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ABSTRACT

This paper presents a fully sequential procedure for selecting the best system among a finite number of
simulated systems with variances that are known but not necessarily equal. Our procedure compares systems
in groups of three and is based on exit properties of a bivariate Brownian motion from an ellipse. The
procedure is a modification of the one proposed in Kim and Dieker (2011) for the equal-variance case.

1. INTRODUCTION

Ranking and selection in simulation aims to select the best system among a finite number of simulated
systems. How one defines ‘best’ depends on the problem at hand; here we assume the best system is the one
with the largest expected performance measure. A number of statistical procedures have been developed
for ranking and selection problems. In this paper, we consider procedures that take the indifference-zone
(IZ) approach first presented by Bechhofer (1954). In the IZ approach, the decision maker is assumed
to be indifferent to systems whose true means are within a practically meaningful difference, δ > 0, from
the best performance; and tries to find the best or near-best system with a guarantee on the probability of
correct selection (PCS). The positive constant δ is called the IZ parameter.

Sequential procedures take one or more basic observations from each active system at each stage and
tend to have a small number of stages. For example, Rinott (1978) presents a sequential procedure with
two stages. Rinott’s procedure takes initial observations from each system in the first stage, calculates how
many additional observations are needed to make a decision with a PCS guarantee, then take additional
observations from each system in the second stage. On the other hand, fully sequential procedures take only
one basic observation from each active system at each stage and tend to have a large number of stages. For
example, see Kim and Nelson (2001, 2006ab). They propose fully sequential procedures with elimination
that take a single basic observation from each alternative still in play at each stage and eliminate systems
from further consideration when there is a clear evidence that they are inferior.

Many fully sequential procedures observe the partial sums of differences between a pair of systems
and elimination is based on pairwise comparison. The work by Kim and Dieker (2011) departs from this
idea by presenting a new fully sequential selection procedure that compares systems in a group of three
rather than in a pair. Their procedure takes the IZ approach and uses some properties of bivariate Brownian
motion processes exiting a circle. A related line of work is Frazier (2012), who presents a Bayesian-inspired
indifference-zone procedure that is quite efficient when the number of systems is huge. Although these
new procedures are promising, their developments are restricted to known and equal variances. In this
paper, we propose a fully sequential selection procedure based on bivariate Brownian motion processes
when variances are known but not necessarily equal. This is the first such contribution to the best of our
knowledge.
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The remainder of the paper is organized as follows. In Section 2, we define the problem and provide
notation and assumptions. Section 3 presents our new procedure. Section 4 summarizes experimental
results, followed by concluding remarks in Section 5.

2. BACKGROUND

This section introduces notation and assumptions and defines our problem.
We assume that there are k simulated systems (k ≥ 2). Let Xi j be an observation from replication (or

batch) j of system i for i = 1, . . . ,k and j = 1,2, . . .. The set of all systems is defined as S = {1, . . . ,k}. The
mean and variance of the outputs from system i are defined as µi = E[Xi j] and σ2

i = Var[Xi j], respectively.

Assumption 1. Let Xi j represent the jth observation from system i. Then

Xi j
IID
∼ N(µi,σ

2
i ), j = 1,2, . . . ,

where IID
∼ represents ‘are independent and identically distributed as’ and N denotes normal distribution

with mean µi and variance σ2
i . Moreover, Xi j and X` j′ are independent for any j , j′.

Assumption 1 implies that the output data from each system is marginally IID normally distributed
and systems are simulated independently (thus no common random numbers).

Assumption 2. µ1−δ ≥ µ2 ≥ . . . ≥ µk−1 ≥ µk for δ ∈ R+.

This assumption states (without loss of generality) that system 1 is the best and that it is at least δ better
than any alternative system. The user-specified parameter δ is the IZ parameter, a practically meaningful
difference worth detecting.

We first need some notation. Let r be the current number of replications, and consider a group of three
systems labeled [1], [2], and [3]. Moreover, b represents the identity of the system with the largest mean
µi and i1 and i2 represent the remaining two systems in the group. Finally, we define

X̄i(r) ≡
1
r

r∑
j=1

Xi j, the sample mean of system i based on the first r observations;

σ2
i` ≡ σ2

i +σ2
` , the variance of the difference between systems i and `;

Y1(r) ≡
r∑
`=1

X[1]` −X[3]`

σ[1][3]
;

Y2(r) ≡
r∑
`=1

X[2]` −X[3]`

σ[2][3]
;

Y(r) ≡ (Y1(r),Y2(r))T , where the superscript T stands for transpose;

Λ ≡

 1
σ2

[3]
σ[1][3]σ[2][3]

σ2
[3]

σ[1][3]σ[2][3]
1

 ;

Λb ≡

 1
σ2

b
σb,i1σb,i2

σ2
b

σb,i1σb,i2
1

 ;
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δ ≡

(
δ

σb,i1
,
δ

σb,i2

)T

;

δs ≡

√
δT Λ−1

b δ.

3. OUR PROCEDURE

In this section, we propose a new procedure under the assumption that variances are known but not
necessarily equal. We call it Procedure E since it is based on ellipses:

Procedure E

Setup: Given the IZ parameter δ, select some η > 0; this choice is discussed later in this section. Set
I = {1,2, . . . ,k} and take one observation from each system. Set r = 1 and go to Screening.

Screening: If |I| ≥ 3, for each possible group of 3 systems in I, apply [Screening-a]. Else if |I| = 2,
apply [Screening-b]:

Screening-a: For systems labeled [1], [2], and [3], eliminate the system with the smallest sample mean
from I if

Y(r)T Λ−1Y(r) ≥
(
η

δs

)2

. (1)

Screening-b: For systems labeled [1] and [2], eliminate the system with the smaller sample mean
from I if 

∑r
j=1(X[1] j−X[2] j)

η×
σ2

[1][2]
δ


2

≥ 1. (2)

Stopping Rule: If |I| = 1, return the survived system as the best. Otherwise, set r = r + 1, obtain one
additional observations for all i ∈ I, and repeat [Screening].

The procedure differs slightly from a procedure due to Kim and Dieker (2011). The difference is that
Kim and Dieker’s procedure uses a circle to determine which system to eliminate, while our Procedure E
uses a special ellipse, namely the one determined by the quadratic form associated with Λ−1. Although
this may appear to be a minor difference, there are two main reasons why Procedure E holds promise
compared to the approach in Kim and Dieker (2011). First, using the ellipse determined by Λ−1 allows
us to perform an explicit error analysis when we replace the Gaussian random walk Y(r) = (Y1(r),Y2(r))
by its Brownian counterpart; this is discussed below. In Kim and Dieker (2011), we instead used delicate
bounds in our error analysis; for Procedure E such bounds are not needed and this simplifies calculations
greatly. We anticipate that this insight is particularly advantageous in order to develop our methodology in
a higher-dimensional setting. A second key advantage of the specific ellipse chosen here is that Procedure
E is invariant under permuting the system labels. Indeed, the following lemma shows that we only need
to consider a single quadratic form for each triplet of systems. This also has a computational advantage:
unlike in Kim and Dieker (2011), we do not need to sort the system sample means for each triplet to verify
whether the process has escaped from a circle or ellipse.
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Lemma 1. For any (x1, x2, x3) ∈ R3, we have

(x2− x1, x3− x1)
[
σ2

12 σ2
1

σ2
1 σ2

13

]−1 ( x2− x1
x3− x1

)
= (x1− x2, x3− x2)

[
σ2

12 σ2
2

σ2
2 σ2

23

]−1 ( x1− x2
x3− x2

)
= (x1− x3, x2− x3)

[
σ2

13 σ2
3

σ2
3 σ2

23

]−1 ( x1− x3
x2− x3

)
.

Proof. We only prove the first equality; the second follows by symmetry. Since(
x1− x2
x3− x2

)
=

[
−1 0
−1 1

](
x2− x1
x3− x1

)
,

we need to prove that [
−1 −1
0 1

] [
σ2

12 σ2
2

σ2
2 σ2

23

]−1 [
−1 0
−1 1

]
=

[
σ2

12 σ2
1

σ2
1 σ2

13

]−1

.

By taking inverses on both sides, we find that this is equivalent with[
−1 0
−1 1

] [
σ2

12 σ2
2

σ2
2 σ2

23

] [
−1 −1
0 1

]
=

[
σ2

12 σ2
1

σ2
1 σ2

13

]
,

and it is straightforward to verify this equality. �

Procedure E requires a real-valued parameter η, and we next discuss how this parameter can be chosen.
We define

ρ =
σ2

b

σb,i1σb,i2
, θ1 = arctan


√

1 +ρ

1−ρ
·
σb,i1 −σb,i2

σb,i1 +σb,i2

 , and θ2 = arctan


√

1 +ρ

1−ρ

 .
We let η be a solution to the following equation:∫ θ1+θ2

θ1−θ2

exp(−ηcosθ)
2πI0(η)

dθ =
2α

k−1
(3)

where Iν(z) is a modified Bessel function of the first kind defined as, for z ≥ 0,

Iν(z) =

∞∑
q=0

(z/2)2q+ν

q!Γ(q + ν+ 1)

in terms of the gamma function Γ(·). We think of the parameter α as a proxy for the probability of incorrect
selection, although we do not give a formal performance guarantee here. We intend to address this in future
research. A lower α leads to a higher η and therefore a bigger ellipse; more observations are then required
for a system to be eliminated.

Since η depends on variances of systems, it changes whenever a different group of three is considered.
The left-hand side of Equation (3) is the probability that a continuous Brownian process with drift δ exits
the domain {(y1,y2) : (y1,y2)Λ−1(y1,y2)T < (η/δs)2} in the first quadrant. When there are only two systems
remaining, we use the η determined by Equation (3) for the last group of three.
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Our algorithm requires knowledge of δs. In reality, for a given triplet of systems, we do not know
which system is the best and therefore we cannot calculate δs. One way to circumvent this issue is to
calculate three possible η/δs for each possibility b = [1], [2], or [3], and then take the largest η/δs. Using the
largest η/δs will result in a wider ellipse than the one determined with knowledge of the best system. As
a result, the probability of correct selection (PCS) will be higher, but the number of required observations
to reach a decision will increase. If the smallest value of η/δs is used, then fewer observations will be
used but the PCS will decrease. As a compromise, in practice one can choose the second largest (middle)
value for η/δs. However, we view this paper as a step towards an increased understanding of the use of a
high-dimensional Brownian motion in ranking and selection, rather than that it provides a procedure that
can be implemented in practice. We leave the topic of designing an algorithm that does not use any system
knowledge for further research, and note that such an algorithm should not take the system covariance
structure as input. In next section, we thus present our experimental results assuming knowledge of δs.

4. EXPERIMENTS

In this section, we test the performance of Procedure E under two mean and three variance configurations
and compare it with a procedure (Procedure P) due to Wang and Kim (2012), an extended version of a
procedure due to Paulson (1964). For known variances, Procedure P is the most efficient statistically-valid
fully sequential IZ procedure.

Procedure P

Setup: Select the nominal level 1−α and the IZ parameter δ. Calculate ηp = −0.5lnβ/(1−β) where
β = α/(k−1). Set I = {1,2, . . . ,k}, take one observation from each system. Set r = 1 and go to Screening.

Screening: Set Iold = I. Let

I =

i : i ∈ Iold and
r∑

j=1

(Xi j−X` j) ≥ −ηpσ
2
i`/δ for i, ` ∈ Iold and i , `

 .
Stopping Rule: If |I| = 1, then stop and select the remaining system as the best one. Otherwise, take
one additional observation Xi,r+1 from each active system i ∈ I, set r = r + 1, and go to Screening.

We let the number of systems k vary over 3,5,10,and 25, and we set α = 0.05 and δ = 0.3. Two
mean configurations are considered: SC and monotonic decreasing means configuration (MDM). Under
SC, µ1 = δ and µi = 0 for i = 2, . . . ,k. Under MDM, µi = (2− i)δ.

We test three variance configurations:

• Equal variances (EQUAL): σ2
i = 1 for i = 1, . . . ,k;

• Increasing variances (INC): σ2
i = 1 + (i−1)δ for i = 1, . . . ,k; and

• Decreasing variances (DEC): σ2
i = 1

1+(i−1)δ for i = 1, . . . ,k.

Thus, we have six configurations total: SC-EQUAL, SC-INC, SC-DEC, MDM-EQUAL, MDM-INC,
and MDM-DEC. The estimated probability of correct selection (PCS) and the average number of observations
until a decision is made (REP) are reported based on 4000 macro replications.

Table 1 shows the estimated PCS of our procedure. Estimated PCS are close or over the nominal level
except the SC-INC case with k = 10 or 25.
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Table 1: Estimated PCS.

SC MDM
k EQUAL INC DEC EQUAL INC DEC
3 0.957 0.962 0.963 0.983 0.982 0.980
5 0.957 0.956 0.961 0.990 0.991 0.990
10 0.952 0.935 0.964 0.997 0.996 0.997
25 0.950 0.874 0.973 0.999 0.999 0.999

Tables 2 and 3 compare the average number of replications of our procedure and ProcedureP. Procedure
E works better than Procedure P, and shows similar performance as the procedure due to Kim and Dieker
(2011) for the equal-variance case. There is some overlap between the numerical results for Procedure
E and the results reported in Kim and Dieker (2011) when the variances are equal. This is because the
ellipse from our procedure becomes a circle in the equal-variance setting, and because we use the same
experimental setting as in Kim and Dieker (2011), including the same random number generator. Moreover,
some of the experiments use the same the critical parameter η.

Table 2: Average total number of replications under the SC configuration.

EQUAL INC DEC
k E P E P E P

3 135 134 163 166 114 112
5 252 292 341 412 200 222
10 547 693 936 1273 357 426
25 1444 2044 4065 6259 602 790

Table 3: Average total number of replications under the MDM configuration.

EQUAL INC DEC
k E P E P E P

3 107 106 124 125 92 92
5 153 192 185 243 132 158
10 218 306 278 437 180 236
25 311 479 453 908 234 330

5. CONCLUSIONS

We present a modification of the procedure Kim and Dieker (2011) to cope with known but not necessarily
equal variances. The new procedure compares systems in a group of three and uses an ellipse to determine
if an inferior system can be eliminated. The procedure works better than Procedure P but experiences
degradation in PCS under the SC configuration with increasing variances and k ≥ 10. It requires knowledge
of δs and the system variances, which is unlikely to be available in practice. We are currently investigating
how these drawbacks can be overcome.
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