-case optimal policy for problems with k = 2 alternatives is to measure the alternative
with the larger posterior variance. In other cases, the dynamic program can be analyzed theoretically
and decomposed into a number of smaller dynamic programs that can be solved computationally. This
is the approach of Xie and Frazier (2011), which computes average-case-optimal policies for the related
problem of multiple comparisons with a known standard. Perhaps the most immediate practical benefit of
this type of dynamic programming analysis is in the development of heuristics with better performance
than the one-step heuristics discussed in the previous section. Chick and Frazier (2012) use this approach,
developing methods with the currently best known average-case performance.

7 LARGE-SCALE PROBLEMS USING CORRELATED PRIORS

In this final section, we consider OvS problems in which alternatives correspond to points on an integer
lattice, e.g., an alternative x = (x(1),x(2)) is the number of doctors x(1) and nurses x(2) that staff a hospital
ward. In such situations, it is common that θ(x) and θ(z) will take similar values when x and z are close
to each other. Incorporating this information into our algorithm greatly improves performance.

Space limitations require us to treat this topic only briefly. We refer the interested reader to Frazier,
Powell, and Dayanik (2009) upon which this analysis is based, to more recent work (Frazier, Xie, and
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Chick 2011) that address computational challenges, and to related work on Bayesian methods for global
optimization of expensive deterministic computer codes (Brochu, Cora, and de Freitas 2009).

7.1 Bayesian Inference

We can incorporate the information that alternatives are related to each other into our Bayesian model
through a correlated multivariate normal prior on the vector θ = (θ(x) : x ∈X ). This correlated prior is
really a Gaussian process prior (Rasmussen and Williams 2006) over a discrete set, where Gaussian process
priors, and the related non-Bayesian technique of kriging, is an approach commonly employed for inferring
the value of the output of (stochastic) simulation and deterministic computer codes, in applications outside
of OvS. We provide a brief overview of how this is accomplished, but space prevents us from discussing
many important practical details in how the prior should be chosen. We point the interested reader to the
textbook Rasmussen and Williams (2006), and to work on kriging (Cressie 1993) and stochastic kriging
(Ankenman et al. 2008; Ankenman et al. 2010).

To create an appropriate correlated multivariate normal prior on ~θ , we first choose a covariance function
Σ0(·, ·) that describes how closely related two alternatives are, as a function of their locations in the lattice.
One common (though not always best) choice is

Σ0(x,z) = α0 exp

(
−

d

∑
i=1

αi|x(i)− z(i)|p
)

where α0,α1, . . . ,αd > 0 and p ∈ [1,2] are free parameters. This covariance function decreases as x and z
move away from each other, with the speed of the drop controlled by the choice of the free parameters.
We also choose a mean function, µ0(·), for which a common choice is

µ0(x) = β0 +
L

∑
`=1

β` f`(x),

where β0, . . . ,βL are again free parameters and f1(·), . . . , fL(·) are basis functions.
Then, we define a vector ~µ0 = (µ0(x) : x ∈X ) and a matrix Σ0 = (Σ0(x,z) : x,z ∈X ), and our prior

distribution is multivariate normal,
~θ ∼N (~µ0,Σ0).

The prior has a number of free parameters within it. The most common approach for setting these free
parameters is to sample y(x) at a few points x chosen uniformly at random, and to calculate maximum
likelihood estimates of the free parameters. These maximum likelihood estimates can be updated adaptively,
as more data are collected. A more principled approach is to put higher-level prior distributions on these
parameters, resulting in a prior that is an mixture of multivariate normal distributions. The details of such
computations are discussed in Rasmussen and Williams (2006).

Given this prior distribution, if we then observe samples at a sequence of points of our choosing, the
posterior distribution will again be multivariate normal, but with a different mean vector and covariance
matrix. After n samples, call the mean vector ~µn and the covariance matrix Σn, so

~θ |x1,y1(x1), . . . ,xn,yn(xn)∼N (~µn,Σn).

This mean vector and covariance matrix can be computed recursively as,

Σn =
[
Σ
−1
n−1 +λ (xn)

−1~exn~e
T
xn

]−1
, µn = Σn

[
Σ
−1
n−1~µn−1 +λ (xn)

−1yn(xn)~exn

]
.

In problems where the number of alternatives in X is much larger than the number of alternatives
that can be measured, it is more efficient to compute entries of the posterior distribution on the fly, rather
than storing the full matrix Σn in memory. This is described in standard references on Gaussian process
regression, such as Rasmussen and Williams (2006).
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7.2 Allocation Decision

While these methods for Bayesian inference with correlated priors are substantially more complicated and
computationally intensive than in the independent prior case appropriate for R&S, we can apply the same
type of analysis to decide where to sample next. Here, we describe a one-step approximate method called
the knowledge-gradient policy for correlated beliefs (Frazier, Powell, and Dayanik 2009).

This method can be used in a fully sequential setting, when we take one measurement at a time.
To derive the allocation decision of this method, we imagine that N = n, and so after taking the next
measurement we will be forced to make an implementation decision. The implementation decision that
we will make, in this hypothetical situation, is argmaxx∈X µn(x) and its conditional expected value is
maxx∈X µn(x).

One can show (Frazier, Powell, and Dayanik 2009), using a pre-posterior analysis similar to the one
used earlier, that the conditional distribution of the vector ~µn, given ~µn−1,Σn−1 and xn, is the same as

~µn−1 + σ̃(Σn−1,xn)Zn

where Zn is a scalar standard normal, and σ̃(Σ,x) is the vector σ̃(Σ,x) = Σ~ex/
√

λ (x)+Σxx. Thus, the
conditional expected reward that we will receive if we choose to measure a particular alternative xn is

KGn(xn) = E
[

max
x∈X

µn(x)|~µn−1,Σn−1,xn

]
=
∫
R

[
max
x∈X

µn−1(x)+ σ̃x(Σ,xn)z
]

ϕ(z)dz.

A method for computing this integral analytically is given in Frazier, Powell, and Dayanik (2009). This
quantity KGn(xn) is called the KG factor, and the KG policy is then to measure the alternative xn for which
this KG factor is largest,

xn ∈ argmax
x∈X

KGn(x).

8 CONCLUSION

In this tutorial, we have provided an overview of Bayesian methods for optimization via simulation and
ranking and selection. The analysis described provides a theoretical characterization, in terms of the solution
of a dynamic program, of methods with optimal average-case performance. In some cases this dynamic
program can be solved to give a practical implementation of this average-case optimal algorithm, while in
other cases it provides a framework for creating heuristic procedures with good average-case performance.

While we have restricted our attention to standard formulations of OvS and R&S, the general roadmap
that we describe can be applied to a much greater number of problems within simulation. For example, the
same ideas apply to versions of optimization via simulation with common random numbers, steady-state
simulation, or stochastic constraints. They also apply to other types of analysis methodology, such as
screening, stochastic root-finding, and multiple comparisons with a standard.

We hope that this tutorial inspires the reader to go further into the literature on Bayesian methods and
their application within analysis methodology, and to apply these powerful and flexible methods to their
own problems.
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